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ABSTRACT 

 

This research work indicates the analysis conducted to investigate the performance, 

exhaust emission and combustion characteristics of a VCR diesel engine fuelled with n-

butanol blends at a rated speed of 1500 rpm with 300 bar injection pressure at 

compression ratios of 16, 18 and 20. The test fuel was prepared by adding n-butanol 10% 

(NB10) and 20% (NB20) to diesel by volume. The combustion characteristics 

investigated were; rise in-cylinder pressures, net heat release rate, cumulative heat release 

rate and mass fraction of fuel burned at all loads using three compression ratios. The 

emission and performance study also conducted. The higher heat release rates, increased 

cylinder pressures were observed for both the blends compared to diesel. Increased brake 

thermal efficiency observed at higher compression ratio for NB20 blend. It had also been 

observed that the emissions of CO2, HC and NOx were increased for both the blends, 

while CO emissions decreased in trend with an increase in compression ratio and blend 

strength. 

 

Keywords: Thermal efficiency; compression ratio; combustion; heat release rate; 

ignition delay. 

 

NOMENCLATURE 

 

NB10 10% n-butanol, 90% diesel  

NB20 20% n-butanol, 80% diesel 

VCR variable compression ratio 

CRDI common rail direct injection 

CHR cumulative heat release 

CR16 compression ratio 16 

CR18 compression ratio 18 

CR20 compression ratio 20 

BSFC brake specific fuel consumption 

BTE brake thermal efficiency 

CO2 carbon dioxide 

NOx nitrogen oxides 

HC hydrocarbons 

ppm parts per million 

BTDC before top dead centre 

MFB mass fraction burned 

NHR net heat release rates 

CO carbon monoxide 

 

mailto:ggsvas@gmail.com


Performance, Emission and Combustion Characteristics of VCR CRDI Diesel Engine Fuelled with  

n-Butanol Blends 

6826 

INTRODUCTION 

 

Since the utilisation of diesel engines and their increased occupancy in all aspects, 

comprehensive research and experimental studies have been going on to reduce their 

exhausting gaseous emissions. The primary concern is meant for reducing the 

conventional diesel fuel usage to minimise air pollution and to boost efforts to reduce 

greenhouse gases accumulation in the environment. There is also need for curb down the 

depletion of fossil fuels by utilising the alternate fuel usage [1] with increased combustion 

phenomenon technologies like HCCI, PCCI, RCCI and other technological 

improvements in engine design and operating parameters. 

The alternative fuel must be biodegradable and non-toxic with properties near to 

diesel and it must be a substitute to diesel with little or no engine modifications. In this 

concern number of researches, processes are going on by various researchers and 

combustion specialists by using various alternative fuels. This research work primarily 

deals with the utilisation of alcohol-based fuels in diesel engines because they are 

considered as bio-oxygenated compounds with low viscosity, high volatility and 

miscibility with diesel. In alcoholic based fuels, butanol is the most suitable substitute for 

diesel engines compared to ethanol because of its maximum energy density, less corrosive 

nature and less prone to contamination in the presence of water content [2]. This fuel is 

also considered a clean alternative source for fossil fuels to reduce greenhouse emissions. 

Several research works were carried by researchers to study n-butanol/diesel blend 

combinations on engine performance and to regulate emissions. The novelty of this 

analysis is to study the performance, emission and combustion phenomenon at various 

compression ratios using blends of n-butanol at different loads. 

Javed Rezaei et al. [3] concluded Butanol and ethanol are promising alternative 

substitutes for conventional fuels when utilised in advanced combustion mode like HCCI. 

Senthur Prabhu et al. [4] used the blend 20% preheated palm oil with diesel with additives 

n-butanol 20% by volume and BHT 2000ppm. The results are shown with improved 

BSFC with BTE and reduced CO emissions compared to diesel. Alpaslan Atman et al. 

[5] used blends of canola-hazelnut-cottonseed oil and sunflower-corn-soybean oil 

separately with diesel 70% and n-butanol 10% by volume. The results obtained were, 

decreased brake power with BTE and improved BSFC compared to diesel and; CO2, HC 

emissions decrease with increased CO emissions. The effect of pilot injection timing and 

pilot injection mass on high-speed diesel engine was studied by Haozhong Huang et al. 

