
INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING  

ISSN: 2229-8649   e-ISSN: 2180-1606  

VOLUME 22, ISSUE 1, 2025, 12208 - 12235 

DOI: https://doi.org/10.15282/ijame.22.1.2025.19.0936 

 
 
 

*CORRESPONDING AUTHOR | J. M. Campos-Salazar |  jose.manuel.campos@upc.edu  
© 2025 The Author(s). Published by Universiti Malaysia Pahang Al-Sultan Abdullah Publishing. This is an open access article under the CC BY-NC 4.0 International license  12208 

RESEARCH ARTICLE 

Driving into the Dynamics−Leveraging the Direct-Quadrature-Zero Transform 
for Mechanical Systems 

José M. Campos-Salazar 1*, Juan L. Aguayo-Lazcano 2, Roya Rafiezadeh3 

1Electronic Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain 
2Institute of Physical and Mathematical Sciences, Universidad Austral de Chile, Valdivia, Chile 
3Power Electronics, Machines and Control, University of Nottingham, England 

ABSTRACT – This research offers a thorough analysis of the dynamic behavior of 1-, 2-, and 3-
degrees-of-freedom (DoF) mechanical systems under a sinusoidal force, examining both 
mechanical and dq coordinates. By utilizing standardized initial conditions, the 1-DoF system 
displays fascinating oscillatory patterns with dual frequency components, highlighting the 
significance of low damping. The adaptation to dq coordinates simplifies the analysis and highlights 
the system's nuanced behavior. In contrast, the 2-DoF system exhibits intricate interactions, 
oscillation phenomena, and multiple frequency components in mechanical coordinates. The 
contribution of masses that do not experience external forces in dq coordinates is minimal. On the 
other hand, the 3-DoF system shows diverse interactions and frequency components that are 
different from the dq transformations. The observed dynamics not only enhance comprehension of 
these systems but also provide valuable insights for refining analytical approaches in the analysis 
of dynamic systems. This study sets the stage for future investigations and urges the development 
of streamlined analytical frameworks for a more focused exploration of externally influenced 
variables in dynamic mechanical systems. 
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1. INTRODUCTION 

Vibration analysis is a fundamental area within mechanical engineering that focuses on examining the oscillatory 

behavior of mechanical systems subjected to external excitations, such as forces or displacements [1]. The ability to 

analyze vibrations is essential across multiple industries, including manufacturing [2]–[6], automation [7]–[10], and 

aerospace [11], [12], as it provides crucial insights into system performance, safety, and longevity. This field plays a 

pivotal role in designing, optimizing, and maintaining mechanical systems by identifying and mitigating vibrational 

effects that could lead to structural failures or inefficiencies. One of the key challenges in vibration analysis is the 

complexity introduced by various factors such as frequency, damping characteristics, and system interactions. The study 

in [2] underscores the necessity of addressing these challenges through advanced methodologies, including modal 

analysis, Fourier transforms, wavelet-based techniques, and computational simulations. By leveraging such methods, 

engineers can gain a deeper understanding of vibrational phenomena and develop strategies to enhance the performance 

of mechanical systems. A review in [3] explores vibration-based diagnostic techniques for identifying rolling bearing 

failures in industrial machinery. Given the broad range of operational conditions and failure modes, precise fault detection 

is critical to ensuring system reliability. The study evaluates multiple vibration analysis methods, including time-domain, 

frequency-domain, and time-frequency-domain approaches, emphasizing their role in predictive maintenance and 

minimizing downtime.  

