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ABSTRACT 

 

The Joule heating process on copper (Cu) incorporated carbon nanofiber was observed 

carefully under the in-situ transmission electron microscope (TEM) facilities. A significant 

structural formation occurred after the Joule heating process showing a single crystalline 

encapsulated graphitic structure with dramatic improvement on graphitic structure of carbon 

nanofiber from amorphous to crystalline. The latter structure is knowingly similar to multi-

layered graphene structure. This Cu incorporated carbon nanofiber initially was shaped by 

the mixture of amorphous carbon and very fine crystalline Cu structure which was 

significantly changed by the effect of applied bias voltage. The change of Cu particles 

crystallinity also shows the importance of crystalline structure for the graphene formation. 

The in-situ TEM results provide useful information on the formation of graphene and the 

solid phase reaction which is interesting and vital in graphene synthesis mechanism.  
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INTRODUCTION 

 

Carbon nanomaterials such as carbon nanotubes, carbon nanofibers and graphene have 

attracted significant interest as efficient electron emitters due to their potential application 

in future flat panel displays, electron beam instruments and x-ray sources [1–7]. There are 

several advantages of carbon nanomaterials-based electron emitters such as high aspect ratio, 

sharp tip and chemical inertness leading to the restrain of applied voltage to emit electrons 

even at low vacuum pressure [8–12]. In general, carbon nanotubes and graphene are usually 

synthesised at high temperature process [13–19]. On the contrary, ion-induced carbon 

nanofibers can be fabricated at low temperature, or even at room temperature. Recent 

progresses have shown that ion-induced carbon nanofibers can be directly fabricated on a 

transparent polymer surface and copper plate [20–26]. Due to exceptional amorphous 

properties of carbon nanofibers, the fabrication of carbon nanofibers usually does not need 

complex temperature treatment nor annealing process. Graphene have similar synthesis 

method like carbon nanotubes which usually require high temperature process. The growth 

mechanism of carbon nanotubes and graphene still requires a detailed explanation in order 

to obtain perfectly desired properties of carbon nanotubes and graphene. The observation of 
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graphitic structure of carbon nanotubes and graphene can be only performed under a 

powerful microscope such as TEM and scanning transmission electrons microscope (STEM) 

which is capable to observe at atomic scale. However, the growth formation layer by layer 

of carbon nanotubes and graphene can be only observed by in-situ TEM facilities that require 

external piezo devices equipped in the special TEM holder. In a previous work, the authors 

have discussed the formation of carbon nanotube from carbon nanofiber using in-situ 

facilities during field emission process using Fe incorporated carbon nanofiber [27]. 

Moreover, the Joule heating occurred on pristine carbon nanofiber showing improvement on 

graphitic properties and electrical properties [28].  The authors believed that the graphitic 

formation could be controlled by in-situ TEM facilities. Hence, in this work the authors 

challenged direct observation of graphene layers formation from Cu incorporated carbon 

nanofiber using in-situ TEM facilities. 

 

EXPERIMENTAL SETUP 

 

A Kaufmann-type ion gun (Iontech. Inc. Ltd., model 3-1500-100FC) was used for growing 

carbon nanofibers. Samples employed were commercially available Cu foils having a size 

of 5 mm × 10 mm × 100 μm and the edge of the foils were irradiated with argon ion (Ar+) 

ions at room temperature. The growth mechanism of ion-induced carbon nanofibers was 

explained elsewhere in detail [29]. For the Cu incorporated carbon nanofibers growth, an 

additional graphite plate, having a size of 15 mm × 10 mm × 1 mm, as a C supply was placed 

horizontally adjacent to the Cu foil and they were co-irradiated with Ar+ at 45° from the 

normal to the surface for 45 minutes at room temperature (Figure 1). The oblique Ar+ 

bombardment is known to be more suitable for the growth of ion-induced carbon nanofibers 

than normal incidence [30–32]. The diameter and ion beam energy employed for this 

experiment were 6 cm and 1 keV, respectively. The basal and working pressures were 1.5 × 

10-5 and 2.0 × 10-2 Pa, respectively. 

 

 
 

Figure 1. Schematic diagram of sample setup. The inset shows the marked area where 

carbon nanofibers were mostly grown 

 

After sputtering, the morphology of the Cu incorporated carbon nanofibers grown on 

the edge of the Cu foils was carefully observed by a scanning electron microscope [SEM 

(JEOL JSM-5600)] and the crystallinity of the sample was examined by TEM (JEOL JEM-

2010). A custom-made TEM sample holder (JEOL; EM – Z02154T) was used with a piezo-

controlled tungsten (W) nanoprobe coated with gold (Au) to apply a bias voltage maintained 
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at 200 mV with additional 200 kΩ on the Cu carbon nanofiber sample. The piezo-controlled 

nanoprobe were free to move in x, y, z axis directions controlled by the DC power system. 