[6] using n-butanol (20% and 30% by volume) and diesel blends. The results revealed 

that the peak value of NHR decreased with advancing injection timing for pre-injection 

fuel but increased slightly for main injection fuel. NOx and soot emissions were reduced. 

And also by increasing the pilot injection fuel mass peak value of NHR improved. Ashish 

Nayyar et al. [7] utilised n-butanol blends in small VCR diesel engine, for 20% of the n-

butanol blend with diesel shown increased BTE with decreased smoke and NOx 

emissions at higher compression ratios. Anil Bhaurao Wakal et al. [8] used different fuel 

injection strategies for diesel, n-butanol blends. By retarding the start of injection (9, 7 to 

4 BTDC) the in-cylinder pressure, peak HRR and NOx emissions were decreased. The 

start of injection at 4 BTDC led 30-45% decreased NOx levels.  

Polyoxymethylene di-ethyl ethers considered as an excellent biofuel with n-

butanol/diesel blends in diesel engines [9]. Results indicate that by adding PODE3-4 to the 

blend of n-butanol with diesel can improve the thermal efficiency and combustion 

efficiency with an increment in BSFC. A decrease in trend was observed in the emissions 

of soot, CO, and THC while the increase in NOx formation. The emissions of n-butanol 
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blend with diesel were studied on CRDI turbocharged engine by Byungchul Choi et 

al.[10]. The results revealed that increased NOx emissions for n-butanol blends compared 

to neat diesel and for 20% n-butanol blend THC and CO emissions increased 

significantly, and for higher blend ratio (>20%) HCHO (formaldehyde) increased at low 

loading conditions. Zehra Sahin et al. [11] used blending and fumigation technique for n-

butanol introduction into diesel engine. The smoke decreased significantly by applying 

the above two methods. The above literature is confirming that alcoholic based fuels line 

n-butanol could be used in diesel engines with little or no engine modifications.  

NO emissions were improved by using butanol, biodiesel and diesel blend 

combinations in diesel engines. The increase or decrease of NOx emission depends on 

the particular operating parameters. In some experiments by using exhaust gas 

recirculation NOx emissions were controlled [12]. The RCCI concept was used by 

Mostafa Mohebbi et al. [13] by directly injecting butanol-diesel blends into the 

combustion chamber and gasoline into the intake port. The results indicated that the start 

of combustion delayed by n-butanol addition, and it was compensated by adjusting the 

injection timing. The CO emissions were reduced, but HC emissions were increased 

because of n-butanol high latent heat of vaporisation, and it is controlled by exhaust gas 

recirculation.  

From the above literature survey, it has been concluded that n-butanol could be 

used in conventional diesel engines with little or no engine modifications. Table 1 

indicates the properties of n-butanol compared to other alcohol-based fuels and diesel. 

The objective of this experimental analysis is to research combustion, emission and 

performance parameters of n-butanol blends at various compression ratios. The primary 

objective of choosing n-butanol as test fuel is because of its oxygen percentage to improve 

its combustion efficiency [14], low-pressure evaporation, its better heating value and 

cetane number and also its availability as a renewable fuel. 

 

MATERIALS AND METHOD 

 

Biodiesel blends were prepared and tested according to the standard of ASTM D6751 and 

EN 14214 using biodiesel with a density of less than 859 kg/m3, the kinematic viscosity 

of less than 4.1 cSt and maintaining the calorific value for a blend higher than 35 MJ/kg. 

The test fuel n-butanol was mixed with diesel in volume ratios of 10% and 20% 

and named as NB10 and NB20 blends. Table 1 summarises the properties of the n-butanol 

and diesel. The diesel and test fuel blends were used on VCR engine with compression 

ratios of 16, 18 and 20 form no load to full load conditions.  

The experimental setup is shown in Figure 1, and its technical specifications are 

shown in Table 2. Experimental investigations were carried out by using CRDI VCR 

diesel engine with eddy current dynamometer at a rated rpm of 1500 with an injection 

pressure of 300 bar and with an injection timing of 23 BTDC. The VCR engine was 

provided with AVL DI GAS 444 N five gas analyser and AVL 437C smoke meter. The 

setup enables the study of CRDI VCR engine performance with programmable ECU at 

different compression ratios. 