Similarly, research on process plants, as discussed in[4], highlights the significance of effective machine management 

in preventing costly operational disruptions. The study explores the implementation of condition monitoring and 

preventive maintenance strategies, demonstrating the effectiveness of vibration analysis in early fault detection. Through 

practical case studies, the study illustrates how dynamic vibration analysis can accurately diagnose mechanical 

irregularities before they lead to critical failures. The work in [5] focuses on fundamental vibration concepts, particularly 

for single-degree-of-freedom mechanical systems. It presents a structured approach to analyzing dynamic behaviors in 

these systems, laying the foundation for studying more complex mechanical structures. The study covers essential topics 

such as system response to harmonic excitation, transient behavior, and resonance effects, reinforcing the importance of 

vibration analysis in engineering design and maintenance. The role of vibration analysis extends to the automotive 

industry, where it is crucial for enhancing vehicle stability, safety, and passenger comfort. The study in [6] discusses 

active vibration control techniques, emphasizing their role in mitigating the negative effects of oscillatory motion in 

vehicles. The research explores cutting-edge control methodologies designed to optimize vehicle performance and reduce 

driver discomfort caused by excessive vibrations. 
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An experimental investigation in [7] further explores the intricate relationship between vehicle maintenance and 

mechanical vibrations. The study demonstrates how inadequate maintenance can lead to increased vibrations and, 

subsequently, mechanical failures. Advanced sensor-based data acquisition techniques, including signal processing 

methods such as fast Fourier transform, are employed to analyze and control vibrations. The research underscores the 

importance of predictive maintenance in prolonging vehicle lifespan and ensuring operational efficiency. In the context 

of mechanical transmission systems, the study in [8] examines strategies for mitigating torsional vibrations in automotive 

applications. Effective torsional vibration control is critical for ensuring the longevity and optimal performance of 

transmission components. The study evaluates damping mechanisms, gear optimization techniques, and dynamic 

balancing strategies, highlighting their significance in enhancing drivetrain efficiency and minimizing frictional losses. 

Expanding this perspective, the study in [9] presents a comparative evaluation of various automotive vibration testing 

methodologies. The research focuses on techniques such as frequency-domain analysis, time-domain analysis, and 

statistical modeling to assess the reliability of automotive components. These methods are instrumental in refining vehicle 

designs, improving ride quality, and ensuring adherence to safety standards. Noise and vibration management in 

automobiles is another critical topic discussed in [10]. The study addresses the integration of advanced materials, 

structural optimization, and active noise control strategies to minimize vibration-related disturbances in vehicles. The 

research highlights the synergy between engineering design and acoustics in developing vehicles with superior noise and 

vibration characteristics. 

In the aerospace sector, vibration analysis plays a crucial role in failure prevention and system reliability. The study 

in [11] investigates the mechanical simulation of high-reliability aerospace electronics, emphasizing the necessity of 

vibration testing for ensuring the durability of electronic components. Techniques such as finite element analysis, 

computational modeling, and experimental validation are employed to predict and mitigate vibrational effects in 

aerospace environments. Research in [12] explores vibration suppression in flexible aerospace structures. The study 

examines innovative approaches such as active disturbance rejection control and frequency-domain techniques to manage 

vibration-induced challenges in aircraft structures. The findings contribute to the development of more resilient aerospace 

systems capable of withstanding extreme operational conditions. As mechanical systems increase in complexity, the 

challenges associated with vibration analysis also grow [1]. The study in [13] investigates lateral vibration dynamics in 

transportation applications, highlighting the difficulties in predicting and analyzing structural responses under variable 

loading conditions. Advanced computational methods are essential for designing transportation systems that can endure 

vibrational stresses while maintaining structural integrity. 

The intersection of vibration analysis and reliability engineering is explored in [14], which examines the effects of 

vibrational fatigue on mechanical components. The study emphasizes the importance of accurately modeling the 

interaction between fatigue and dynamic forces to improve system reliability. By understanding these interactions, 

engineers can develop robust mechanical designs that resist premature failures. The book in [15] presents an in-depth 

discussion of modeling techniques for vibrational fatigue and structural fracture analysis. It highlights the complexities 

associated with predicting fatigue life under dynamic loading conditions, taking into account factors such as material 

properties, environmental influences, and resonance phenomena. The study underscores the importance of integrating 

computational models that accurately reflect real-world vibrational behaviors. In [16], a comprehensive review of 

vibration analysis techniques for rotating machinery is presented, focusing on predictive maintenance applications. The 

study compares traditional methods, such as time-domain and frequency-domain analysis, with emerging AI-based 

approaches, including neural networks and support vector machines. The findings highlight the growing role of artificial 

intelligence in enhancing fault detection and machine diagnostics. 

