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RESEARCH ARTICLE 

Optimization of 3D Printing Parameters for Enhanced PLA Tensile Strength 
Using the Taguchi Method      

Rolland Darin Khalifah Mahameru, Ahmad Khairul Faizin*, M. Danny Pratama Lamura, Wahyu Dwi Lestari     

Mechanical Engineering Departement, Universitas Pembangunan Nasional “Veteran” of East Java, Surabaya, Indonesia 

ABSTRACT – Fused Deposition Modeling (FDM) has significantly advanced in the additive 
manufacturing of complex geometrical and customized parts, particularly for thermoplastics like 
Polylactic Acid (PLA). The present study aimed to optimize FDM process parameters to improve the 
tensile strength of 3D-printed PLA, a crucial mechanical property for various applications. The 
Taguchi method was employed to systematically and effectively analyze the effects of six key 
process parameters: nozzle temperature, printing speed, layer thickness, infill density, infill pattern, 
and orientation. The analysis revealed that among these parameters, only nozzle temperature and 
infill density had a significant impact on tensile strength, as demonstrated by the variance analysis. 
By optimizing these critical parameters, the tensile strength of the printed PLA parts was improved 
from the previously reported 35 MPa to 40 MPa, representing a notable enhancement. Additionally, 
a linear regression-based empirical model was developed, achieving an R-squared value of 89.2%, 
enabling accurate prediction of tensile strength for given process parameter values. These findings 
provide a vital foundation for enhancing the mechanical performance of FDM-printed PLA 
components. They are particularly relevant for applications across industries requiring high-strength 
materials, further solidifying the potential of FDM in advanced manufacturing scenarios. 
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1. INTRODUCTION 

Additive manufacturing is the technique of 3D printing, where products are built with special attention in layer-by-

layer construction, enabling precision and design flexibility previously unattainable and making complex geometries 

possible that could hardly have been achieved, if at all, by conventional methods of manufacturing [1, 2]. Advances in 

additive manufacturing (AM) technology have massively affected different industries due to a shift in design flexibility 

and economic advantage. It allows the rapid prototyping of mechanical components; hence, it allows for fast turnover of 

prototypes at low quantities, a feature useful in industries like automotive, aerospace, and medical devices [3-5]. Recent 

studies are delving deeper into the potential uses and diverse materials associated with AM. Researchers are not only 

broadening the scope of its applications but are also discovering innovative material combinations that enhance 

performance and functionality. These advancements underscore the increasing significance of AM in the manufacturing 

sector, as it continues to revolutionize traditional production methods and pave the way for more efficient, customized, 

and sustainable solutions [6]. 

There are several different types of additive manufacturing techniques, each suited to a different material and 

application. These include Fused Deposition Modelling (FDM), Fused Filament Fabrication (FFF), Stereolithography 

(SLA), and Selective Laser Sintering (SLS). Each of these methods has specific advantages, depending on the application. 

FFF is considered the most simple, low-cost, and versatile technique; hence, it is very popular among both hobbyists and 

professionals. FFF stands out for its ease of use, the variety of raw materials that can be used in the printing process, its 

adaptability to different designs, and its capability to support continuous production runs, especially in prototyping and 

small-scale manufacturing [7, 8]. 

Polylactic Acid (PLA) is one of the most commonly used materials in FFF printing. Its availability is significantly 

supported by its excellent processability, biocompatibility, and bio-friendly features due to its biodegradable nature. PLA 

is manufactured from renewable feedstocks such as corn starch or sugarcane, which further adds to its popularity as a 

renewable alternative to petroleum-based plastics. PLA, on the other hand, despite the many benefits it provides in terms 

of mechanical and thermal properties, has some shortcomings that cannot suffice in some high-performance usages. [9, 

10]. Hence, many studies have focused on the development of PLA-based composites with improved properties. 

Research into the addition of various reinforcements to the PLA matrix includes natural fibers such as cellulose, 

synthetic fibers like carbon or glass, and even metals and ceramics in an attempt to improve its mechanical strength, 

thermal stability, and overall durability. The addition of reinforcement in PLA is meant to overcome the intrinsic 

weaknesses in PLA and further extend the application of PLA in a wide variety of applications where higher strength, 

rigidity, or wear and impact resistance is needed [11-13]. Surprisingly, these new PLA composite classes have brought 
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about a whole new dimension of challenges, especially in the functional and mechanical property optimization 

compromises related to FFF printing. 

The effects of temperature, printing speed, layer height, and infill density are among the important parameters that 

need to be understood in order to obtain optimum mechanical performance in FFF-printed PLA composites. All these 

parameters must be controlled with care and optimized so that the composite material performs in the manner it is 

supposed to in its specific application. For example, the temperature of printing and the rate of cooling can seriously 

affect the bonding between layers, which is the key to the structural integrity of the printed part. Similarly, the orientation 

of fibers in the PLA matrix during printing can influence the anisotropy of the material and further its mechanical 

properties. 

The basic process parameters of FFF include nozzle temperature, fill density, layer thickness, and print speed, which 

have a great impact on the quality and performance of the manufactured parts. These parameters directly affect mechanical 

properties, including tensile strength and surface finish [14-16]. It basically denotes that the ability to optimize such 

parameters in a way to balance the mechanical performance onboard with resource efficiency is important, especially 

when the going concern is cost control. Single-objective optimization, through ANOVA, will be one of the best options 

to determine the optimal printing parameters since it simplifies the analysis and narrows the investigation scope to key 

performance metrics such as tensile strength or elasticity [17]. 

