
International Journal of Automotive and Mechanical Engineering  

ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online) 

Volume 16, Issue 4 pp. 7341-7363 Dec 2019 

© Universiti Malaysia Pahang, Malaysia 

 

 

7341 

 

New Methodology for Inertial Identification of Low Mobility Mechanisms 

Considering Dynamic Contribution 

 

L. A. M. Calderón1*and C. A. R. Piedrahita2 

 
1Faculty of Mechanical Engineering, Universidad Tecnológica de Pereira,  

Cra 27 10-02, Pereira, Colombia 
*Email: adriamec@utp.edu.co  

Phone: +5763137300; Fax: +5763213206 
2Faculty of Technology, Universidad Tecnológica de Pereira,  

Cra 27 10-02, Pereira, Colombia 

 

ABSTRACT 

 

Knowledge of dynamic parameters of mechanical systems is required in different 

applications, particularly in the simulation and control problems. In this paper, the 

standard identification methods are discussed and a new methodology for identification 

of inertial parameters is raised when the closed chain has low mobility. The methodology 

includes formulating a symbolic model based on the transfer of inertial properties and a 

reduction using dynamic contribution indices based on CAD approximations. The new 

method is applied to the front suspension of an electrical vehicle. After applying the 

procedure, a model with few parameters that allows accurately reproducing the dynamic 

behaviour of the system is obtained. A novel methodology has been developed that allows 

the identification of dynamic parameters in low mobility mechanical systems.  

 

Keywords: Identification; inertial parameters; low mobility mechanism; vehicle 

suspension 

 

INTRODUCTION 

 

Obtaining models that accurately represent the behaviour of the systems, which allow 

evaluating functional performance, requires the identification of a set of parameters 

included in those models. The identification of geometric parameters is a known 

technique in the field of robotics. However, dynamic parameters are difficult to determine 

because they require mostly the application of several experimental identification 

techniques. For example, to determine mass and mass-centres, techniques such as force 

measurement, suspension cables and balancing tables may be enough [1]. On the other 

hand, the experimental determination of inertia tensors implies more complex methods 

that are based on their dynamic response, such as the gravitational pendulum method and 

small angular motions [2-4]. Generally, these methods require special assemblies, high 

execution times and highly qualified personnel. So, if the mechanical system is large, in 

size and number of pieces, these methodologies are impractical. 

The parameter identification by a dynamic model allows estimating a high number 

of dynamic parameters in a single experiment. In general, in an inertial parameters 

identification process, not all the individual parameter values are determined. The main 

purpose of the process is to determine an equivalent model that can predict with the 

minimum error the generalised forces for any movement of the system. This equivalent 

model is smaller (fewer parameters) than the original model. Considering that in 

mailto:adriamec@utp.edu.


New Methodology for Inertial Identification of Low Mobility Mechanisms Considering Dynamic 

Contribution 

7342 

simulation and control tasks, dynamic models are computationally extensive, with high 

execution times, obtaining reduced models with a sufficiently accurate response is a job 

that is well worth it.  

The dynamic parameter identification has been addressed until today, especially 

in robotics [6-9], [11-18]. However, for mechanical systems in general, few studies have 

been carried out [19-22]. Bearing in mind that almost all the mechanisms of machines are 

closed kinematic chains, with low mobility, it is essential to propose a methodology to 

identify dynamic parameters for this type of mechanisms. The term “low mobility” refers 

not only to the low number of degrees of freedom but also to the limited workspace and 

the limited relative movement between the elements of the chains.  Some previous works 

have developed symbolic and numerical methodologies such as SVD decomposition and 

inertial transfer to address the identification of low mobility systems. However, they have 

experimented problems with the results reached due to the numerical characteristics of 

the determined models. These works were analysed in the following section. 

The proposed identification methodology in this study requires the construction 

of a dynamic model written in a linear manner with respect to the parameters that will be 

identified. The elaboration of the model and the development of the required 

mathematical expressions are presented in the following section. Subsequently, the 

application of the standard method of identifying dynamic parameters for low mobility 

mechanisms (LMM) is analysed. The difficulties that were encountered after the 

application of this method are discussed and some actions are proposed, such as the use 

of symbolic procedures and the criteria of reduction of the model in the search to obtain 

a set of well-identified parameters. Finally, the proposed methodology is applied and 

evaluated on a front suspension of an electric vehicle. 

 

DYNAMIC MODELLING FOR PARAMETER IDENTIFICATION 

 

An important characteristic of the dynamic model of a mechanical system is its linearity 

with respect to inertial parameters. This linearity depends on the location of the reference 

systems. In order to obtain a dynamic model that depends linearly on all inertial 

parameters, it is necessary to use local reference systems outside the mass-centre of each 

element.  