The study in [17] explores prediction methods for transient vibration and sound radiation in structural plates. It 

evaluates conventional approaches, such as finite element analysis and boundary element methods, as well as novel wave-

based techniques. The research provides valuable insights into optimizing structural designs for improved vibration and 

acoustic performance. The research in [18] examines the use of non-traditional dynamic vibration absorbers for mitigating 

vibrations in damped linear structures. By leveraging advanced damping technologies, the study proposes innovative 

solutions for controlling structural vibrations in diverse engineering applications. A broader examination of machine 

diagnostics through vibration analysis is provided in [19]. The study discusses the integration of artificial intelligence 

techniques, such as fuzzy logic and genetic algorithms, to enhance fault detection capabilities in industrial machinery. 

The findings highlight the potential of AI-driven solutions in predictive maintenance. 

The study in [20] conducts a modal analysis of the Karun-4 concrete arch dam, utilizing a finite element model (FEM) 

to assess the dynamic behavior of the dam reservoir-foundation system. To validate the computational model, the authors 

compare the FEM results with ambient vibration test data. The analysis investigates the influence of several critical 

factors, including reservoir water levels, foundation rock mass properties, and seismic excitations, on the natural 

frequencies and mode shapes of the structure. The findings reveal that reservoir water levels significantly impact the 

modal properties of the dam, while the foundation rock mass exhibits only minor effects. In contrast, earthquake-induced 

excitation has a negligible influence on the dam’s dynamic response. Based on these results, the study concludes that the 

proposed FEM approach is a reliable tool for evaluating the structural dynamics of large-scale hydraulic infrastructures. 

The study in [21] explores modal analysis, a fundamental technique for examining the dynamic characteristics of 

mechanical structures and systems. The authors provide an extensive review of testing methodologies and system 
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identification techniques, highlighting their role in characterizing vibrational responses. Additionally, the paper addresses 

key practical challenges encountered in modal analysis, along with emerging trends that enhance its application in 

structural dynamics. To reinforce these concepts, the study incorporates case studies that illustrate real-world 

implementations of modal analysis techniques. This work serves as a valuable reference for researchers and engineers 

seeking deeper insights into vibration-based structural assessment and system behavior characterization. From the 

literature review, it is evident that existing vibration analysis methods predominantly focus on frequency-domain, time-

domain, and AI-based techniques. However, these approaches often face limitations when applied to vibrational systems 

with continuously varying states, particularly in cases involving sinusoidal oscillations. Traditional control strategies 

struggle to regulate such systems effectively due to the dynamic nature of the variables involved [22]–[24].  

A promising alternative is the application of coordinate transformations to simplify the analysis of oscillatory systems. 

The direct-quadrature-zero (dq0) transformation provides a means of converting time-varying system states into a rotating 

reference frame, facilitating more efficient modeling and control [25]. Despite its widespread use in electrical engineering, 

there is a notable absence of studies applying the dq0 transformation to mechanical vibration analysis. To address this 

gap, this study investigates the application of the dq0 transformation to mechanical vibrational systems with one, two, 

and three degrees of freedom. The research develops dynamic models for these systems in both the natural mechanical 

frame and the transformed dq0 frame, enabling a comparative evaluation of their vibrational characteristics. This study is 

primarily theoretical and aims to validate the suitability of dq0 transformation-based models for mechanical vibration 

analysis. The remainder of the paper is structured as follows: Section 2 presents the mathematical formulation of the Park 

and Clarke transformations, while Section 3 discusses the application of the dq0 transformation to mechanical vibrational 

systems. Section 4 introduces energy equations relevant to the studied systems, and Section 5 derives the state-space 

representations of the models. Simulation results are presented in Section 6, followed by the conclusions in Section 7. 