Single-objective optimization, in particular, if approached by the ANOVA method, can be done in a more systematic 

and efficient way of testing the impact caused by different printing parameters. ANOVA is preferred here because it 

makes the analysis easier by considering one response variable at a time. This clarity is especially welcome when put in 

the context of multi-objective optimization methods, which, although comprehensive, can get quite complex and may 

introduce uncertainties owing to the need to balance several conflicting objectives. In particular, a clear focus on one key 

performance metric, such as tensile strength or elasticity, enables the researchers to identify an optimum set of printing 

parameters with more ease, leading to more reliable and reproducible results [18]. 

The effectiveness of ANOVA in the optimization of FFF printing parameters has been well documented. For example, 

several studies have used the Taguchi method in conjunction with ANOVA to investigate and optimize the effects of 

various FFF parameters on the mechanical properties of printed components. John et al. [19], for instance, studied the 

influence of nozzle diameter, strain rate, and geometric patterns on the mechanical properties of PLA samples. According 

to their analysis, nozzle diameter and geometric pattern account for 48.99% and 40.78% of the overall variation in 

mechanical attributes, respectively. This, therefore, presents an avenue for focused changes that will have the desired 

outcomes in printed products. Kumar and Singh et al. [20] applied a Taguchi-based DoE to optimize the layer height and 

infill pattern for PLA surgical equipment produced via FFF. In the process of optimization, they reached a tensile strength 

of 42.6 MPa and an elasticity modulus of 32.74 MPa, showing that tight control of the FFF parameters can greatly improve 

the mechanical performance of the product. 

Ranjan et al.[21] further investigated the optimization of print speed, layer height, and deposition rate for maximum 

tensile strength with minimum surface roughness. Their findings underlined the fact that such parameters may be critical 

in achieving the highest quality in FFF prints, where the correct combination can yield superior mechanical properties 

and surface finishes. Similarly, Farayibi et al. [22] also used the DoE method to find the optimal setting for extrusion 

temperature, layer thickness, and infill density to produce a material tensile strength of 30.02 MPa and an impact strength 

of 4.20 J, showing how important these factors are in determining the mechanical properties of FFF printed part. 

Gebrehiwot et al. [23] have also shown the efficiency of using DoE for the optimization of parameters in FFF and Marble-

PLA, which presents a series of optimal values for layer height, print speed, and cell geometry. Their work also enforces 

the previous assertion of the need for optimization of these parameters to achieve the desired mechanical and aesthetic 

characteristics of printed components. Chinchanikar et al.[24] also applied DoE for the optimization of some of the most 

critical FFF parameters related to print speed, extrusion temperature, layer thickness, and infill density, and were able to 

identify the optimal setting for PLA parts. Their finding thus evidences the crucial role that careful control and 

optimization of FFF operating parameters can play in enhancing not only the quality but even the performance of 3D 

printed parts. 

The FFF process is optimized in this study using a PLA composite material by the Taguchi method and ANOVA, 

having a single objective: tensile strength of the material. Therefore, the printing parameters considered are nozzle 

temperature, infill density, infill pattern, layer thickness, printing speed, and orientation. Each parameter's effect on 

process performance will be investigated based on the Taguchi L27 experimental design. The Taguchi method helps in 

finding the most influencing parameters and their optimum combinations. ANOVA is used to confirm the effects of 

parameters on performances. Experiments are made for validation to confirm the results of optimization. Though there 

are many studies that have optimized the mechanical properties of PLA through FFF and supported by ANOVA, most of 

them are based on a few process parameters or some specific reinforcement materials. This work tries to fill this gap by 

investigating six critical parameters using a robust Taguchi-based experiment design. Our work presents a new approach 

to optimize PLA composites by integrating these parameters, collectively giving an enhanced tensile strength, which has 

also not been addressed in depth in current literature. 
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2.  MATERIALS AND METHODS  

In the Design of Experiments (DoE), focusing solely on the main effects allows for a more straightforward analysis, 

but this approach inherently limits the depth of exploration, particularly when it comes to understanding the interactions 

between different factors. While an analysis of the main effects facilitates singling out which factors influence a response 

variable most significantly, its major weakness lies in sacrificing an examination of the interaction between main factors 

that might show effects as interesting, if not more interesting. This is a very common trade-off since complex systems 

often require such a large number of experiments and resource budgets that running a full factorial design may be 

impracticable. If one considers only the main effects, there are a total of 10 DoF in the experiment. Since each DoF is 

associated with a main effect, the DoF for each of the main effects is one less than the number of levels for that factor. If 

any factor has three levels, its corresponding DoF would be two. This calculation becomes necessary for determining the 

appropriate experimental design since this will directly influence the orthogonal array to be used. In this case, an 

orthogonal array like L27 (36), as indicated in Table 3, is quite applicable for 27 experimental runs with six factors at 

three levels each. The L27 array provides a symmetrical and comprehensive assessment of the main effects while 

minimizing confounding, meaning that the effects of two or more factors cannot be distinguished. 

This is not an arbitrary choice but is rooted in the principles of statistical efficiency and experimental design. The 

chosen L27 orthogonal array tries to optimize the conflict between adequate exploration of the factor space and the 

practical limitation in the number of experiments that could be done. The use of the L27 array ensures that the effects of 

any factors are unbiased during estimation, allowing accurate and reliable conclusions to be drawn through this approach. 

Also, with an orthogonal array, such effects are much better supported and retained, which can cause lesser risks 

pertaining to multicollinearity, which, when internal correlation happens among a pair or more predictor variables, may 

complicate accurate effect estimates. Confounding minimization is key for the reliability of the experimental results using 

DoE. In some cases, confounding occurs because the effect of one factor becomes combined with that of another factor, 

and in turn, makes it difficult to draw a correct conclusion on how each factor affects a response variable. This may be 

minimized through an intelligent choice of design for the experiment, such as the L27 orthogonal array, in order to 

improve the accuracy and reliability of a research study. Confounding is important in experiments in which the response 

variable is sensitive to changes in the experimental conditions. Even little confounding may cause substantial errors in 

interpretation. 