For a mechanical system composed of a link i and modelled by a set of 

independent generalised coordinates q , and applying the virtual work principle, the 

dynamic model of a low mobility mechanism can be expressed as, 

 

i i iin g exQ Q Q− − =  (1) 

 

where 
iii gexin

QQQ


,, are inertial, external and gravitational generalised forces.  

If the local reference systems of the links are located outside their centre of mass, 

the dynamic model will depend linearly on the inertial parameters and the dynamic model 

in Eq. (1) can be written as a linear model where Ki is a coefficient matrix and the vector 

i  is the inertial parameter vector, 

 

,ex i i iQ K=   (2) 

 

The matrix Ki is obtained as, 
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(3) 

 

and i i i Gi i Gi i Gi xxi xyi xzi yyi yzi zzim m x m x m x J J J J J J  =   . 

In Eq. (3) 
iAv and 

iAa  are the velocity and acceleration of the local reference, 
i




 

y i



 are the angular velocity and angular acceleration on link i. The other vectors are 

defined as,  

0
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In order to complete a mechanism with closed kinematic chains, the restriction 

forces must be added for generating a dynamic model whose equation can be written as,  

 

( )
T

ex qK Q C  = −   
(4) 

 

where ( )
T

qC   corresponds internal generalised forces, qC  is the Jacobian matrix and 

  is a vector that includes Lagrange multipliers. 

It is not easy to obtain information about the internal forces that appear in the 

joints during the movement of the mechanism; hence it is convenient to eliminate those 

internal forces in Eq. (4), by applying any of the procedures proposed in the field of 

Multibody Dynamics. These procedures can be classified into two large groups: partition 

of coordinates and admissible movement subspace. In the latter, it is considered that the 

internal forces are orthogonal to the admissible movements in the kinematic joint so that 

an orthogonal complement or velocity projection matrix will be obtained. From Eq. (4), 

it is about obtaining a matrix *R that verifies, 

 
* iq R q=   (5) 

 

where iq  is a vector of independent velocities. The matrix *R  is characterised by, 

 
* 0qC R =  (6) 
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which serves to eliminate the internal forces in Eq. (4).  

Multiplying both terms in Eq. (4) by *R ,  

 
* * *T T T T

ex qR K R Q R C   =  −    (7) 

 

What it is, 

 
* *T T

exR K R Q  =   (8) 

 

Since Eq. (8) has as many scalar equations as degrees of freedom. Equations 

corresponding to different positions of the mechanical system must be included to obtain 

a numerically over-determined system. The obtained matrix is called the observation 

matrix of the system and the dynamic model that is expressed in linear form with respect 

to the parameters: 

 

1 1n m m nW    =  (9) 

 

where m is the number of dynamic parameters and n is the number of configurations 

multiplied by the degrees of freedom of the mechanical system. 

 

STANDARD PROCEDURES FOR DETERMINING BASE PARAMETERS 

 

Due to the linearity of the inertial parameters, it is possible to perform the estimation of 

the parameter vector using numerical methods as the least mean square method LMS. The 

requirement for using LMS is to have an observation matrix W with complex rank. That 

is not met from Eq. (9) because some inertial parameters do not contribute to generalised 

forces, while other ones do as a linear combination. For it, numeric and symbolic methods 

are used to obtain the expressions of sets of base parameters.  

Among the main referenced numerical methods in the identification processes are 

the decomposition in singular values (SVD) and QR decomposition [5]. Calafiore et al. 

[6], Farhat et al.[7] and Diaz-Rodriguez et al [8] used SVD to perform parameter 

estimation in serial robots and Parallel. Guegan et al. [9] realised identification of 

parameters on an Orthoglide robot through the QR Decomposition. In the field of 

mechanisms, Chen and Beale [10] used the SVD decomposition in the determination of 

the base parameters of a vehicle suspension and Venture et al. [11] applied QR 

decomposition in the identification of dynamic parameters of a commercial vehicle. 

In the symbolic methods for determining base parameters, there is an iterative 

procedure that has been derived from the energy analysis. Several authors [12],[13] used 

it in identification processes of simple series robots, while Khalil [14] applied it in robots 

with a branched structure. Other authors as Mayeda et al. [15] grouped certain inertial 

parameters of the same element (predetermined grouping) according to the direction of 

the kinematic joint of the element in the topology of the manipulator.  

In closed kinematic chains, the linear dependencies of parameters by simple 

inspection of the topology do not constitute a trivial task. In parallel robots, the work of 

Bennis et al. [16] presents a method to determine the symbolic base parameters through 

the analysis of the energy the system. Another method that can be applied to closed 

kinematic chains is developed by Iriarte [17] and Diaz-Rodriguez [18]; the method is 
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based on the dimensional analysis of the values provided by the numerical method and 

has been tested and validated for planar mechanisms [19], not so for spatial mechanisms.  