Various necessary instruments were used along with experimental setup to 

measure the crank angle, combustion rate, in-cylinder pressure and temperatures and fuel 

flow rates. The signals from all the measuring instruments were connected to a computer 

through a data acquisition system. Series of the experiment trial were conducted on the 

test engine with test fuels, and the average value of all trail readings from no load to full 

load conditions was taken. After allowing the engine to get stabilised with applied loads 
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during each experimental trial, the emission, combustion and performance details were 

recorded. 

 

Table 1. The basic test fuel properties. 

 

Details Diesel n-butanol NB10 NB20 

Cetane number 50 17 46.53 43.4 

Stochiometric A/F ratio 14.95 11.17 14.46 14.2 

O2 (wt %) 0 21.58 2.158 4.32 

Carbon wt % 86.12 64.82 83.34 81.86 

Hydrogen wt % 13.87 13.60 13.84 13.82 

Lower heating value (kJ/kg) 43400 33100 42370 41340 

Kinematic viscosity(cSt) at 40C 3.9 2.63 3.773 3.646 

Density (kg/m3) at 15C 838 810 835.2 832.4 

Molecular weight(g/mol) 198.4 74.11 185.9 173.54 

 

Table 2. Test engine specifications. 

 

 
 

Figure 1. Schematic diagram of the experimental setup. 

 

 

Parameters Specification 

Type of engine 
Kirloskar, CRDI, four-stroke, single-cylinder, 

naturally aspirated diesel engine 

Power 3.5 kW at 1500 rpm 

Bore × stroke 87.5 mm x 110 mm 

Compression ratio 17.5 (VCR 12 to 22) 

Injection pressure 300 bar 

Injection timing 23 BTDC 

Swept volume 661.45 (cc) 

Dynamometer Eddy current type 
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RESULTS AND DISCUSSION 

 

Engine Performance Analysis 

 

Brake thermal efficiency 

 

The brake thermal efficiency is described as the ratio of the amount of heat converted to 

the brake power to the total heat supplied or inverse product of brake specific fuel 

consumption and calorific value of the fuel [5]. The variation of BTE with respect to load 

is shown in Figure 2(a) and 2(b). 

The BTEs observed at CR16 are 34.65%, 32.77% and 34.79% and at CR20 they 

were observed as 27.74%, 32.75% and 32.7% for diesel, NB10 and NB20 respectively at 

full load conditions. The reduction in BTE was observed as 19.94% for diesel with an 

increase of compression ratio from 16 to 20, which was negligible for other blends. 

 

 
(a) 

 

 
(b) 

 

Figure 2. Variation of brake thermal efficiency with load at (a) CR16, CR20 and;  

(b) CR18. 
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There is no considerable variation in BTE at CR16 for both the blends compared 

to diesel. Reduction in BTEs was observed for diesel and both the blends because of 

increased BSFC with an increase in compression ratios to 18 and 20. Increase in BSFC 

was due to higher operating temperatures, which in turn led to increased friction powers. 

There is only a small decrease in BTE observed for both the blends compared to diesel 

because of their oxygen percentages and better evaporation rates [15]. The decreased 

cetane number of the blends can also consider as a factor for reduction in BTE [16] 

because cetane number can influence the combustion efficiency. The improved 

compression ratios were further decreased BTEs for both the blends and diesel. 

 

Brake specific fuel consumption 

 

It is defined as the amount of fuel consumed per unit brake power output, or it is the 

effectiveness to convert the chemical energy of the fuel into useful work, and it depends 

on fuel properties like viscosity, oxygen content, density, cetane number and heating 

value. Figure 3(a) and 3(b) show the BSFC values for diesel and n-butanol blends with 

an increase in loads. Considerable decrease in BSFC observed for both the blends 

compared to diesel at all compression ratios. From the graph, it is observed that there was 

a comparable result with diesel for BSFC with an increase in load due to complete 

combustion with elevated operating temperatures for both the blends.  