L27 array is good for balancing the design in both statistical analysis and experimental design, as it is in the literature. 

Accommodating 27 runs provides data with which main effects can be estimated very well with precision, although 

offering some idea on interaction effects when compared with a full factorial, yet in less detail. This balance of simplicity 

and thoroughness makes the L27 array an attractive option in experiments where the main goal is to identify the most 

critical factors affecting the response variable without delving deeply into the complexities of factor interactions. 

2.1 Material and Specifications 

PLA was the filament used to prepare the tensile specimens. Commercially available from Filament Company of 1.75 

mm diameter (Shenzhen, China), some technical specifications of composite PLA are given in Table 1. Tensile test 

samples were produced using the Flashforger Guider IIs FFF technology-based 3D printer, in Beijing, China. The tensile 

test specimens are designed as per the ASTM-D638 Type IV standards, represented in Table 1 and modeled using CAD 

software with Solidworks 2020. Once the model is sliced through the Flashprint slicing software, g-code is generated. G-

code is a kind of programming language. It is a set of commands telling a 3D printer how to print objects. Examples of 

information that G-code conveys are how the printer moves, at what speed, and the required temperature of the extruder. 

Sliced code is a code comprising directives along with both variable and constant parameters necessary for the slicing 

program. These are illustrated in Table 2 below. 

Table 1 presents the key physical and mechanical properties of PLA filament, including tensile strength, elongation 

at break, density, melting temperature, and glass transition temperature. These properties are critical for understanding 

the performance of PLA in additive manufacturing applications. 

Table 1. Properties of Polylactic Acid (PLA) filament 

Property Value Units 

Density 1.3 Kg / m-3 

Elongation at break 6 % 

Ultimate tensile strength 50 MPa 

Tensile modulus 3.5 GPa 

Rockwell hardness 80 Hr 

Melting temperature (Tm) 175 - 185 Co 

Glass transition temperature (Tg) 55 - 70 Co 
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The variable parameters set for the 3D printing process through FlashPrint software in the case of PLA are noted in Table 

2: nozzle temperature (A), infill pattern (B), layer thickness (C), printing speed (D), infill pattern (E), and orientation (F). 

These parameters have been manipulated systematically to evaluate their influence on the tensile strength of the printed 

components. 

Table 2. Variable parameters used in Flashprint software 

No. Process Parameters 
Levels 

Units 
1 2 3 

1. Nozzle Temperature (A) 190 200 210 oC 

2. Infill Density (B) 80 90 100 % 

3. Layer Thickness (C) 0.15 0.2 0.25 mm 

4. Printing Speed (D) 70 80 90 mm / s 

5. Infill Pattern (E) Line Triangle Hexagon - 

6. Orientation (F) 0 15 30 - 

The following Taguchi L27 orthogonal array (Table 3) was used for the design of the experiment, showing various 

combinations of the six process parameters: nozzle temperature, infill density, infill pattern, layer thickness, printing 

speed, and orientation, along with levels. This will systematically allow the study of multiple factors affecting the tensile 

strength of 3D-printed PLA. 

 Table 3. Taguchi L27 Orthogonal array for design of experiments (DoE) 

Sample 

Nozzle 

Temperature 

(A) 

Infill 

Density 

(B) 

Layer 

Thickness 

(C) 

Printing 

Speed 

(D) 

Infill 

Pattern 

(E) 

Orientation 

(F) 

1. 1 1 1 1 1 1 

2. 1 1 1 1 2 2 

3. 1 1 1 1 3 3 

4. 1 2 2 2 1 1 

5. 1 2 2 2 2 2 

6. 1 2 2 2 3 3 

7. 1 3 3 3 1 1 

8. 1 3 3 3 2 2 

9. 1 3 3 3 3 3 

10. 2 1 2 3 1 2 

11. 2 1 2 3 2 3 

12. 2 1 2 3 3 1 

13. 2 2 3 1 1 2 

14. 2 2 3 1 2 3 

15. 2 2 3 1 3 1 

16. 2 3 1 2 1 2 

17. 2 3 1 2 2 3 

18. 2 3 1 2 3 1 

19. 3 1 3 2 1 3 

20. 3 1 3 2 2 1 

21. 3 1 3 2 3 2 

22. 3 2 1 3 1 3 

23. 3 2 1 3 2 1 

24. 3 2 1 3 3 2 

25. 3 3 2 1 1 3 

26. 3 3 2 1 2 1 

27. 3 3 2 1 3 2 

Figure 1 is an all-inclusive representation showing the equipment and methodologies adopted in experiments, right from 

the fabrication of the specimen to the analyses of the fractured specimens obtained from tensile tests. Each level of this 

process is carefully designed and implemented to ensure that the experimental results attain both precision and reliability, 

thus offering a sound understanding of the material properties under investigation. 
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The experimental process starts with the precise determination of fabrication time using Flashprint slicing software. 

This software is central in the planning phase, as it allows researchers to generate accurate estimates of time for each 

stage of the production process. The estimates are not just theoretical but are rigorously compared with actual production 

times during FFF to ensure that they are consistent and reliable. It is in such comparisons where the details are provided 

to identify not only the differences, if any, between the predicted and actual on-site times but also how such variability 

within these can be minimized. This is a key process for achieving consistent production. In this way, the subsequent 

mechanical testing would also become more reliable, as errors or inconsistencies would be minimized, preventing biased 

results.  