An efficient method to obtain the symbolic relationships between parameters is 

the transfer of inertial properties. The concept of mass and inertia transfer is based on the 

virtual redistribution of the inertial properties of the elements in the mechanical system 

whenever the Lagrangian of the system only changes in a constant way. Chen et al. [20] 

present the development of this method in planar mechanisms and subsequently perform 

an approach to spatial mechanisms [21]. The weakness of the method lies in the limitation 

of transferring only the masses, possible only in some kinematic joints (revolute, spherical 

and universal). This difficulty is overcome by Ros et al. [22], who uses the so-called 

monopoles, dipoles and quadrupoles. 

Regardless of the method applied to obtain a set of base parameters, a model 

constituted by an over-determined linear system is determined, in which the 

transmissibility of the errors in the data to the solution depends on the condition number, 

CN, of the Wbase [23]. 

 

DRAWBACKS IN THE APPLICATION OF THE STANDARD PROCEDURE 

TO LOW MOBILITY MECHANISMS (LMM) 

 

The described above standard numerical procedures for calculating the base parameters 

have several drawbacks when they are applied to low mobility systems, raising doubts 

about their use. Below, those drawbacks in standard identification procedures are 

presented. 

 

Uncertainty in Determining the Rank 

  

The first drawback observed after the application of a numerical procedure, such as SVD 

and QR decompositions, is the difficulty in determining the rank of the observation 

matrix; a magnitude that is usually determined from the analysis of the singular values of 

the matrix. 

 

High Condition Number  

 

If the condition number κ of the observation matrix Wbase is very large, no matter how 

small the measurement error is, the deviation in the estimation of the parameters will be 

high. In open chain systems, low condition numbers in the observation matrices are 

assured, using trajectories that excite many dynamic parameters. However, in closed 

chain mechanisms, characterised for having a low mobility, due to the kinematic 

restrictions imposed, this condition is far from being guaranteed. Though in closed chains 

the optimisation of trajectories improves the conditioning, it does not allow obtaining 

sufficiently low values to carry out a process of parameter identification. Valero et al. 

[24] and Mejía et al. [25] report condition number values of 1.0·10+11 y 5.7·10+10 

respectively, both for studies on vehicle suspensions with trajectory optimisation. 

 

High Standard Deviation on Identified Parameters  

 

Due to the persistence of the high conditioning of the Wbase even after the optimisation, 

the parameters were not well calculated. This requires a further reduction of the dynamic 

model in the search for a considerable reduction in the conditioning of the observation 
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matrix. Different authors have already made these reductions mostly eliminating 

parameters of high standard deviation [18], [26], [27], [28] or with physically unfeasible 

values (e.g. negative mass values)[18], [29]. The new set of reduced parameters is called 

relevant parameters [30]. Khalil and Dombre [27] propose to reduce the model by 

iteratively eliminating the base parameters with relative deviations greater than 10 

minimum deviations. However, in closed chain mechanisms, some authors [8], [30], [31] 

report high standard deviations of many parameters well above the criterion posed in [27].  

 

SOLUTIONS IN THE IDENTIFICATION OF PARAMETERS IN LOW 

MOBILITY MECHANISMS (LMM) 

 

In order to find a solution to the described drawbacks, it proposes a series of actions such 

as: 

i. to obtain the rank of the observation matrix from the analysis of the linear 

dependencies obtained in the symbolic expressions, which are determined by the 

inertial transfer. 

ii. to generate sets of base parameters from inertial transfers. 

iii. to obtain relevant parameters from reductions based on the dynamic contribution 

of each identified parameter. 

 

Determination of the Symbolic Expressions of Base Parameters through the 

Transfer of Inertial Properties 

 

A general symbolic method that can be applied in closed chains and low mobility systems 

is the mass transfer concept proposed by Ros et al. [22]. This concept is based on the 

premise that the dynamics of a mechanical system will not be modified by the virtual 

mass transfers between rigid bodies when the variation of the Lagrangian is constant with 

respect to time. The concepts of monopoles, dipoles, quadrupoles and their transfer 

conditions are used for obtaining a set of base parameters.  

The inertial parameters transferred between solids correspond to the linearly 

combined parameters. In order to obtain the exact rank, it is necessary to transfer as many 

parameters as possible in each kinematic joint. After making the transfers, the vector of 

independent parameters (they appear alone in each base parameter), the vector of 

dependent parameters, and the matrix that relates them is obtained, 

 

1 2base  = +   (10) 

 

Obtaining Other Sets of Symbolic Base Parameters Derived from a Transfer of 

inertial parameters 

 

From a set of expressions of symbolic base parameters, it is possible to determine 

different sets of parameters that also represent a valid set. The denomination of valid 

refers to a set of maximum rank, rank calculated from the symbolic expressions. Starting 

from Eq. (10), the matrix B formed for the identity matrix I and the matrix , which 

contains the dependency relations for the initial inertia property transfer. 