Figure 3(b) indicates the variation of BSFCs at CR18 with loads. For diesel it was 

observed as 0.54 kg/kW-hr, 0.33 kg/kW-hr, 0.27 kg/kW-hr and 0.276 kg/kW-hr at 3 kg, 

6 kg, 9 kg and 12 kg loads respectively. Graph for NB 10 shows 0.5 kg/kW-hr, 0.33 

kg/kW-hr, 0.27 kg/kW-hr and 0.26 kg/kW-hr and for NB20 blend 0.55 kg/kW-hr, 0.33 

kg/kW-hr, 0.27 kg/kW-hr and 0.25 kg/kW-hr respectively for 3 kg, 6 kg, 9 kg and 12 kg 

loads. BSFC decrease in trend from low load to part-load conditions because of reduced 

heat loss at higher loads, which can influence the evaporation rate of the fuel. The 

decrease in BSFC with an increase in load may also due to variation of mixture strength 

from leaner to stoichiometric ratio [15]. The similar trend was observed for both NB10 

and NB20 blends because of improved fuel combustion phenomenon with increased 

loads. The BSFC was slightly increased at full load condition for diesel due to increased 

radiation losses and decreased mechanical efficiency. BSFC almost same for both n-

butanol blends compared to diesel due to its higher evaporation rates even at lower 

pressures caused thorough mixing with air. This means brake specific energy 

consumption (BSEC) decreased compared to diesel. BSEC is a product of BSFC and 

calorific value of particular fuel. It indicates the energy consumed for unit brake power 

output per hour [17].  

BSFCs obtained for CR16 at full load conditions were 0.24 kg/kW-hr, 0.26 

kg/kW-hr and 0.24 kg/kW-hr and at CR20 observed as 0.31 kg/kW-hr, 0.26 kg/kW-hr 

and 0.26 kg/kW-hr for diesel, NB10 and NB20 respectively. The increase in BSFC was 

observed for NB10 at lower compression ratio compared to diesel, and it was rectified 

soon after an increase of compression ratio because of increased operating temperatures 

that allowed complete combustion. 
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(a) 

 

 
(b) 

 

Figure 3. Variation of BSFC with load at (a) CR16, CR20 and; (b) CR18. 

 

Emission Analysis 

 

Analysis of carbon monoxide 

 

The main reason for CO emission is due to decreased oxygen percentage, rich mixture 

and incomplete combustion [5]. Heterogeneous mixture formation decreased reactive 

rates, or slow flame propagation are also considered as a collective reason for the 

formation of these emissions. It is observed that CO emission was more for diesel at all 

compression ratios compared to n-butanol blends from Figures 4(a) and 4(b). They were 

in a decrease trend with an increase in blend strength because of improved oxygen 

percentages and evaporation rates. Another factor also influencing CO emissions is 

carbon content. The carbon content in n-butanol is ~64.9%, and for diesel, it is ~86.4% 

on a mass basis, which also can lead a lower energy level for n-butanol based fuel and 

lower CO emission [2].  

It also has been observed that CO emissions were improved with the increase of 

compression ratio. This may be due to decreased penetration of injected fuel droplets at 

higher compression ratios with the same injection pressures led to heterogeneous mixture 
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formation. At CR16 and full load conditions the CO emissions were 0.375%, 0.40% and 

0.175% for diesel, NB10 and NB20 respectively and at CR20 they were observed as 

0.777%, 0.645% and 0.571%. 

 

 
(a) 

 

 
(b) 

 

Figure 4. Variation of carbon monoxide emission with load at (a) CR16 and CR20 and;  

(b) CR18 

 

Analysis of carbon dioxide 

 

The CO2 emission is an indication of increased reaction rates with improved oxygen 

percentages or conversion of CO into CO2 after complete combustion of fuel at elevated 

temperatures[18]. It is also considered as a chemical residue after the combustion of 

hydrocarbon-based fuels. Homogeneous mixture formation and improved flame 

propagation rates are also considered as another factor for improved CO2 emissions.  

The variation of CO2 with respect to load is shown in Figures 5(a) and 5(b). There 

is no considerable change in CO2 emissions at CR16, but as the compression ratio 

increased to 18 and 20, an increase in the trend of CO2 emissions was observed for both 

blends compared to diesel. The CO2 emissions at full load conditions for CR20 were 
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7.63%, 8.54% and 7.9% for diesel, NB10 and NB20 respectively. The improved CO2 

emissions for both n-butanol blends were because of their O2 percentages and increased 

evaporation rates. 

 

 
(a) 

 

 
(b) 

 

Figure 5. Variation of carbon dioxide emission with load at (a) CR16 and CR20 and;  

(b) CR18. 