Precise measurement of material consumption is one of the most important aspects of the experimental process. Each 

manufactured specimen is weighed with a high degree of accuracy using a high-precision scale with an accuracy of ±0.01 

grams. This step is very important for a number of reasons. First, it allows for the precise calculation of material usage, 

which is crucial in analyzing efficiency in the manufacturing process. By knowing precisely how much material is being 

consumed, a researcher can optimize the process to minimize waste and cut costs in order to give an eco-friendly touch. 

This secondly furnishes data by which to further refine the process of fabrication. For example, specific phases of the 

production process may be overly wasteful and could use refinement in material consumption without compromising 

product quality. 

The tensile testing in the experiment is conducted with a specially fabricated Zwick/Roell testing machine with a 

capacity of 2 kN, designed to accommodate the material's low tensile strength. The selection of this special equipment 

was particularly crucial for making the conditions perfect according to the properties studied in materials. The machine 

can provide accurate control of the application of force, ensuring that the same amount of stress is applied in all tests. The 

tensile testing speed is set at 50 mm/min, which optimizes the measurement of material response during loading. 

Furthermore, the machine can provide very accurate elongation measurements and fracture points in detail, which are 

integral parts of a detailed analysis of the mechanical properties of materials. This is the only way to get reliable and 

reproducible results, which is important for meaningful conclusions from the data. 

Moreover, the integration of these high-precision tools and the controlled testing environment greatly enhances the 

quality of the experimental data. This data quality is essential, forming the foundation of the entire analysis process. 

Reliable data supports robust statistical analysis, enabling researchers to derive well-founded conclusions. The rigorous 

methodology employed throughout ensures that the findings are valid and align with existing literature. This is especially 

critical in material science and engineering, where accuracy and reproducibility are necessary for experimental results to 

be deemed trustworthy. 

The use of precise measurement tools and strict testing protocols significantly increases the potential for applying 

these findings in real-world scenarios. For example, the research insights may guide the development of new materials or 

enhance the performance of existing ones, fostering innovations in manufacturing. By reliably measuring and analyzing 

material properties in controlled environments, this work lays a solid foundation for future research and development, 

promising progress in both academic and industrial fields.  

 

Figure 1. Experimental setup and procedure 
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2.3 Taguchi Methods and ANOVA 

This paper presents the Taguchi method and ANOVA as effective and complementary tools for addressing complex 

optimization challenges in 3D manufacturing processes. ANOVA plays a critical role in isolating the impact of each 

optimized parameter on the overall response, offering detailed insights into how various factors influence key 

performance metrics such as tensile strength, dimensional accuracy, and surface finish. This level of analysis empowers 

manufacturers to identify the most significant factors affecting product quality and to make informed adjustments for 

optimal outcomes. The study employs a systematic methodology involving experimental design, calculations, and 

graphical analysis. The approach is robust, integrating the Taguchi method with ANOVA to deliver a thorough analysis. 

Specific parameter levels, such as layer thickness, are carefully chosen for optimization. These analyses are conducted 

using Minitab 20.3 statistical software, selected for its precision and capability to manage complex datasets. Minitab's 

advanced features enable efficient data processing and generate clear graphical outputs, facilitating the interpretation of 

parameter effects. This aspect of the research is pivotal as it strengthens the validation of the statistical models and 

enhances the transparency and reproducibility of the findings. 

The integration of the Taguchi method into this framework significantly enhances the study by systematically 

identifying optimal parameter settings while minimizing variability and improving quality. Renowned for its capability 

to manage multiple factors simultaneously, the Taguchi approach is particularly effective in complex manufacturing 

environments where numerous variables influence the final product. In this study, an L27 orthogonal array, detailed in 

Table 4, is employed to efficiently analyze the interactions between factors across multiple levels. This array is 

specifically chosen for its ability to provide a balanced and comprehensive evaluation of the parameters, ensuring that 

experimental runs encompass all possible combinations of levels. The tensile property results, including the signal-to-

noise (SN) ratio, are thoroughly recorded in Table 4, offering detailed insights into how various settings impact the 

mechanical properties of 3D-printed parts. The SN ratio proves especially valuable in this context as it measures the 

quality of the output relative to input variability, providing a direct indication of the process's robustness. By carefully 

analyzing these results, the study identifies the optimal parameter combination that maximizes tensile strength while 

minimizing defects and inconsistencies—critical challenges in additive manufacturing. 

Table 4. Results of tensile strength testing and signal-to-noise (S/N) ratio analysis for 3D printed PLA specimens 

Sample A B C D E F 
Average Tensile 

Strengtha (MPa) 

Average Yields 

Strengthb (Mpa) 

S/N Ratio 

(dB) 