The Cu foil was cut into a 2 mm width and directly mounted on the TEM sample holder 

without any other post treatment. 

 

RESULTS AND DISCUSSION 

 

Figure 2 shows the SEM image of Cu incorporated carbon nanofibers after ion irradiation. 

It should be noted that only Cu carbon nanofibers grew on respective cones and no carbon 

nanofibers grew without cone bases. The carbon nanofiber was vibrating due to the electrons 

charge effect from the TEM electron beam. During structure observation, this problem was 

overcome by contacting the nanoprobe with the carbon nanofiber’s tip.  

 

 
 

Figure 2. The SEM image of the morphology of Cu incorporated carbon nanofibers at the 

Cu foil edge after Ar+ ion bombardment 

 

Figures 3(a) - 3(c) show the TEM images of Cu incorporated carbon nanofibers. The 

Cu incorporated carbon nanofibers were approximately 1 μm in length and 200 nm in 

diameter (Figure 3(a)). The inset image shows the selected area electron diffraction (SAED) 

pattern of the Cu incorporated carbon nanofiber. From the SAED pattern results it shows 

that Cu incorporated carbon nanofiber consists of dominant diffraction spots of C 120, C 

010, Cu 111 and Cu 220. Figure 3(b) shows the fibrous structures of the Cu incorporated 

carbon nanofiber at high magnification at the fibre part revealing dispersion of several 

polycrystalline nanostructures in the amorphous carbon matrix. Further investigation of dark 

field images from SAED pattern indicated that Cu particles dispersed randomly in the 

amorphous carbon structure. 

To investigate the structures transformations of Cu incorporated carbon nanofibers 

by bias voltage; a low applied bias voltage at 200 mV flow was applied on Cu incorporated 

carbon nanofiber with additional 200 kΩ external resistor. The external resistor helped to 

reduce the shock damage at the carbon nanofiber tip during the applied bias voltage, hence 

a proper structural transformation was observable. The sample was observed at ×30k 

magnification on TEM. The gold (Au) coated tungsten (W) nanoprobe was slowly controlled 

by a piezo driver to touch the Cu incorporated carbon nanofiber tip. This also helped to 

stabilise the carbon nanofiber tip during the image capture process. The pressure in the 

specimen chamber was about 10-5 Pa during the applied bias. The structural transformation 

was captured using a CCD device and recorded using a computer software. It was noted that 
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during the applied bias voltage the TEM beam concentration was lowered at a minimum 

level to make sure it would not directly affect to experiment.  The Cu incorporated carbon 

nanofiber was transformed instantaneously after the applied bias voltage. The initial 

structure of Cu particles was assuming as very fine crystalline (in Figure 3(c)) and mixed 

with the amorphous structure of carbon atoms. After the bias voltage the Cu particles 

changed to a specific crystal structure, Cu (111) with carbon graphitic arranged at the outer 

layer. This indicates that fine graphene can only form on a specific crystal structure such as 

Cu (111).    

 

 
 

Figure 3. (a) TEM image of the intact structure of Cu incorporated carbon nanofiber before 

bias voltage (inset shows the selected area of diffraction pattern), (b) high magnification of 

TEM image of the fibre showing polycrystalline structure dispersed in amorphous carbon 

and; (c) dark field image showing the distribution of Cu particles in carbon amorphous 

structure. 

 

Figure 4(a) to 4(d) shows the Cu incorporated carbon nanofiber structure after the 

applied bias voltage. The Cu incorporated carbon nanofiber significantly transformed into 

single crystalline particles encapsulated by graphitic layers after applying the bias voltage 

due to the induced Joule heating. The Cu nanoparticles from the fibre part of Cu incorporated 

carbon nanofiber agglomerated into huge sphere-like particles whilst amorphous carbon 

transformed into graphitic layers surrounding the agglomerated Cu particles as in Figure 

4(a). This statement is proven by the SAED pattern of round shape particles that clearly 

showed diffraction spots of single crystals of Cu 111 in Figure 4(b). For further investigation, 

the bright field of the latter particle was taken using the SAED spot clearly indicating the 

graphitic formation covering the crystalline structure in Figure 4(c). Finally, we can 

reconfirm the crystalline area of the Cu 111 diffraction spots (JCPDS: 04-0836) in Figure 

4(b) from the dark field image in Figure 4(d). From Figure 4(a) – 4(d) it is understood that 

the induced Joule heating caused the Cu nanoparticles that randomly dispersed in the fibrous 

structure to agglomerate and form into a large single crystalline structure of Cu 111. Both 

(a) (b) 

(c) 
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SAED pattern and dark field images also reconfirm that this result is not influenced from the 

neighbouring carbon nanofiber part.  