 

Analysis of unburnt hydrocarbons 

 

The variation of HC emissions with respect to load is shown in Figures 6(a) and 6(b). HC 

emissions were increased for both n-butanol blends compared to diesel, as shown in 

figures at all the compression ratios. The addition of n-butanol into diesel influenced the 

reduction of viscosity, which in turn influenced the atomization and spray formation of 

injected fuel. The lower viscosity of the injected fuel resulted in smaller droplet size. The 

addition of n-butanol also caused micro-explosions after the fuel was injected into the 

combustion chamber. The smaller droplet size and micro-explosions caused improvement 

in volatility, which in turn influenced over mixing of n-butanol blends into the air [19]. 
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This is considered as one of the factors for increased HC emissions. Another factor for 

the increase of HC emissions for n-butanol blends was “lean outer flame zone” where the 

flame was unable to travel which was due to the high latent heat of evaporation of butanol 

blends led to poor mixing of fuel blend with air, and increased spray penetration causing 

unwanted fuel impingement on cylinder walls.  

 

 
(a) 

 

 
(b) 

 

Figure 6. Variation of hydrocarbon emission with load at (a) CR16 and 20 and;  

(b) CR18. 

 

The HC emissions for diesel, NB10 and NB20 for full load conditions at CR16 

were 72 ppm, 102 ppm and 94 ppm and at CR20 they were observed as 69 ppm, 70 ppm 

and 96 ppm respectively. With the increase of compression ratio, HC emissions for NB10 

and diesel were decreased in trend, and there was no considerable variation for NB20. 

 

Analysis of nitrogen oxides 

 

NOx emissions are due to the separation of diatomic nitrogen atoms (N2) into 

monoatomic nitrogen atoms (N) at elevated temperatures, which are highly reactive with 
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O2 and water vapours and form emissions like NO and NO2. The NOx emission strongly 

depends on in-cylinder temperatures and resident time of nitrogen at those temperatures 

and the oxygen availability in reaction regions of the combustion chamber, from Figure 

7(a) and 7(b) NOx emissions were more for both n-butanol blends compared to diesel. 

Another factor also influencing is the presence of high O2 percentage in n-butanol blends, 

show more effect than their high latent heat of vaporisation, which in turn led higher NOx 

emissions. It also has been observed that lower cetane number of n-butanol blends 

increased the ignition delay period, which in turn caused higher in-cylinder pressures and 

combustion temperatures. The more quantity of fuel accumulation and oxygen percentage 

is also considered as another cause for increased NOx emissions [10]. 

 

 
(a) 

 

 
(b) 

 

Figure 7. Variation of NOx emission with load at (a) CR16 and 20 and; (b) CR18. 

 

The NOx emissions for full load conditions at CR16 were 1900 ppm, 2000 ppm 

and 2200 ppm and at CR20 they were 1796 ppm, 2008 ppm and 2088 ppm for diesel, 

NB10 and NB20 respectively as shown in Figure 7(a), intermediate results were obtained 

at a compression ratio of 18 as shown in Figure 7(b). 
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Analysis of smoke opacity 

 

The emission of smoke opacity is due to improper mixing of fuel particles with air. The 

emission of smoke compared to diesel is shown in Figures 8(a) and 8(b). Smoke opacity 

decreased for both blends compared to diesel at all the compression ratios. The volatility 

of n-butanol is higher compared to diesel fuel, even at low pressures. This causes n-

butanol to break up easily and evaporate effectively compared to diesel [19]. 

Smoke opacity also depends on the H/C nature and combustion process. As the 

H/C ratio is lower for diesel compared to n-butanol blends, which in turn caused higher 

smoke opacity for diesel compared to n-butanol blends. This emission also could be 

decreased by promoting premixed combustion before TDC. By using the n-butanol 

blends, the premixed combustion phenomenon also increased, which in turn led to 

increased burned fuel, which is shown in NHR figures in combustion analysis. 

The emission of smoke opacity for diesel, NB10 and NB20 at CR16 was 53.9%, 

54% and 42%. And at CR20 it was observed as 63.7%, 51.8% and 56.4%. Intermediate 

results were obtained at CR18, as shown in Figure 8(b). 