2. ANALYSIS OF ROTATIONAL REFERENCE FRAME TRANSFORMATIONS 

The study of reference frame transformations, particularly the Clarke (αβ0) and Park (dq0) transformations, plays a 

crucial role in electrical engineering, especially in the control and analysis of three-phase systems [26]–[30]. These 

mathematical frameworks enable the conversion of three-phase variables—such as currents and voltages—from the 

natural abc coordinate system to alternative domains that simplify modeling and control. The abc reference frame 

represents three-phase electrical quantities as sinusoidal signals with a phase shift of 120°, which, while fundamental to 

power systems, is not always the most computationally efficient framework for dynamic system analysis. For applications 

in motor drives, power converters, and grid-interfaced systems, it is often advantageous to transform these variables into 

a more structured and computationally manageable reference frame. 

The Park transformation (dq0) introduces a rotating coordinate system that follows a specific reference, such as the 

magnetic field in an electric machine or the voltage vector of an inverter. This transformation segregates three-phase 

components into two orthogonal axes: the direct axis (d-axis), which aligns with active power, and the quadrature axis 

(q-axis), associated with reactive power. A third component, the zero-sequence term, represents any unbalanced or 

neutral-point voltage variations [25]. Meanwhile, the Clarke transformation (αβ0) acts as an intermediary step, projecting 

three-phase signals onto a stationary two-axis system, where the α- and β-axes provide an equivalent representation of 

the three-phase system in a simplified orthogonal framework. The relationship between these two transformations is 

dictated by a rotational transformation matrix. The Clarke transformation first maps abc variables into the stationary αβ0 

frame, and then the Park transformation further rotates these quantities into the dq0 frame, which follows the motion of 

the machine or inverter system [25]. The rotation angle of the dq0 transformation corresponds to the angular position or 

frequency of the rotating system, allowing for an effective dynamic representation of electrical variables in a more 

tractable form. 

Beyond mere mathematical convenience, these transformations provide significant benefits in real-world applications. 

By converting three-phase systems into equivalent two-phase representations, they simplify complex differential 

equations governing electromechanical dynamics, thereby reducing computational overhead in real-time control 

applications. Moreover, they facilitate independent control over active and reactive power, forming the basis of advanced 

control methodologies such as field-oriented control (FOC) and direct torque control (DTC) in electrical machines. These 

methods enhance precision in regulating parameters like torque, flux, voltage, and current, leading to improved efficiency 

in motor drives, power electronics, and grid-tied inverters [25]. In summary, the Clarke and Park transformations serve 

as essential mathematical tools that bridge the abc reference frame with the αβ0 and dq0 domains. Their ability to simplify 

system dynamics, improve analytical tractability, and enhance control implementations makes them indispensable in 

power electronics, motor control, and grid-interfaced applications. Their broad adoption underscores their fundamental 

role in improving stability, efficiency, and performance in three-phase electrical systems. 

2.1 Derivation of the Clarke Transformation Matrix 

The Clarke transformation provides a powerful method for re-expressing three-phase electrical variables in an 

alternative coordinate system that simplifies analysis and control. By mapping the abc reference frame to a two-axis αβ0 

reference frame, this transformation effectively decouples three-phase interactions and provides a clearer representation 

of system behavior. One key advantage is its ability to isolate the common-mode, or zero-sequence, component, which 

accounts for any unbalanced neutral currents or common-mode voltages [25], [31]. The αβ0 transformation ensures 
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energy conservation, follows the right-hand coordinate system convention, and maintains uniform scaling properties, 

making it indispensable for applications such as power conversion, motor drives, and grid-connected electronics [25], 

[31]. 

The transformation matrix used for Clarke's transformation, denoted as KC, is formulated as a power-invariant, right-

handed transformation: 

𝐊𝐂 = √
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Applying this transformation to a three-phase column vector, mabc(t), produces the corresponding vector in the αβ0 

domain: 

𝐦𝛂𝛃𝟎(𝑡) = 𝐊𝐜 ∙ 𝐦𝐚𝐛𝐜(𝑡) (2) 

To revert to the original abc frame, the inverse transformation is applied: 

𝐦𝐚𝐛𝐜(𝑡) = 𝐊𝐜
−𝟏 ∙ 𝐦𝛂𝛃𝟎(𝑡) (3) 

This bidirectional transformation capability ensures that the αβ0 transformation preserves the fundamental properties of 

the system while simplifying control equations. The Clarke transformation is particularly beneficial in vector control 

strategies, as it provides an effective means of analyzing three-phase systems in a reduced-dimensional space, improving 

control response and computational efficiency. 