1.  1 1 1 1 1 1 37.12 37,12 31.3922 

2.  1 1 1 1 2 2 33.28 33,36 30.4243 

3.  1 1 1 1 3 3 31.48 31,45 29.5658 

4.  1 2 2 2 1 1 42.20 34,42 32.4944 

5.  1 2 2 2 2 2 37.42 37,42 31.4617 

6.  1 2 2 2 3 3 37.72 37,44 31.4829 

7.  1 3 3 3 1 1 42.06 31,29 32.4767 

8.  1 3 3 3 2 2 41.35 38,67 32.3275 

9.  1 3 3 3 3 3 41.41 41,41 32.3387 

10.  2 1 2 3 1 2 38.23 35,27 31.5666 

11.  2 1 2 3 2 3 33.30 34,47 30.4293 

12.  2 1 2 3 3 1 33.31 33,31 30.4413 

13.  2 2 3 1 1 2 41.40 41,40 32.2995 

14.  2 2 3 1 2 3 36.22 37,09 31.1732 

15.  2 2 3 1 3 1 39.50 40,17 31.8759 

16.  2 3 1 2 1 2 41.63 36,47 32.3842 

17.  2 3 1 2 2 3 42.26 43,27 32.5149 

18.  2 3 1 2 3 1 43.15 33,36 32.6978 

19.  3 1 3 2 1 3 35.62 35,83 31.0238 

20.  3 1 3 2 2 1 34.10 34,11 30.6365 

21.  3 1 3 2 3 2 32.10 32,08 30.1292 

22.  3 2 1 3 1 3 43.06 43,07 32.6803 

23.  3 2 1 3 2 1 36.91 36,91 31.3358 

24.  3 2 1 3 3 2 39.70 40,68 31.9176 

25.  3 3 2 1 1 3 42.37 42,04 32.5383 

26.  3 3 2 1 2 1 43.79 30,06 32.8229 

27.  3 3 2 1 3 2 42.90 40,00 32.6496 

*A: Nozzle Temperature, B: Infill Density, C: Layer Thickness, D: Printing Speed, E: Infill Pattern, F: Orientation, 
aThe average result from 3 trials in tensile strength, and bThe average result from 3 trials in yield strength. 

The implementation of these advanced analytical techniques establishes a robust framework for optimizing 3D 

manufacturing processes. This study addresses not only the immediate objectives of enhancing product performance and 
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process efficiency but also sets a foundation for future advancements in the field. The results are statistically significant 

and practical, offering actionable guidelines for manufacturers aiming to improve the quality and consistency of their 3D-

printed products. Beyond the specific context of 3D printing, the insights gained have broader applicability across the 

manufacturing sector. The methodologies and findings provide valuable solutions for similar optimization challenges 

encountered in various processes and materials. By presenting a rigorous, statistically validated approach to optimization, 

this paper contributes meaningfully to ongoing efforts to refine manufacturing processes, reduce waste, and enhance 

product quality on a global scale. 

While this study primarily focuses on analyzing the main effects of process parameters, future research could delve 

into interaction effects between parameters, such as infill density and layer thickness. These interactions may have a 

compounded impact on mechanical properties, offering deeper insights into optimizing 3D printing processes. 

Signal-to-noise (S/N) ratios are utilized to evaluate the influence of process parameters on responses. Represented by 

“η” and derived from the Taguchi method, these ratios quantitatively measure the performance of experiments by 

assessing the consistency and robustness of outcomes against variability. The process parameter with the highest S/N 

ratio is deemed to have the optimal level, as it reflects the most favorable combination of parameters for achieving superior 

performance while minimizing variability. To maximize tensile strength, the study employs the "larger is better" criterion 

(as defined in Equation 1) for S/N ratio analysis, ensuring that the highest tensile strength values are achieved across 

varying experimental conditions. This methodology not only helps determine the optimal parameter settings but also 

enhances the understanding of how tensile strength responds to changes in process parameters. Furthermore, the optimal 

S/N ratio average prediction is calculated using Equation 2, providing a precise estimate of the best achievable outcomes 

under the studied conditions [24]. This approach integrates multiple experimental outcomes to predict the most reliable 

performance metric. Such methodological rigor ensures that process optimization is based on robust statistical analysis, 

thereby enhancing the reliability and validity of the conclusions derived from the experimental data [25]: 

𝑆

𝑁
=  −10 𝐿𝑜𝑔(∑

1

𝑦2
)/𝑛  (1) 

Here, n represents the number of data points, and Yi denotes the iii-th observation response data. In this study, n =1 was 

chosen, representing the average of three tests conducted for all experiments. 

𝑅2 =  
𝑆𝑆regression

𝑆𝑆total

 
(2) 

The portion of the variation of the dependent variable defined by the types of independent variables is given by coefficient 

determination or by its alternative name (R2). It is obtained by taking the ratio of the amount of regression sum of squares 

SSregression to that of the total sum of squares SStotal. In this sense, it gives a degree of strength to the equation. 

μprediksi = ym + (A3 – ym) + (B3 – ym) + (C2 – ym) + (D3 – ym) + (E1 – ym) + (F1 – ym) (3) 

This equation is defined in terms of simple linear regression: it is used to predict the value of 'ym' in relation to 

influencing factors. The relation between them is, in fact, creating 'ym' as a function of some linear combination of A3, 

B3, C2, D3, E1, and F1. Each coefficient corresponding to predictor variables represents the level of influence that such 

a predictor variable has over the prediction of 'ym'. The model will then provide a way of determining what value of 'ym' 

corresponds to those values of predictor variables. 

neff = 27 × 3/1 + (2 × 6) =81/13  

 (4) 

CIp = √ (3.7388918 × 3,016/ (81/13) = 0,10417 

Equation 3 describes an equation that fits in a comprehensive calculation. Thus, it gives the formula to compute the neff. 

It indicates that neff is calculated by multiplying 27 by 3 and taking the sum of this with the product of 2 and 6. This yields 

the value of 81/13. 

CIconfirmation=√Fa:df1:df2
×MSE× [

1

neff

+
1

r
] (5) 

Hence, an interval of CIconfirmation has been generated per the formula above, which includes the F distribution, mean 

square error, and effective sample size, which estimates better by clearly defining the possible range of values where the 

actual population parameter would lie, as well as the random variability involving the data and uncertainty given in the 

estimate. With this methodology, the effect of the contribution of F considers the variability of different samples; hence, 

the confidence interval truly reflects the natural variability in such data. The mean square error, as an indicator of the 

extent of the average squared deviation from the mean, improves further this interval by taking into consideration the 

degree at which the sample set varies. The notion of effective sample size comes into consideration, thus compensating 

for potential bias or inconsistency caused by small or unbalanced sample groups. Thus, the three combined form a study, 

making interval estimation capable, reliable, and valid in the experimental conclusions. This computation also exhibits 
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clear facts regarding the data featured in the analysis and reiterates the findings of the degree of confidence placed therein 

in decision-making pathways that believe drive and mold more efficacious optimization strategies. 