 

 
(a) 

 

 
(b) 

 

Figure 8. Variation of smoke opacity with load at (a) CR16 and 20 and; (b) CR18. 
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Combustion Analysis 

 

Analysis of blends cylinder pressure 

 

The in-cylinder pressure is one of the useful parameters to analyse the combustion 

characteristics for the fuel which is chosen. In-cylinder pressure directly related to the 

performance parameters like power output and emission analysis. Variation of the in-

cylinder pressure with respect to crank angle at full load for compression ratios 16 and 

20 is shown in Figures 9(a) and 9(b). It has also been observed that peak cylinder 

pressures are just after TDC indicating the combustion not deviating from its regular 

phenomenon like using diesel at all compression ratios for both the blends. As shown in 

the figure, n-butanol blends resulted in higher peak pressures at all compression ratios 

compared to diesel combustion pressure rise because of its fast burning process and low-

pressure vaporisation [20]. 

 

 
(a) 

 

 
(b) 

 

Figure 9. Variation of cylinder pressure with the crank angle at (a) CR16 and; (b) CR20. 
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In the presented cases, the compression ratio shows a dominant influence on peak 

pressure rates. In Figure 9(b), as the compression ratio increases the peak pressure rates 

also raised. These maximum pressures were also increased because of the blend strength 

of n-butanol. Peak pressures were also due to oxygen percentage in n-butanol and its 

heating value near to diesel. Longer ignition delay because of lower cetane number of n-

butanol blends caused the maximum quantity of fuel accumulation before premixed 

combustion. The high rate of pressure rise occurs when premixed combustion initiates 

because of the large amount of fuel burnt which was accumulated in the form of vapour 

during the ignition delay period [21]. 

The increased fuel supply with elevated loads, which in turn increased operating 

temperatures and evaporation rates is also considered as another factor for increased 

cylinder pressures. The peak pressure obtained at compression ratio 16 for diesel was 68 

bar and for NB10, NB20 it was 71.7 bar and 72.6 bar respectively. The peak pressures 

increased by 5.16% and 6.33% at CR16, and at CR20 peak pressures were improved by 

1.56% and 3.75% for both the blends NB10 and NB20 respectively compared to diesel. 

Intermediate pressure rises were obtained at CR18. 

 

Analysis of blends heat release rate 

 

The fuel properties, operating parameters like injection pressure and compression ratio 

influences the net heat release rates. NHR analysis is the better way to do an in-depth 

analysis of the combustion phenomenon. Conjoining the NHR analysis, in-cylinder 

pressure characteristics of the fuels can be studied in a better way. The variation of NHR 

with respect to crank angle at full load conditions for compression ratios 16 and 20 is 

shown in Figures 10(a) and 10(b). 

The elevated NHRs were observed for both the blends at all compression ratios at 

peak load conditions compared to diesel, as an oxygenated fuel n-butanol has comparable 

calorific value and cetane number with diesel. Improved evaporation rate and combustion 

temperatures even at lower pressures were also considered as another factor for improved 

NHR for n-butanol blends. Negative NHR was observed for all the fuels near to 22° 

BTDC, because of heat absorption while evaporation of fuel was going on at ignition 

delay period [22]. 

 

 
(a)  
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(b) 

 

Figure 10. Variation of NHR with the crank angle at (a) CR16 and; (b) CR20. 

 

It also has been observed that the ignition delay period is slightly improved for 

both the blends compared to diesel, and it is improved further as the blend strength 

increased further from 10 to 20%. Lower cetane number for n-butanol compared to diesel 

is considered as one factor for increased ignition delay. But as the compression ratio 

increased the ignition delay period reduced because of increased operating temperatures. 

The maximum Net heat release rate was observed at CR16 for diesel at 7 BTDC as 39.33 

J/ CA, for NB10 it was observed at 5 BTDC as 43.2 J/CA, and for NB20 it was 51.77 

J/ CA at 4 BTDC. And at CR20 the maximum NHR observed at 8 BTDC as 49.66J/ 

CA for NB20, means with an increase in compression ratio ignition delay period slightly 

decreased and maximum NHR obtained some time earlier to TDC. NHR was improved 

with an increase in blend strength also because of maximum evaporation rates and oxygen 

percentages of n-butanol blends. 