2.2 Derivation of the Park Transformation 

The Park transformation, also known as the dq0 transformation, is another fundamental tool used to convert stationary 

αβ0 coordinates into a rotating reference frame that aligns with system dynamics [25], [31]. Widely applied in power 

electronics, motor control, and grid-connected systems, this transformation enables precise tracking and control of three-

phase variables. The primary feature of the Park transformation is its ability to "rotate" the reference frame to align with 

a desired frequency, typically the synchronous frequency of an electrical machine. This results in a transformation where 

sinusoidal variables in the αβ0 domain become DC quantities in the dq0 frame, greatly simplifying system control. 

A key advantage of the dq0 transformation is its ability to modify the frequency spectrum of a signal. By aligning the 

transformation reference frame with a system's synchronous frequency, fundamental-frequency components are 

converted into steady-state DC values, while components at different frequencies appear as AC variations. This is 

particularly valuable for control methodologies such as field-oriented control (FOC), where separating active and reactive 

power components is critical for efficient motor and converter operation [25], [31]. 

Mathematically, the Park transformation matrix is expressed as: 

The dq0 transformation is defined mathematically using the transformation matrix KP, given by: 

𝐊𝐏 = [
cos 𝜃(𝑡) sin 𝜃(𝑡) 0

− sin 𝜃(𝑡) cos 𝜃(𝑡) 0
0 0 1

] (4) 

where θ(t) represents the instantaneous angular position of the reference frame. Applying this transformation to an αβ0 

column vector results in: 

𝐦𝐝𝐪𝟎(𝑡) = 𝐊𝐏 ∙ 𝐦𝛂𝛃𝟎(𝑡) (5) 

To return to the αβ0 frame, the inverse transformation is applied: 

𝐦𝛂𝛃𝟎(𝑡) = 𝐊𝐏
−𝟏 ∙ 𝐦𝐝𝐪𝟎(𝑡) (6) 

Alternatively, the transformation can be applied directly from the abc frame using the combined Clarke-Park 

transformation matrix: KCP = KC⋅KP. The resulting transformation matrix is expressed as: 
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The inverse transformation matrix, used to return from the dq0 reference frame back to the abc reference frame, is given 

by: 

𝐊𝐂𝐏 = √
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The direct transformation from abc to dq0 can be defined as: 

𝐦𝐝𝐪𝟎(𝑡) = 𝐊𝐂𝐏 ∙ 𝐦𝐚𝐛𝐜(𝑡) (9) 

The inverse transformation allows conversion back to the abc reference frame: 

𝐦𝐚𝐛𝐜(𝑡) = 𝐊𝐂𝐏
−𝟏 ∙ 𝐦𝐝𝐪𝟎(𝑡) (10) 

The dq0 transformation is fundamentally rooted in vector projections and rotational transformations within a Cartesian 

coordinate system [25], [31]. To conceptualize this, imagine both the αβ and dq coordinate frames being displayed 

simultaneously, as illustrated in Figure 1. The vector mαβ(t), originally expressed in the αβ reference frame, undergoes a 

transformation as the dq reference frame rotates by an angle θ(t) with respect to the fixed αβ frame. 

Mathematically, in Cartesian notation, a vector within the αβ frame can be represented as: 

𝐦𝛂𝛃(𝑡) = 𝐦𝛂(𝑡) ∙ 𝐮̂𝛂 +𝐦𝛃(𝑡) ∙ 𝐮̂𝛃 (11) 

where  𝐮̂𝛂 and  𝐮̂𝛃 are the unit basis vectors of the stationary αβ reference frame. The dq frame, being a rotated version 

of the αβ frame, establishes a new orientation defined by θ(t), where 𝐮̂𝛂 and 𝐮̂𝐝 serve as its respective unit vectors  [25], 

[31]. The transformation linking these coordinate frames is given by: 

