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ABSTRACT 

 

Off-road drivers are exposed to a high magnitude of vibration at low frequency (0.5-

25Hz), that can cause harm and possibly attribute to musculoskeletal disorder, 

particularly low-back pain. The suspension seat is commonly used on an off-road 

condition to isolate the vibration transmitted to the human body. Nevertheless, the 

suspension seat modelling that incorporates the human body is still scarce. The objective 

of this study is to develop a mathematical modelling to represent the suspension seat-

person for off-road vehicles. This paper presents a three degrees-of-freedom lumped 

parameter model. A curve-fitting method is used for parameter identification, which 

includes the constraint variable function (fmincon()) from the optimisation toolbox of 

MATLAB(R2017a). The model parameters are optimised using experimentally measured 

of suspension seat transmissibility. It was found that the model provides a reasonable fit 

to the measured suspension seat transmissibility at the first peak of resonance frequency, 

around 2-3 Hz. The results of the study suggested that the human body forms a coupled 

system with the suspension seat and thus affects the overall performance of the suspension 

system.  As a conclusion, the influence of the human body should not be ignored in the 

modelling, and a three-degrees degree-of-freedom lumped parameter model provides a 

better prediction of suspension seat transmissibility. This proposed model is 

recommended to predict vibration transmissibility for off-road suspension seat. 

 

Keywords: lumped parameter model; seat-person suspension model; suspension seat; 

transmissibility; vibration isolation system. 

  

INTRODUCTION 

 

Drivers may feel uncomfortable from the exposure to a low frequency of vibrations 

transmitted to the body from the seat. Road condition such as rough track and speed of 

vehicles may increase the level of exposure to whole-body vibration [1, 2]. Therefore, the 

isolation system is important for drivers to protect the body from excessive exposure to 

vibration, especially on the off-road condition. The seat cushion can isolate vibration at a 

low magnitude, but at higher magnitudes, the suspension seat is necessary to attenuate 

excessive vibration and shock from being transmitted to the body. 
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A suspension seat can be designed to reduce the impact of vibration and shock to 

the human body [3]. The efficiency of a suspension seat depends on (i) the input vibration 

at the seat base, (ii) seat transmissibility, and (iii) sensitivity of the human body to the 

input vibration on the seat surface. The input vibration refers to the excitation sources, 

such as road roughness, engine, tyres and dynamic working load. The most common way 

to analyse the characteristics of the suspension seat is to measure its transmissibility.  

Seat transmissibility is the ratio between vibrations on the seat surface to the seat 

base. The characteristics of the seat and the human body are both important. The seat and 

the human body can form a coupled system  that can be affected by each other [4, 5]. 

Thus, in order to predict the performance of the suspension seat, it is essential to include 

human responses in the model as well. 

Modelling the suspension seat is necessary to develop an improved suspension 

seat system [6, 7]. One of the most commonly developed is the lumped-parameter model 

[8-11]. Gunston has compared ‘Bouc-Wen’ and the lumped parameter model to assess a 

suspension seat’s dynamic performance [12]. It was found that the lumped parameter 

model was preferable for the improvement of overall suspension seat design, while 

‘Bouc-Wen’ was useful for optimisation of individual parts of the suspension seat.  

Stein developed a lumped parameter model to predict vibration transmission of 

the suspension seat with a variable damper, commonly found in the rail transport [13]. 

However, the findings concluded that using inert mass was a better suit compared to using 

ISO 5982 and DIN 45676 models [14, 15]. Some studies used the finite element for 

modelling of car seats and for predicting vibration transmissibility [16-17]. Even though 

modelling of the coupled seat-human body has been a great interest for the past years, 

there are  not many studies involving a suspension system (cushion and suspension seat) 

that couples with the human body. Various models of seat transmissibility concentrated 

on the car seat and not the suspension seat used for off-road conditions.  

Standards have proposed to test seat transmissibility by using the rigid mass [18]. 

Nevertheless, the role of the human body cannot be neglected as the dynamic responses 

of the human body affect the seat dynamic characteristics, and vice versa. Thus, a 

suspension seat-person model is essential to investigate and predict the dynamic 

performance of suspension seat when exposed to vibration. The objective of the present 

study was to propose a mathematical model for a suspension seat-person system to predict 

seat transmissibility of suspension seat used in off-road conditions. The model is expected 

to assist seat manufacturer in optimising suspension seat performance. 

 

METHODOLOGY 

 

Experimental Measurement 

 

ISO 7096 [18] provides a guideline for laboratory measurement for suspension seat for 

off-road conditions. Since this study focuses on off-road suspension seat, the seat 

transmissibility measured by Qiu was used as a reference to calibrate the model [19]. In 

the study, a suspension seat of a motor grader was used to study the dynamic 

characteristics. Three categories of body weight were investigated representing light, 

medium, and heavyweight subjects, consistent with the requirements of the standard [18].  