 

1

1 2 ( )

2

base r r r m r

B

I   −

 
  =  +  =      

 
(11) 



Calderon & Piedrahita / International Journal of Automotive and Mechanical Engineering 16(4) 2019 

7341-7363 

7347 

For this transfer, the identity matrix is associated with the vector of independent 

parameters 1 . However, in B it is also possible to find other submatrices of maximum 

rank. It is then a matter of finding combinations of r columns of B that generate matrices 

of maximum rank so that their associated parameters correspond to a new independent 

vector. In this way, multiple sets of base parameters can be found without performing the 

inertial transfer procedure. In total there will be m! /(m-r)!r! possible combinations. The 

more bodies the mechanical system possesses, the more computationally expensive will 

be the evaluation of all possible combinations. However, it is easier to determine if a 

combination of parameters corresponds to a set of valid base parameters, calculating the 

rank of the columns of B associated with these parameters. Analysing the mechanical 

system, a series of possible transfers of inertial parameters can be selected a priori, 

considering several convergence solids, so that the combinations of parameters associated 

with these transfers are evaluated exclusively. Once guaranteed that the combination of 

parameters is valid, a new vector is generated
'

' 1

'

2

 
 =  

 
, where

'

1  corresponds with the 

independent parameters for that combination. The columns of the matrix B and the 

parameter vector are exchanged in the same order through the matrix P so that 

 

( )  
'

1 1 1

1 2 '

2 2 2

T

B B B P P B B
        

 =  =   =                

 
(12). 

 

The partition of B is done so that B1 is square. If B1 is also full rank then the 

selection of 
'

1 an independent parameter vector is valid. Pre-multiplying both sides of 

the equation by 
1

1B−
, the new base parameters are obtained, 

 

 
' ' '

' 1 1 1 '1 1 1

1 1 1 2 1 2' ' '

2 2 2

B BB B B B I B B B− − −
       

  =  =   =   =              
 

(13) 

 

from which it follows that 
' 1

1 2B B −=  . 

 

Model for Identification 

 

The existing relationship between physical parameters   and the partition of dependent 

and independent parameters for a specific transfer is given through a single permutation 

matrix, 

 

1

2

TP
 

 =  
 

 
(14) 

 

Using Eq. (14), the model for identification can be written as, 

 

   1 1

2 2

1 2 1 1TW W P P W W W W 
    

 =    =  =     
    

 
(15) 
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Thus, 

 

1 21 base baseW W W  =    =    (16) 

 

where 

 

Wbase = W1 
 

(17) 

 

Obtaining Relevant Parameters 

 

The high conditioning in the Wbase observation matrix in LMM does not allow obtaining 

well-identified base parameters. The decrease of the condition number in Wbase is possible 

if some columns of the matrix are eliminated. To obtain this new set of parameters 

denominated relevant (the parameters not eliminated), a series of criteria is required to 

determine which and how many base parameters were eliminated. Due to the high 

conditioning of the observation matrix, the standard deviations were poorly calculated 

and do have a real meaning of the quality of the identified parameters. An alternative 

criterion is based on the elimination of those base parameters with few contributions in 

the generalised forces [8]. These contributions are determined through the dynamic 

contribution index of each parameter. Some authors [18], [32], [33] have used the 

dynamic contribution to determine which parameters are identifiable while others [24], 

[25] have used it to reduce the model. However, in low mobility systems, this index 

cannot be applied directly. To solve this problem, the dynamic contribution index is 

modified so that it is independent of the errors in the measured forces. For this, the 

symbolic expressions of the base parameters determined in the previous section must be 

used and evaluated with the values of an initial estimate from a CAD model. With these 

considerations, the dynamic contribution index in LMM is determined as, 

 

( )( ) ( )( )_ _:, ( ) :, ( )
·100

T

base base CAD base base CAD

i T

W i i W i i


 

  
=


 

(18) 

 

Once the parameter arrangement according to the dynamic contribution indices is 

determined, the base parameter of the lowest index is eliminated along with the Wbase 

column associated with that parameter. If the condition number of the resulting Wrelevant 

matrix is low, the least-squares method is applied to determine the estimated value of the 

relevant parameters. If the conditioning of the observation matrix is not low enough, the 

elimination process is repeated for the next parameter with low index ζ. The flow diagram 

of the complete identification process for LMM is presented in Figure 1. 
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Figure 1. Flow chart of the identification process of parameters of LMM. 

 

APPLICATION OF THE METHOD OF IDENTIFICATION OF DYNAMIC 

PARAMETERS TO A MECHANISM OF LOW MOBILITY. VEHICLE 

SUSPENSION 

 

In this section, the procedure for identifying parameters is applied to an automotive front 

suspension system, composed of two articulated quadrilateral mechanisms (on the left 

and right wheels). Each side of the suspension mechanism, represented in Figure 2, is 

made up of: upright (3), lower (1) and upper (2) control arms, spring-damper module (6-

7), wheel (5), steering rod (4), and a steering rack (8) that joins both sides of the 

suspension. Each kinematic joint is indicated by a letter, denoted by (R) revolute, (P) 

prismatic, (U) universal and (S) spherical joints. 