{
𝐮̂𝐝 = cos(𝜃(𝑡)) ∙ 𝐮̂𝛂 + sin(𝜃(𝑡)) ∙ 𝐮̂𝛃

𝐮̂𝐪 = −sin(𝜃(𝑡))∙ 𝐮̂𝛂 + cos(𝜃(𝑡)) ∙ 𝐮̂𝛃
 (12) 

Applying the dot product to project the αβ components onto the dq axes results in: 

{
𝐦𝐝(𝑡) = 𝐮̂𝐝 ∙ 𝐦𝛂𝛃(𝑡) = cos(𝜃(𝑡)) ∙ 𝐦𝛂(𝑡) + sin(𝜃(𝑡)) ∙ 𝐦𝛃(𝑡)

𝐦𝐪(𝑡) = 𝐮̂𝐪 ∙ 𝐦𝛂𝛃(𝑡) = − sin(𝜃(𝑡)) ∙ 𝐦𝛂(𝑡) + cos(𝜃(𝑡)) ∙ 𝐦𝛃(𝑡)
 (13) 

These transformed components, md(t) and mq(t), form the new representation of the original vector in the dq reference 

frame. One important characteristic of this transformation is that a positive θ(t) corresponds to a counterclockwise 

rotation, effectively shifting the vector’s angular representation in the dq domain. This property is particularly useful in 

three-phase electrical systems, where rotating reference frames track system variables in synchrony with fundamental 

electrical frequencies, ensuring that transformed dq components appear as stationary values in the new coordinate system 

[25], [31]. 

 

Figure 1. Geometric representation of an arbitrary vector m(t) in reference frames  and dq. In addition, the vector 

components of the vector in its two reference frames are included [32] 

These components, md(t) and mq(t), constitute the transformed vector mdq(t) in the dq reference frame. Notably, the 

positive angle θ(t) corresponds to a counterclockwise rotation, effectively reducing the vector’s angle in the new dq frame. 

This is due to the fact that the reference frame itself undergoes a forward rotation rather than the vector itself. As a result, 

in scenarios such as three-phase electrical systems, where the reference frame rotates forward, the transformed dq vector 

remains stationary in the new coordinate system [25], [31]. 

From a matrix formulation perspective, the conversion between αβ and dq coordinates relies on a structured 

transformation matrix. The corresponding transformation matrix KP is defined as: 
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𝐊𝐏 = [
cos 𝜃(𝑡) sin 𝜃(𝑡)

− sin 𝜃(𝑡) cos 𝜃(𝑡)
] (14) 

which establishes the following relationship: mdq(t) = KP·mαβ(t). This representation facilitates a direct mathematical 

mapping between the stationary αβ and rotating dq coordinate systems, providing a streamlined framework for dynamic 

system analysis and control. 

While the dq0 transformation is typically applied to three-phase systems, a similar approach can be utilized for single-

phase signals. In such cases, directly applying the transformation defined in (9) may not be straightforward due to the 

absence of a naturally occurring quadrature component. To circumvent this, a modified Clarke transformation can be 

introduced, which generates an auxiliary 90-degree phase-shifted signal, enabling an equivalent two-phase representation. 

This adaptation follows the transformation: 

{
𝐦𝛂(𝑡) = 𝐦𝐚(𝑡)

𝐦𝛃(𝑡) = 𝐦𝐚 (𝑡 −
π

2
)
 (15) 

Here, mα(t) retains the original signal, while mβ(t) represents a derived quadrature-phase component. Once mapped into 

the αβ coordinate system, the standard dq0 transformation defined by KP can be applied, allowing single-phase signals to 

be analyzed and controlled in a similar manner to three-phase systems [25], [31]. 

3. APPLICATION OF THE PARK TRANSFORMS INTO A DYNAMIC VIBRATIONAL 

MECHANICAL SYSTEM 

This section presents a comprehensive mathematical examination of the dq0 transformation method applied to 

vibrational mechanical-dynamical systems. The analysis encompasses three distinct configurations: one-degree-of-

freedom (1-DoF), two-degree-of-freedom (2-DoF), and three-degree-of-freedom (3-DoF) systems, as illustrated in Figure 

2(a), (b), and (c), respectively. Each system is uniquely characterized by a set of dynamic parameters, including mass 

(mi), stiffness (ki), and damping (bi), where i  {1,2,3}. These parameters define the structural and vibrational behavior 

of the system under external excitation. Notably, the mass elements (mi) are assumed to be rigid and inelastic, remaining 

fixed to immovable reference structures to ensure idealized vibrational analysis [34]. 