 

Analysis of blends mass fraction of the fuel burned 

 

It is used for estimating time lag between flame initiation and rapid combustion, and it is 

also called as a fraction of amount of injected fuel burned to the total mass of fuel injected 

per cycle for the combustion process. It is the process of normalising the cumulative heat 

Release at each crank angle to the total heat release rate [23]. Slight combustion delay 

occurred at the early part of premixed combustion for both the blends compared to diesel 

but this delay was reduced with the increase of compression ratio from 16 to 18 and 20 

respectively as shown in Figure 11(a) and 11(b). As the compression ratio increased 

operating temperatures were also increased, this, in turn, led to increased volatility and 

flame speed of n-butanol blends.  

The mass fraction of fuel burnt completed 100% like a diesel at the same crank 

angle for both the blends. The MFB at TDC at CR16 for diesel, NB10 and NB20 was 

53.17%, 52.15% and 52.62% and at CR20 it was 58.98%, 58.49% and 60.77% 

respectively. It is observed that MFB was slightly more for NB20 with increased 

compression ratio indicating better quality of combustion, as shown in Figure 11(b). 
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(a) 

 

 
(b) 

 

Figure 11. Variation of MFB with the crank angle at (a) CR16 and; (b) CR20. 

 

Analysis of blends cumulative heat release 

 

Cumulative or gross heat release at peak loads compared to diesel for both blends is 

shown in Figure 12. It is the total heat released by the chemical reaction or combustion 

of the fuel. The CHR provides information regarding the progress of combustion and heat 

energy released by the particular chemical nature of the fuel [16]. The figure shows the 

maximum CHR for both the blends compared to diesel. This trend was because of rapid 

ignition or better ignition property of n-butanol blends compared to diesel. CHR 

continuously increased with increase in the volume fraction of n-butanol blends because 

of higher energy content, and oxygen percentages of n-butanol blends. Later with an 

increase in compression ratio, the CHR for diesel was also comparable with n-butanol 

blends because of higher operating temperatures with an increase in pressures. The 

variation of CHR at all three compression ratios is shown in Figure 12(a) and 12(b). 

The maximum CHR at CR16 observed as 0.9 kJ/CA, 1.02 kJ/CA and 1.04 

kJ/CA, and with CR20 they were observed as 1.01 kJ/CA, 1.07 kJ/CA and 1.03 kJ/CA 
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for diesel, NB10 and NB20 respectively at full load conditions. Intermediate results were 

obtained at CR18. 

 

 
(a) 

 

 
(b) 

 

Figure 12. Variation of CHR with the crank angle at (a) CR16 and; (b) CR20. 

 

CONCLUSION 

 

The experimental work using n-butanol blends at compression ratio of 16, 18 and 20 has 

drawn the following conclusions in comparison to diesel. 

i. If the n-butanol blend percentage increases further beyond NB20, the cetane value 

of the blend decreases. Furthermore, this leads to an increase in the ignition delay 

period. Another disadvantage using higher n-butanol blend strength is that it can 

improve oxygen percentages at reaction regions of the combustion chamber, 

which can further increase the NOx emission. This reason restricted the use of 

higher blend strengths beyond NB20.  

ii. The peak cylinder pressures were just after TDC, indicating that the combustion 

was not deviating from its regular phenomenon like using diesel at all 
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compression ratios for both the blends. The pressure rising trend was followed 

like a diesel with variation in crank angle, and no unusual behaviour was 

observed. 

iii. The n-butanol blends resulted in higher peak pressures at all compression ratios 

compared to diesel combustion pressure rise because of its fast burning process 

and low-pressure vaporisation. 

iv. Maximum NHR was observed for both the blends compared to a diesel with 

increased ignition delay as there was a decreased cetane number by adding n-

butanol blends. All the blends showed an improved NHRs compared to diesel at 

all compression ratios. 

v. The rate of combustion was faster with increased mass fraction burned for all 

blends as the compression ratio increased.  

vi. Increased BSFCs with a slight reduction in BTEs were observed for both blends 

compared to diesel. 

vii. The emissions like NOx, CO2 and HC for both the blends were slightly increased 

compared to diesel at all compression ratios. 

viii. This analysis also concluding to concern over suitable injection pressure, which 

was maintained constant, even compression ratios were increased. There is a need 

to vary injection pressures too in its future scope of work.  

From all above it has been proved that the n-butanol could be added to diesel in small 

proportions to save conventional fuel usage for diesel engines. 
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