 

 
 

Figure 2. Kinematic diagram of the suspension with the location of the local reference 

systems. 
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The degrees of freedom of the mechanism corresponds to the vertical and angular 

movements of the wheels, and the lateral movement of the steering rod. To simulate 

conditions of the real operation, the measured forces are given errors associated with the 

measurement system itself. 

 

Base Parameters 

 

The mass transfer methodology requires the kinematic chain to be opened or branched, 

so it is necessary to cut through some kinematic joints. Figure 3(a) shows the cuts made 

in the revolute joints between control arms and chassis. After these cuts, there result in 

four branches around each wheel, Figure 3(b). For each branch, different mass or portion 

of the mass are transferred from the cutoffs and the ends of the mechanism to one or more 

solids, called convergence solids. For this first model, T1 model, the uprights are 

convergence solids. 

The first branch starts from the upper control arm, attached to the mechanism 

through two kinematic joints (A1 and D1 in Figure 3(b)). In the spherical joint (D1) only a 

single monopole can be transferred, while for the revolute joint (A1) various types of poles 

can be transferred. Of these possible transfers, the quadrupole is chosen so that the second 

moment of inertia with respect to the axis of the joint (Iyy2) is null after the transfer. To 

that end, part of the mass of the upper arm (m2A) is removed and added to that of the 

chassis at the point A1, 

 

( )
2 1

' 2 2

2 2 2 4 0A O AIyy Iyy m Ds z= − + =  (19) 

 

where 
2 14 3,   and O ADs Ds z  are the distances as presented in Figure 4. The value of m2A that 

eliminates the parameter '

2Iyy  in Eq. (19) is, 

 

2 1

2
2 2 2

4

A

O A

Iyy
m

Ds z
=

+
 (20) 

                                                                                                         

 

for
2 1

0O Az = .  Thus, the new parameters of the upper control arm are  

 

' 2
2 2 2 2 2

4

A

Iyy
m m m m

Ds
= + = +  

(21a) 

 

4

' 2 32
2 2 2 3 2 2 22

4 4
0

T

A

Ds
Iyy DsIyy

mG mG m Ds mx my mz
Ds Ds

 
  

= − = − −  
   

 

(21b) 

 

( )2 2

2 4 3' 22 2
2 2 3 2 3 2 2 22 2

4 4 4

0
Iyy Ds DsIyy Iyy

I Ixx Ds Ixy Ds Ixz Iyz Izz
Ds Ds Ds

 +
 = − −  −
  

 
(21c) 
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(a) 

 

 
(b) 

 

Figure 3. Branched-chain for the analysed suspension 

 

 
 

Figure 4. Dimensions of the links. 

 

It is noted that 
2Iyy  now appears as a combination in the new set of base 

parameters. Similarly, transferring the new total mass '

2m  of the upper control arm to the 

upright 3 in the spherical joint, and given the fact that the origin of the local reference 
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frame of the link 2 coincides with the position of the kinematic connection (
2 1O Dx =

2 1O Dy = 

0), monopole transfer does not affect the other inertial parameters of the body 2. After 

this transfer, the mass of the upright 3 depends on the mass and the second moment of 

inertia of the upper control arm 2, 

 
'' '' ' '' '

2 2 2 2 20,   ,   m mG mG I I= = =  (22) 

 

' ' 2
3 3 2 3 2 2

4

  
Iyy

m m m m m
Ds

= + = + +  (23a) 

 

' 7 2 7
3 3 3 3 2 2

42 2·

T

l Iyy l
mG mx my mz m

Ds

 
= +  + 
 

 
(23b) 

 
2 2 2 2

' 7 2 7 2 7 2 7
3 3 2 3 3 3 3 32 2

4 44 4· 4 4·

l Iyy l m l Iyy l
I Ixx m Ixy Ixz Iyy Iyz Izz

Ds Ds

  
= +  + + + 
 

 
(23c) 

 

From the branch of the steering rod (solid 4) two parameters can also be 

transferred, the first to the steering rack (solid 8) and the second to the upright. A 

monopole m4J1=Iyy4/l4
2 corresponding to part of the mass of the tie rod is transferred to 

the link 8 in the universal joint J1, to eliminate the second moment of inertia Iyy4’. After 

this transfer the parameter is Iyy4 linearly combined. Continuing along the same branch, 

now the new mass of the tie rod 4 is transferred to the upright 3. Given the location of the 

local reference of link 4, neither the first nor the second moments of inertia are modified. 