Subjects were exposed to 1.0 m/s2 r.m.s random vibration in a vertical direction, 

with the frequency range of 0.5-25 Hz for 120-second. The experiment was conducted 

with the subjects sitting on a suspension seat that was secured on top of a hydraulic 

simulator. One accelerometer was secured at the seat base and an SIT pad was positioned 
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on the suspension seat to measure its vibration. Figure 1 shows the schematic diagram of 

the experimental setup.  

 
 

Figure 1. Schematic diagram of the experimental setup.  

 

Model Description 

 

Figure 2 shows a three-degree-of-freedom lumped parameter model to predict suspension 

seat transmissibility. The model has three parallel mass-spring-damper systems. Each of 

the subsystems represents the human body, seat cushion and suspension seat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Three-degree-of-freedom lumped parameter model. 

 

where: 

m1, k1 and c1  : m1, k1 and c1 are the mass, stiffness coefficient and damping 

coefficient of subsystem 1. 

m2, k2 and c2 : m2, k2 and c2 are the mass, stiffness coefficient and damping 

coefficient of subsystem 2 

Suspension seat 

Cushion 

Human body 
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m3, k3 and c3 : m3, k3 and c3 are the mass, stiffness coefficient and damping 

coefficient of subsystem 3 

The equations of motion (EOM) are:  

 

m1ẍ1+ c1(ẋ1-ẋ0)+ k1(x1- x0) + c2(ẋ1-ẋ2)+k
2
(x1- x2)=0 

 

(1) 

m2ẍ2+ c2(ẋ2-ẋ1)+ k2(x2- x1) + c3(ẋ2-ẋ3)+k
3
(x2- x3)=0 

 

(2) 

m3ẍ3+ c3(ẋ3-ẋ2)+ k3(x3- x2) =0  
 

(3) 

Replacing the EOM by applying the Laplace Transform (x→X, ẋ→sX, ẍ→s2 X), 

 

(m
1
s2+ c1s+c2s+k1+k2)X1(s)-(c1s+k1)X0(s)-(c2s+k2)X2(s)=0 

 

(4) 

(m
2
s2+ c2s+c3s+k2+k3)X2(s)-(c2s+k2)X1(s)-(c3s+k3)X3(s)=0 

 

(5) 

(m
3
s2+ c3s+k3)X3(s)-(c3s+k3)X2(s)=0 

 

(6) 

For simplification, the equation can be expressed as: 

 

AX1(s)-BX0(s)-CX2(s)=0 

 

(7) 

DX2(s)-CX1(s)-EX3(s)=0 

 

(8) 

FX3(s)-EX2(s)=0 

 

(9) 

Where:  

A=m1s
2+ c1s+c2s+k1+k2, B=c1s+k1, C=c2s+k2, D=m2s

2+ c2s+c3s+k2+k3, 
E=c3s+k3 and F=m3s

2+ c3s+k3 

(10) 

 

By mathematical manipulation, the seat transmissibility, T(s) of the model can be 

calculated as: 

 

T(s)=X2/X0  =
B

AD-AE
2
/F

C
-C

 
(11) 

 

The seat transmissibility modulus (|T|) and the phase (arctan-1) can be determined by 

calculating the real and imaginary parts of the seat transmissibility.  

 

|T|(ω)=((ReT(ω))
2
+(ImT(ω))

2
)1/2 (12) 

Phase T(ω)=tan
-1
(
ImT(ω)

ReT(ω)
) (13) 

RESULTS AND DISCUSSION 

 

Fitting the Model with the Experimental Data 
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The optimised model parameters were determined by a curve fitted to the experimental 

data obtained by Qiu [19]. The minimum constrained value function was obtained from 

the optimisation toolbox (fmincon ()) of MATLAB (R2017a).  

 

The model parameters were refined to minimise the error, as below: 

 

error= w1 ∑ (T
m
(i)

N

i=1

-Te(i))

2

+w2 ∑ (P
m
(i)

N

i=1

-Pe(i))

2

 

(14) 

 

where: 

Tm(i) and Pm(i) : The seat transmissibility modulus and phase of the model  

Te(i) and Pe(i)  : The seat transmissibility modulus and phase of the experimental 

data 

w1 and w2             :  The weighting factors to improve the fitting 

All model parameters were assigned an initial guess, based on previous reported 

literature, which was corrected during the optimisation process. The model parameters 

for human subjects are based on basic parameters of the seated human body [20]. In order 

to simulate the boundary conditions and ranges for seated vehicle operators, the weight 

of the human body was set to be 73% of its total weight, resulted in the range of 40 – 80 

kg (representing light to heavy subjects) [18, 21].  

According to the parameters from previous anthropometry and experimental data, 

the body parts stiffness is classified within the range of 100 – 300,000 Nm-1 [22, 23], and 

the human body parts damping is recommended within the range of 500 – 4,000 Nsm-1 

[22, 24]. The boundary conditions for optimisation of the human body is expressed as: 

40 kg ≤ m3 ≤ 80 kg 

100 Nm-1 ≤ k3 ≤ 300,000 Nm-1 

500 Nsm-1 ≤ c3 ≤ 4,000 Nsm-1 

The optimisation process by using the curve fitting method of the median seat 

transmissibility modulus and phase is shown in Figure 3. The developed seat 

transmissibility model in this study provides a good fit at the first peak of resonance 

frequency. Nevertheless, the model does not reflect at the second peak of the resonance 

frequency.  