 

 
 

Figure 4. (a) TEM image of Cu incorporated carbon nanofiber after bias voltage, (b) SAED 

pattern area marked in Figure 4(a) showing crystalline structure of Cu 111, (c) bright field 

image from the SAED results clearly indicating metal crystalline (dark region) covered by 

graphitic layers formation (bright region) and; (d) dark field image from the SAED result 

clearly showing area of the crystalline diffraction point of Figure 4(b) 

 

Figure 5(a) to 5(f) shows the high magnification TEM of the graphitic layers 

formation of Figure 4(a). From this result it is understood that most of the graphitic layers 

are around 10 – 13 nm as shown in Figure 5 (a), (c) and (e). However, a few samples show 

thin layers of graphene in less than two layers, as shown in Figure 5(f). Figure 5(d) shows 

very fine formation of 10 layers of graphitic structure. 

Figure 6 shows the distance profile result indicating that the layers thickness is 

around 0.34 nm. This lattice distance value is similar to the graphene thickness (JCPDS No. 

75-1621) from which we can confirm the formation of bright region in the TEM is graphitic 

layers formation. The distance profile also shows that the thickness formation is the same 

for each layer which confirms there is no other carbide formation in the bright region. 

In order to understand the effect of the Joule heating from the bias voltage we need 

to estimate the temperature rise during the applied voltage. According to Vincent et al., the 

temperature rise of one dimensional object during the current flow can be estimated using a 

resistive heating model [33]. For a one-dimensional object like carbon nanofiber, the 

temperature distribution equation is expressed as follows: 

 

∆T(K)=TL(K)-TO(K)=
RLI2

2KA
 

(1). 

 

where R is metal resistivity of carbon nanotubes/ carbon nanofibers (3.85 × 10-5 Ω.m), Қ is 

thermal conductivity (20 W/mK), A = πr2, cross sectional area of a carbon nanofiber and I is 

(a) (b) 

(c) (d) 
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current flow. In our present experiment, the length and radius of carbon nanofiber`s tip were 

found to be 1000 and 10 nm, respectively. The current flow was up to 1 μA. The current 

would flow along the carbon nanofiber from the tip part through the outer surface and hence 

most of the structural change would occur from the outer layers [29], [34]. If the outer layer 

thickness is assumed to be 0.34 nm (corresponding to 1 layer thickness of graphene), the 

temperature of the outer layer during the applied bias voltage estimated from the above Eq. 

(1) would have reached 4.92 × 10+2 K, which would satisfy the recrystallisation temperature 

of carbon nanofiber structure. So, generation of Joule heating during the applied bias voltage 

would be responsible for the structural change of the Cu incorporated carbon nanofiber. 

 

 
 

Figure 5. The high magnification image at the (a) bottom left area, (b) at the top right area, 

(c) at the bottom right area, (d) at the top left area, (e) at the counter probe top area and (f) 

at the counter probe bottom area.  The graphitic layer formation formed at the outer 

crystalline structure of Cu from the high magnification TEM. Most of the graphitic layers 

are around 10 – 13 nm. 

 

 
 

Figure 6. The distance profile result from Figure 5(e) indicating the bright region formation 

having thickness around 0.34 nm. 

(a) (b) (c) 

(d) (e) (f) 
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CONCLUSION 

 

In summary, significant structural transformation of a Cu incorporated carbon nanofiber 

fabricated on Cu foil was observed using in-situ TEM facilities. After application of the bias 

voltage, a dramatic change in the Cu incorporated carbon nanofiber structure from fibrous 

amorphous and/or very fine crystallites to single crystal encapsulated graphitic structure was 

observed. The randomly dispersed Cu nanoparticles agglomerated and formed into single 

crystalline structure whilst amorphous carbon transformed into graphitic structure and 

covering the single crystalline particle. Joule heating was responsible for the structural 

change of the Cu incorporated carbon nanofiber.  
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