In the joint K1, connecting the wheel 5 with the upright 3, it can be transferred a 

monopole, a dipole in the direction of revolution, and a quadrupole in the same direction. 

So, the new base parameters for the wheel are  

 
'

5 0m =  (24a) 

 

 '

5 5 50
T

mG my mz=  (24b) 

 

 '

5 5 5 5 5 5 5 0I Ixx Ixy Ixz Iyy Izz Iyz= −  (24c) 

 

and the new base parameters for the upright are 

 

''' 2 4
3 3 2 4 52 2

4 4

Iyy Iyy
m m m m m

Ds l
= + + + − +  

(25a) 

 

''' 4 6 7
3 3 4 6 5 3 5 5 3 52

4

+
2

T

Iyy Ds l
mG mx m Ds m DKx my mx m DKy mz m DKz

l

   
= +  − −  − −   −  

  
 

(25b) 
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'''

3 3 5 5

22 2
''' 27 2 7 7
3 3 2 5 5 52

4

''' 7
3 3 5

,

2 ,
4 4· 2

,    
2

Ixy Ixy m DKx DKy mx DKx

l Iyy l l
Ixx Ixx m mx DKx m DKy DKz Izz

Ds

l
Ixz Ixz m DKx DKz

= −   − 

   
= +  + −  + + − +     

 
= +   − 

 

 

(25c) 

 

Moreover, because the origin of the local reference system of the lower strut 7 

coincides with the spherical joint L1, the transfer of its total mass to the lower control arm 

does not modify its other parameters. Additionally, its full inertia tensors may be 

combined with those of the upper strut, because they are coupled through a prismatic 

joint.     

With respect to the lower control arm, two parameters can also be transferred. The 

first can be transferred to a monopole, a dipole and a quadrupole between lower control 

arm and chassis in E1. However, the transfer of dipole and monopole eliminates 

parameters (Izz1, my1) not appearing in the dynamic equations, so that only a monopole 

with part of the mass of the lower arm is transferred to eliminate
''

1Iyy . In the second 

transfer, the new mass of lower arm ''

1m  is translated to the upright 3 in point G1. After all 

transfers the complete set of base parameters is obtained.  

The terms of all symbolic base parameters obtained can be regrouped in the form 

of Eq. (11), 

1

1 2 ( )

2

base r r r m r

B

I   −

 
  =  +  =      

 where B is the matrix containing an Identity 

Matrix associated with the independent parameters, at the time that β is the matrix 

containing the dependence relations between parameters. 

Other valid models are obtained considering other convergence solids: Model T2 

considers as convergence solids the lower control arms (1 and 9), which are the closest to 

the chassis. Model T3 takes as convergence solids the lower and upper control arms 

(1,2,8,9). In the model T4, one combination is selected randomly from a valid set. Finally, 

the T5 model is formed by taking the 32 dependent parameters randomly. For this model, 

the range (calculated numerically) of the observation matrix does not correspond to the 

range calculated symbolically by inertial property transfer models. So, this is the only 

model that is not valid. 

 

RESULTS AND DISCUSSION 

 

In Figure 5, the trajectories followed by the degrees of freedom of the mechanism are 

presented. These trajectories are obtained minimising the condition number in each 

model. The coordinates that control the rotation of both wheels 5 and 13 are

50·sin( )f t =   . For these trajectories, the condition numbers reached by the Wbase 

observation matrices of each model are found and presented in Table 1. 
 

Table 1. Condition number of observation matrices. 

 

Model T1 T2 T3 T4 T5 

κ 1.13x10+12 1.11x10+14 9.55x10+13 1.42x10+14 1.21x10+19 
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The numerical conditioning for the T5 model is several orders of magnitude 

greater than those obtained by transfer of inertial properties. Thus, despite the trajectory 

optimisations, the condition numbers of the observation matrices for all the models are 

still very high and, consequently, the identified parameters result very badly estimated 

when the forces used in the identification process include measurement errors. In order 

to verify this fact, a validation trajectory is considered that serves to validate the results 

obtained with the models T1-T5. The validation trajectory VT is presented in Figure 6.  

 

  
(a)      (b) 

 

  
(c)      (d) 
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(e) 

 

Figure 5. Optimised trajectories of the observation matrix models: (a) T1, (b) T2, (c) 

T3, (d) T4 y (e) T5 

 

  
(a)     (b) 

 

Figure 6. Validation trajectory (a) vertical displacements of the wheels and sides of the 

steering (b) turn of the wheels. 

 

If the vector of generalised identification forces  used in the identification of the 

base parameters were free of errors, the model in base parameters adequately obtained 

would predict the generalised forces on other trajectories, regardless of the numerical 

conditioning of the observation matrix. When the parameters are identified in the presence 

of errors in the forces, which is inherent to the measurement process, the model in base 

parameters is not able to adequately reproduce the generalised forces on other trajectories. 