The proposed model used one degree-of-freedom to represent a human response. 

The previous study suggested that two, three and four degree-of-freedom to represent the 

biodynamic response of the human body [25-31]. Although the reported models provide 

a good fit at first and second resonance of the apparent mass, this is not the case for the 

second resonance of the seat transmissibility. Thus, the simplified model proposed in this 

study is enough, as it provides a reasonable fit for the primary resonance of the modulus 

and phase of suspension seat transmissibility. 
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Figure 3. Median seat transmissibility modulus and phase of both of the experimental 

and optimised model measured at 1.0 m/s2 r.m.s. 

 

Figure 4 shows the curve fitting according to the weight categories. Three 

categories of weight were tested in this study (light to heavy subjects). Note that as the 

subject weight increases, the model parameters of the suspension system changes as well. 

This condition suggests that the isolation system properties will adjust to compensate with 

the weight changes. By increasing the subject’s weight, the primary resonance peak is 

reduced and shifted to a lower frequency. This is well predicted by the proposed model. 

 

 
 

Figure 4. Seat transmissibility modulus and phase of both of the experimental and 

optimised model with three categories at 1.0 m/s2 r.m.s. 
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All the optimised model parameters were demonstrated in Table 1. Parameters 

variability are observed involving different weight categories. Further discussion about 

the variability of the parameters is discussed in the sensitivity analysis. 

 

Table 1. Optimised model parameters. 

 

Subject m1 

(kg) 

m2 

(kg) 

m3 

(kg) 

k1 

(N/m) 

k2 

(N/m) 

k3 

(N/m) 

c1 

(Ns/m) 

c2 

(Ns/m) 

c3 

(Ns/m) 

Light 11 6 40 15,473 44,229 22,283 2,267 215 969 

Medium 9 7 56 22,302 100,000 21,439 2,074 210 1,666 

Heavy 10 6 75 9,879 50,037 33,393 1,815 200 2,166 

 

Sensitivity analysis 

 

Sensitivity analysis was performed on the median data (refer to Table 2) of the suspension 

seat transmissibility. The analysis was conducted by varying model parameters one at a 

time by ±50% from the optimised value of mass (m1, m2 and m3), stiffness (k1, k2 and k3), 

and damping (c1, c2 and c3) coefficients for all the subsystems. The test was carried out 

to determine the influence of each parameter to the peak of the resonance frequency. The 

variation by ±50% of each parameter allowed us to find the key parameters that affect the 

suspension seat transmissibility, as shown in Figure 5.  

 

Table 2: Optimised median model parameters 

 

 m1 

(kg) 

m2 

(kg) 

m3 

(kg) 

k1 

(N/m) 

k2 

(N/m) 

k3 

(N/m) 

c1 

(Ns/m) 

c2 

(Ns/m) 

c3 

(Ns/m) 

Median 10 6 56 15,473 50,037 22,283 2,074 210 1,666 

 

At low frequencies, the mass of the human subject, m3 shows the noticeable effect 

on the response of seat transmissibility. Not much change can be observed when varying 

the mass of the suspension seat and its cushion. Changes of mass for the suspension 

system do not affect the suspension seat transmissibility. Varying the spring stiffness 

resulted in changes in the primary resonance frequency for all the subsystems. 

Nevertheless, only k2 shows divergence after the first peak. Note that the first peak is 

shifting as we vary the damping properties at the frequency of less than 5 Hz for c1. The 

human body damping properties, represented by c3 shows divergence at the frequency 

more than 5 Hz.  

From the sensitivity analysis, it was found that seat transmissibility was most 

sensitive to the stiffness and damping of the suspension seat and the mass of the human 

body. It is observed that not only the suspension seat contributed to the first peak of the 

resonance frequency, but the human body as well. The dynamic properties of the human 

body affect the dynamic properties of the suspension seat, and vice versa. Thus, it is 

necessary to incorporate the human body properties into the model. For simplicity, this 

proposed model is sufficient to represent the suspension seat-person to predict the 

suspension seat’s transmissibility. 
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Figure 5. Sensitivity analysis of the seat transmissibility parameters by varying ±50% 

of the optimised value. 
 

CONCLUSION 

 

A three-degree-of-freedom lumped parameter has been developed to predict seat 

transmissibility of suspension seats used on off-road conditions. The model provides a 

close fit to the first peak of resonance frequency in predicting the seat transmissibility. 

The model suggests that the human body, when integrated with the suspension seat, forms 

a coupled system that contributes to the dynamic characteristics of the suspension system. 

In addition, The mass of a human subject can affect the isolation properties of the 

suspension seat at low  frequencies. The lumped parameter model provides advantages in 

the sense of allowing the seat’s dynamic characteristics to be represented as stiffness and 

damping, which are robust enough to be used for different types of seats. This study 

provides helpful guidelines to seat manufacturers in predicting seat transmissibility and 

improving the seat design, especially on the off-road conditions. 
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