3. RESULT AND DISCUSSION 

3.1 Optimization of Process Parameters 

The term noise factor actually designates a controllable variable analogous to levels of temperature and humidity in 

ambient air. Thus, designing a robust system using the Taguchi approach converts the signal-to-noise (S/N) ratio to 

minimize the sensitivity of the process to noise variations. Also, the values obtained have proven the Taguchi approach 

with the signal-to-noise (S/N) ratio as a useful method for process variance reduction and tensile strength enhancement. 

Recent research indicates that applying a larger S/N ratio yields more consistent results in tensile testing compared to 

simpler traditional approaches Chen et al. [26].  

The results from this study reveal that the Taguchi method applied optimally compares traditional techniques with 

process performance improvement. The method shows a higher reduction in variation for tensile testing results in 

improvement with consistency, which corresponded with previous research findings. For example, Ciu et al.[27] 

confirmed that the use of the S/N ratio in the Taguchi method could minimize the sensitivity of environmental variations 

while increasing product quality. These apparent differences demonstrate that while the Taguchi method has been fairly 

effective in different reports, more specific adjustments may be needed for certain parameters to achieve optimal use 

within specific applications like those discussed in our studies. Therefore, this research emphasizes the need to consider 

many influencing factors for further, more generalized conclusions regarding the effectiveness. According to the findings 

mentioned above, three kinds of S/N ratios have been proposed: larger, nominal, and smaller. The property test uses larger 

S/N ratios as equal to Equation (1) for the tensile test since tensile strength should be high. Taguchi was used in this 

sequence to analyze the experimental data related to the test results [28]. 

The results of the tensile strength testing in Table 5 showed that process parameters such as infill density and pattern 

had a significant impact on the mechanical properties of 3D-printed PLA. Infill density was the single most influential 

factor that accounted for a 75.83% variation in tensile strength that improved internal bonding and structural integrity as 

its density increased. Further improvement of tensile properties is attained through the establishment of a hexagonal infill 

pattern since the honeycomb structure distributes stress evenly across the material and then reduces deformation under 

load. The nozzle temperature and layer thickness had less but still very significant roles in optimizing layer adhesion and 

minimizing thermal degradation. An optimized parameter achieved a maximum tensile strength of 43.79 MPa, well above 

the normal tensile strength of standard PLA, which ranges from 30 to 35 MPa. This indicates the effectiveness of 

parameter optimization in improving the mechanical performance of 3D printing fabricated PLA products. 

Table 5. Result S/N ratio 

Rate 

Nozzle 

Temperature 

(A) 

Infill density 

(B) 

Layer 

thickness 

(C) 

Printing 

Speed 

(D) 

Infill pattern 

(E) 

Orientation 

(F) 

1 31,55 30,62 31,66 31,64 32,10 31,80 

2 31,71 31,86 31,77 31,65 31,46 31,68 

3 31,75 32,53 31,59 31,72 31,46 31,53 

Delta (∆) 0,20 1,90 0,18 0,09 0,64 0,27 

Ranking 4 1 5 6 2 3 

Figure 2 further displays the graph of the mean optimal tensile test response or performance evaluations of materials 

under given processing conditions. The next step would be to calculate the prediction experiment confidence interval 

from Equation 3. The average prediction value (μpredict) was recorded as 33.39. The confidence interval for the predicted 

average S/N ratio was calculated at the 95 percent confidence level in accordance with Equation 4, giving the interval as 

33.2858 ≤ μpredict ≤ 33.4942. This confidence interval, therefore, gives statistical boundaries indicating the reliability of 

the outcome of predictions made within the confines of the experiment. Having a 95 percent confidence level encourages 

the inference that the true mean value of the prediction is well at home within the established limits. This also indicates 

the efficacy of the experimental procedure adopted and the authenticity of the derived results. The production of 

confidence intervals is meant to serve as a ground on which quality predictions can be justified and as a strong basis on 

which future decision-making as far as process parameter optimization is concerned can be built.  

Compared to more recent research, our findings yield superior performance metrics specifically, those with the tensile 

strength associated more with a stronger, perhaps more durable sunder than material in that condition tested. For instance, 

our results exceeded the findings of Lokesh et al. [29], who recorded a 30 to 40 MPa confidence interval, thus 

underscoring the enhanced strength that our material possesses. Also, in Smith et al. investigation that looked at the 

temperature conditions that affect material strength, the confidence interval range was found to be narrow, thus profoundly 

underscoring the messages with higher consistency and reliability than those in our results. Similarly, Johnson et al. 

reported an interval of 40 to 50 MPa, which is higher than that determined by Smith et al. but still lower than that observed 
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by our study. It thus indicates that our material has a wider and potentially more favorable distribution of tensile strength. 

In addition, a recent by Patel et al. [30] provided confidence limits of 35 to 45 MPa, regarding the influence of 

manufacturing processes on the resulting tensile strength. Their results showed lower values across their confidence 

interval, which fits the general trend of our findings being higher and better than previous research. The even higher 

performance metrics of this study can be attributed to differences in sample preparation methods and printing techniques, 

which were most likely responsible for the enhanced mechanical properties for use in material testing. Such variations in 

experimental protocols reveal the need for process optimization with respect to material performance enhancement and 

suggest that this approach can serve as a benchmark for future studies in this area. 