From the above said, it follows that to predict the generalised forces under real 

conditions for any trajectory with low error, it is necessary to obtain a model with 

numerical conditioning much lower than that available in base parameters. By eliminating 

columns from the observation matrix and therefore eliminating base parameters, the 
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conditioning of the model is improved. The results of applying the reduction to the model 

in base parameters are presented below. 

 

Reduction of the Model based on the Dynamic Contribution 

 

The criterion proposed in this paper is the dynamic contribution index ζ, Eq. (18), by 

means of which the ordering used to eliminate base parameters can be determined. The 

least contributory parameters are eliminated from the set of base parameters until reaching 

the numerical conditioning levels of the Wbase matrix that guarantee the identification 

process. Table 2 shows that with a 5% error in external forces, the values of ten of the 

base parameters identified for model T1 change greatly with respect to the theoretical 

base parameters determined from a CAD approximation. 

 

Table 2. Variation of the base parameters identified with the addition of errors in the 

identification forces for model T1.  

 

base Theoretical 

CAD 

Identified, 

error 5% 
base Theoretical 

CAD 

Identified, 

error 5% 

1 - 3.4x10-1 -3.5x10+4 2 0 - 3.8x10+1 

3 -1.6x10-1 4.9x10+1 4 0 4.5x10+1 

5 3.5x10+1 1.1x10+5 6 -2.8x10-1 - 1.2x100 

7 - 1.4x10-1 - 2.4x10-1 8 - 1.4x100 - 2.4x10+4 

9 5.9x10-1 5.1x10+4 10 - 6.06x10-3 - 0.12 
*Each parameter has units corresponding to kg, kg • m and kg • m2. 

 

Figure 7 shows the generalised forces predicted by the model T1, for the validation 

trajectory, when the identification was made without errors and with errors by 5%. It is 

seen how in the presence of errors of the identification forces, the estimated generalised 

force associated with the right vertical movement differs greatly from the theoretical 

generalised force, Figure 7(b). The estimated forces without error and the exact forces 

overlap in this figure, so that no differences are observed between them. 

The increase in CAD estimation error did not generate an important difference in 

the order established as a criterion for reducing the models. This fact allows the use of 

high uncertainties in the approximation of the theoretical parameters, so that an 

insufficient refined CAD model will be acceptable to calculate the dynamic contribution 

indices. 

 

Reduction to Relevant Parameters 

 

Following the methodology presented in the flow chart of the identification process of 

parameters of LMM, Figure 1, with the dynamic contribution indices of each base 

parameter an array is constructed with the parameters ordered from highest to lowest 

index in each model (T1 to T5). The parameter with the lowest index ζ is eliminated from 

the base parameter vector and the column of the Wbase matrix associated with this 

parameter is also eliminated. 
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(a)     (b) 

 

  
(c)     (d) 

 

 
(e) 

 

Figure 7. Generalised estimated and theoretical forces. (a) right wheel rotation, (b) right 

vertical movement of the lower strut, (c) left wheel rotation, (d) left vertical movement 

of the lower strut, (e) steering. 
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In Figure 8 the Ep errors of the models for two CAD estimation levels are 

presented. In models T1-T5, a limit of relevant parameters is observed, from which the 

prediction error remains nominally invariant.  

 

  
(a)      (b) 

 

Figure 8. Error Ep. Forces used in identification with 5% standard deviation. (a) 0% 

error CAD estimate (b) 60% error CAD estimate.  

 

For a few relevant parameters (<10) the prediction error is above 300%. As the 

number of relevant parameters increases, the prediction error decreases to a value which 

remains almost constant. Therefore, it is possible to reduce the number of parameters until 

having a smaller size set of the relevant parameters for which the prediction error is 

unimportant. In models T2, T3 and T4 this value is close to 20 relevant parameters, in 

model T1 this limit is closer to 40 relevant parameters. 

So far, the upper limit of the number of relevant parameters must also be 

considered, since increasing the number of parameters will imply increasing the condition 

number of the reduced model. From Figure 9, starting from a number of 40 relevant 

parameters, the condition number exceeds the value of 10+5. Therefore, the maximum 

value of condition number can be used to limit the maximum number of relevant 

parameters. Furthermore, it should be considered that with less relevant parameters, a 

lower computational cost will be necessary to evaluate the model. For control actions and 

mechanism optimisation, this feature is important.  

Taken into account that the errors with which the forces can be measured (with 

the actual commercial technology) are of the order of 10-2 (5%), estimations with 

prediction errors of the same order (7%), obtained with the model identified in relevant 

parameters, are satisfactory. 

The prediction error Ep along with the condition number κ, as a function of the 

number of relevant parameters, allows obtaining the maximum and minimum limit values 

of the relevant parameters for each model. But given that each model is validated on its 

own identification trajectory, the previous graphs are not suitable to compare the different 

models among themselves. For this purpose, the model in identified base parameters is 

used to predict the generalised forces on the VT validation trajectory. In Figure 9, the 

errors Ep of each model validated for the same VT trajectory, considering 60% error in 

the CAD estimation, are presented. 
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The prediction errors are very high for the complete models. Therefore, it is 

justified to reduce it to a smaller number of relevant parameters where the observation 

matrix is well conditioned, to allow an adequate identification of the parameters. 

 

  
(a)      (b) 

 

Figure 9. Error Ep. 60% error in CAD. (a) 1- 83 relevant parameters (b) 1-30 relevant 

parameters. 

 

The prediction errors of models T1-T4, when considering different percentages of 

error in the CAD estimation, present very close values around the optimal number of base 

parameters. This number is between 20 and 30 base parameters. T5 model, due to its bad 

conditioning, is the model with the highest errors when few base parameters are used. 

Table 3 presents the prediction errors Ep of validated models on the validation 

trajectory when 20 relevant parameters are used. It is confirmed that the smallest 

prediction error is reached for the obtained models by transfer of inertial properties. For 

these models, the one with the lowest error is the T4 model. However, the differences are 

not significant, so that the error levels reached in the models derived from the inertial 

transfers are observed to depend neither on the transfer sequence used nor on the number 

of selected convergence solids. 

 

Table 3. Variation of the prediction errors in the estimated generalised forces for the 

validation trajectory. 

 

20 relevant parameters T1 T2 T3 T4 T5 

Error Ep, % 16.25 16.83 16.26 12.71 31.50 

κ of TV 3.7x10+3 7.6x10+2 2.5x10+3 8.2x10+3 6.7x10+16 

 

Figure 10 presents the estimated generalised forces using 20 relevant parameters 

with a 20% error in the CAD parameters because this level of error is an expected value 

in a CAD approximations. It is realised that in all the models obtained by transfer of 

inertial properties, and reduced using the dynamic contribution index, they can adequately 

estimate the generalised forces for a VT validation trajectory. 
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(a)       (b) 

 

  
(c)      (d) 

 

 
(e) 

 

Figure 10. Generalised forces. (a) Right wheel, (b) right lower strut, (c) steering, (d) left 

wheel, (e) left lower strut 
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CONCLUSION 

 

The work carried out was aimed at developing a new methodology for the identification 

of dynamic parameters in LMM. An algorithm was applied to obtain the linear equations 

of movement with respect to the parameters to be identified.  

The application of the concept of transfer of the inertial properties allows 

obtaining the symbolic expressions of a set of base parameters, from which an 

identification model can be built. In comparison with standard numerical procedures such 

as the SVD, having the symbolic expressions of the base parameters allows obtaining the 

number of independent parameters, dependent only on the topology of the mechanism 

and independent of the movements or trajectories applied to it. The size of the base 

parameter vector is defined according to the number of transfers of inertial properties that 

can be made. This calculation is done in a symbolic way and the rank is determined 

unambiguously. Thus, the number of base parameters is independent of the precision 

handled by the numerical calculation program. This acquires importance given the bad 

numerical conditioning that characterises the LMM. A set of base parameters derived 

from inertial transfers allows obtaining not only the size of the model but also the 

symbolic relations of linear dependence between the parameters. In standard procedures, 

the selection of dependent parameters is made with the only condition that a maximum 

rank system is obtained. It does not consider how close to the singularity the matrices that 

define the linear dependencies are.  

The dynamic contribution index can be calculated when the symbolic expressions 

of the base parameters are known. Therefore, it can be used to reduce the models derived 

from transfers of inertial properties. Although the dynamic contribution index depends 

on the initial estimation of the parameters, the ordering used to reduce the model is not 

significantly modified with the errors that such estimation could present. This ensures a 

valid reduction criterion even when using coarse CAD model estimates.  

The estimations made with the complete model in base parameters present higher 

prediction errors than the reduced models. A relevant model that satisfactorily predicts 

the generalised forces of the mechanical system must have a minimum number of 

parameters that guarantee a low prediction error and a maximum number of parameters 

limited by low conditioning of the observation matrix. The models obtained by transfer 

of inertial properties and reduced by the index of dynamic contribution allow estimating 

with low errors the generalised forces of a low mobility system. The models with relevant 

parameters derived from different transfers of inertial properties have similar behaviours 

in the region of the optimal number of relevant parameters. In these models, for the cases 

studied, it was observed that neither the transfer sequence nor the amount of convergence 

solids influence the determination of a better model. 

A novel methodology has been developed that allows the identification of 

dynamic parameters in low mobility mechanical systems, required for the construction of 

error-tolerant dynamic LMM models with few relevant parameters, with the final aim of 

accurately reproduce the dynamic behaviour of those low mobility mechanical systems. 
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