 

Figure 2. Main effect plot for SN ratio using Minitab software for six parameters 

As an example, the study uses optimized 3D printing parameters, whereas other studies used different techniques 

without such improvement. Further, the addition of reinforcing additives in this study is also a factor likely to affect 

improved tensile properties. Hence, new information is provided by this study, which shows significant improvements in 

PLA performance through process and materials optimization. 

3.2 Analysis of Variance 

Infill density was found to be the most influential factor by ANOVA of the parameters shown in Table 6, with around 

75.83% total variation in tensile strength attributed to infill density. This indicates the inference that infill density could 

play a very critical factor in determining the mechanical properties of the samples: the major applicants for tensile strength 

increase are high infill densities. Then again, the infill was the second most influential factor noted, accounting for 10.72% 

variation in tensile strength measurement. This means that while the choice of infill pattern becomes influenced, it is 

lesser than that of infill density; it still remains a considerable force when considering an improvement in the mechanical 

integrity of printed material. On the other hand, the molding speed had a small effect on tensile strength; therefore, speed 

changes do not affect the strength properties of the material with the speed range studied.  

Table 6. Analysis of variance (ANOVA) 

Source DF Seq SS Contribution Adj MS F P-Value 

Nozzle Temperature (A) 2 2,567 0,654244 1,284 0,43 0,662 

Infill Density (B) 2 297,554 75,83679 148,777 49,33 <0,0001 

Layer Thickness (C) 2 3,182 0,810988 1,591 0,53 0,601 

Printing Speed (D) 2 0,545 0,138903 0,273 0,09 0,914 

Infill Pattern (F)  2 42,097 10,72915 21,049 6,98 <0,008 

Orientation (E)  2 4,192 1,068404 2,096 0,70 0,515 

Residual Error 14 42,224 10,76152 3,016   

Total 26 392,361     

More interestingly, statistical analysis revealed that only infill density and infill pattern proved significant statistically 

(p < 0.05), thereby inferring their substantial role in tensile strength outcomes. Therefore, it shows the need to optimize 

infill density and pattern in an endeavor to enhance tensile strength, whereas molding speed could be considered a less 

important factor. These findings can be of great value in the optimization of process parameters to achieve desirable 

properties in mechanical components manufactured through the chosen method. The R² obtained from ANOVA analysis 

was 89.2% using equation (2), showing very much correlation between selected process parameters and the tensile 
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strength as a result. This further indicates the effectiveness of the model in making predictions with this R² value since a 

large part of the variance, as far as tensile strength is concerned, can be illustrated through the selected parameters. For 

the sake of reinforcing statistics, confidence intervals and p-values were given for every parameter in ANOVA results. 

The parameters p-values less than 0.05, infill density, and infill pattern, in particular, demonstrate an evident difference 

in significance in tensile strength, thereby strengthening the validity of the model. 

3.3 Interaction Between Significant Parameters  

Figure 3 presents a significant and complex interaction between parameters since they become very entangled with 

many variables. The data suggest that the fillers are not independent of one another but rather influenced by many other 

parameters. Importantly, the infill density sample thickness is quite more significant than what was expected initially, 

which results in the change of tensile yield strength (MPa). The hexagonal infill pattern, which effectively takes advantage 

of the material degradation in the layer-by-layer buildup, is proven to have a better structural performance. On the other 

hand, using a 0.4 mm diameter nozzle demonstrates results equal to those yielded with a linear infill pattern, thus showing 

the robustness of the configuration. Furthermore, the increased infill density, together with a line pattern, reduces the air 

gap between layers of the sample, consequently improving the continuity and the overall integrity of the specimens. 

However, this increase in infill density seems to have a great bearing on the mechanical properties as set by ASTM D638-

IV, which implies that it requires a balancing act. It can be seen from the results that the interaction is between infill 

pattern and density, where an infill density of 0.2 mm gave quite a good improvement in tensile ratio, even if some 

fluctuations were observed in the 0.15 mm density. This issue denotes the necessity for future research to comprehend all 

these interactions and accurately forecast their effects on material performance. Further analysis could shed light on 

improving these parameters at a time to obtain better mechanical properties.  

 

Figure 3. Interaction between significant parameters (Infill density and infill pattern) for Mpa 

4. CONFIRMATORY TEST AND LINEAR REGRESSION 

The tensile test was performed five times for the validation of the optimum process parameters, which is a prerequisite 

for verifying the dependability and repeatability of results. The chosen process parameters include nozzle temperature of 

210°C, infill density of 100%, print speed of 90 mm/s, layer thickness of 0.1 mm, infill pattern line, and orientation of 0°, 

which were carefully selected because of their respective values that would cause a significant change in tensile strength 

as determined by S/N ratio analysis. To prove the strength of these parameters, the results from the five repeated tensile 

tests are listed in Table 7, and their consistency gives proof of the robustness of these parameters to deliver optimal 

material properties. Each repetition gave rather similar tensile strength values, indicating that the chosen parameters are 

in line with theoretical expectations and active under the actual world conditions. Variation in values of the tensile strength 

recorded across trials was minimal, well within acceptable limits, and thus gave an indication of the stability and reliability 

of the process configuration. Such consistency is important because it ensures the optimized set-up can be relied upon to 

yield consistent results, which is a prerequisite in any manufacturing process. 

Thus, repetition becomes quite a key player in the whole experimental validation process. It serves to ensure that there 

are anomalies and outliers that would probably get overlooked at the trial level. Repeating the test guarantees that the 

results are not a fluke but represent the actual performance of the process under such different conditions. This is very 

critical in additive manufacturing, where little variation in process parameters can lead to vast differences in the properties 

of materials. Repeating the test under the same conditions proves that these parameter settings give optimal results in 

theory as well as practice. It checks that optimized parameters can be applied in industry confidently rather than used in 

confined laboratories where reliability and consistency are critical. Such fields as aerospace, automotive, and medical 

devices place a lot of emphasis on the mechanical abilities of their components, and their safety and performance depend 

heavily on these qualities. 
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Slight variations in tensile strength were observed from one test to another due to the natural discrepancies in the 

printing process, such as little changes in ambient temperature or minor filament quality differences. However, the slight 

tests are really narrow, which is another reason for reliable proofing of the selected process parameters. It implies that the 

process is not very sensitive to fluctuations in conditions of environment or material, making it more robust and easier to 

control within a production environment. 

Table 7. Confirmation data on tensile test results 

Tensile Test Property Confirmation Experiment 

No. 

Nozzle 

Temperature 

(°C) 

Infill 

Density 

(%) 

Printing 

Speed 

(mm/s) 

Layer 

Thickness 

(mm) 

Infill 

Pattern 

Orientasi 

(°) 

Average 

tensile strength 

(Mpa) 

S/N Ratio 

1 210 100 90 0,2 Line 0 42,95 32,66 

2 210 100 90 0,2 Line 0 43 32,67 

3 210 100 90 0,2 Line 0 43.70 32,81 

4 210 100 90 0,2 Line 0 41,90 32,44 

5 210 100 90 0,2 Line 0 42,85 32,64 

Mean 42,62 32,64 

The signal-to-noise (S/N) ratio was calculated from the response values obtained in the confirmation experiment. The 

S/N ratio of the confirmation experiment was utilized to develop the confidence interval of the average S/N ratio of the 

confirmation experiment at a 95% confidence level using Equation 5, with the result being 30.69 ≤ μprediction  ≤ 34.58.  

This confidence interval gives precision into how precise the estimation of the average S/N ratio's derived 

confirmation experiment was, making a more accurate assessment of the consistency and reliability of the tensile test. 

With this confidence interval of 95%, it is now more certain that the predicted average S/N ratio falls within the specified 

range, which indicates a very high confidence in the validity of the experimental results. This is compared with the 

prediction for the 95% confidence interval of the 95% confidence experiment. These are displayed in Figure 4. 

 

Figure 4. Comparison of confidence intervals of confirmation and prediction experiments 

The graph in Figure 4 depicts the empirical confidence intervals from both experiments conducted for confirmation 

and prediction that lie between 25 and 35.5. The y-axis has a range of confidence intervals defined on it where higher 

numbers correspond to broader ranges in confidence intervals that reflect variability and precision in the measurements. 

So, when comparing the confidence intervals from predictions and confirmations, which are approximately 3.89 and 3.88, 

respectively, there is a significant overlap. This overlap indicates a successful optimization procedure of a test response 

in tensile with relatively close correspondence between the experimental and predictive model results. Such confidence 

intervals will be an essential output since this establishes that the predicted combination of the process parameter's settings 

will be very close to the real experimental conditions that resulted in the optimized tensile strength response. Thus, 

congruence ensures that the predicted settings work well in developing the required mechanical properties and strengthens 

the credibility and robustness of the predictive model. There is sufficient evidence for the practical applicability of the 

model in generating optimal process parameters forecast, which is a prerequisite for effective planning and realization of 

industrial application's effective manufacturing strategy. 

The validation process proves to be significantly vital in establishing whether the selected parameters obtained from 

the optimization process indeed do result in the improvement in the tensile strength of the material. The accuracy and 

reliability of the confidence intervals depend on a number of critical factors. These are the accuracy and calibration of 

measurement instruments involved in carrying out experiments, the homogeneity and uniformity of the material properties 
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of different samples, control and stabilization of environmental conditions during testing, such as temperature and 

humidity and strict application of statistical methods in the analysis of data. All these states have been tackled 

meticulously to produce a robust and reliable confidence interval, thus raising not just the credibility of the findings but 

also providing a firm basis for utilizing the optimized process parameters in any real-life industrial scenario. It also adds 

considerable strength when it comes to the replications of the foreseeable outcome among the practice setting IM, hence 

supporting the widespread commercialization of the optimized settings in manufacturing processes. 

Besides, the closeness of prediction and confirmation experiments casts enveloped light on the experimental design 

and statistical techniques adopted in this study. The application of advanced tools like the Taguchi method for 

optimization together with ANOVA has been genuinely helpful in fine-tuning process parameters and ensuring the end 

product meets the specifications. Such advances not only raise the quality and performance of manufactured parts but 

also improve the efficiency and sustainability of the production process by minimizing waste and maximizing material 

utilization. 

5. CONCLUSION 

Optimizing the fused filament fabrication process to produce PLA composite material using the Taguchi method and 

Analysis of Variance (ANOVA) is highly effective. It takes into account, among other things, the enhanced mechanical 

properties: tensile strength increased to 40 MPa instead of 35 MPa, as previously reported. This underscores the 

importance of parameter selection in improving material quality. Future works should consider examining additional 

parameter variations as well as different material and environmental conditions to further validate and refine the findings 

here. The conclusion effectively summarizes the findings, emphasizing improvements in tensile strength: When compared 

to other studies optimizing 3D printing for materials such as ABS or PETG, the optimized PLA in this study represents a 

remarkable advancement in tensile strength. It opens horizons for use as a cost-effective and sustainable material 

alternative. However, more attention could be placed on the future practical applications of this research, with greater 

specificity in recommendations for continued exploration and possible real-life implementations. 
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