The simplest configuration, depicted in Figure 2(a), consists of a single mass element (m1) connected to a stationary 

wall via a spring-damper system composed of a stiffness element (k1) and a damping element (b1). This system exhibits 

classical harmonic oscillation, serving as a foundational model for analyzing mechanical vibrations. The two-degree-of-

freedom (2-DoF) system, illustrated in Figure 2(b), introduces an additional mass element (m2), resulting in a more 

complex vibrational interaction. In this configuration: 

• m1 remains connected to the stationary wall through elements k1 and b1. 

• m1 is also coupled to m2 via intermediate stiffness (k2) and damping (b2) elements. 

  
(a) (b) 

 

 
(c) 

Figure 2. Proposed vibrational mechanical dynamic models to which dq0 will be applied (a) 1-DoF; (b) 2-DoF; (c) 3-

DoF 

This arrangement introduces coupled oscillatory behavior, where energy exchange between m1 and m2 leads to modal 

interactions that significantly influence the system’s dynamic response. The three-degree-of-freedom (3-DoF) system, 

depicted in Figure 2(c), further extends the complexity of vibrational interactions by incorporating a third mass element 

(m3). The structure is defined as follows: 
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• m1 is anchored to the stationary wall via k1 and b1. 

• m1 and m3 are each connected to m2 through additional coupling elements (k2, b2) and (k3, b3), respectively. 

This system introduces multiple degrees of vibrational freedom, leading to higher-order modal interactions and resonance 

phenomena. The interdependent motion of m1, m2, and m3 results in complex vibrational modes, making it an ideal model 

for studying multi-body oscillatory dynamics. 

The physical units associated with each system parameter are as follows: 

• Mass (mi): Newton (N) 

• Stiffness (ki): Newton per meter (N/m) 

• Damping (bi): Newton-seconds per meter (N·s/m) 

The primary dynamic variables governing the system’s behavior include the external force f1(t) and the displacement 

responses xi(t), where i  {1,2,3} represents each mass element's positional deviation. The excitation force is 

mathematically defined as: f1(t) = F·sin(ω·t), where F denotes the force amplitude, and ω represents the angular frequency 

of excitation. This sinusoidal excitation drives the oscillatory motion of the system, serving as the basis for analyzing 

vibrational behavior under harmonic forcing conditions. 

3.1 Analysis of a Mechanical-Vibrational-Dynamical System of One-Degree-of-Freedom 

This section presents a detailed analysis of the 1-DoF vibrational mechanical system, as illustrated in Figure 2(a). The 

primary objective is to derive the system's energy equations and formulate the Lagrangian equation in terms of generalized 

coordinates (pi(t)), facilitating the modeling of this non-conservative system [35]. By following this approach, the 

dynamic equation of motion for the system in Figure 2(a) is obtained. Specifically, expressions for the system’s kinetic 

energy (KE(t)), potential energy (PE(t)), and dissipation energy (DE(t)) are given as follows: 

{
 
 

 
 𝐾𝐸(𝑡) =

1

2
∙ 𝑚1 ∙ 𝑥̇1(𝑡)

2

𝑃𝐸(𝑡) =
1

2
∙ 𝑘eq1 ∙ 𝑥1(𝑡)

2

𝐷𝐸(𝑡) =
1

2
∙ 𝑏eq1 ∙ 𝑥̇1(𝑡)

2

 (16) 

From here, the equivalent damping coefficient and stiffness terms are defined as beq1 = b1 + b2 and keq1 = k1 + k2, 

respectively. 

The Lagrangian equation for pi(t) is expressed as: 

d

d𝑡

∂𝐾𝐸(𝑡)

∂𝑝̇i(𝑡)
−
∂𝐾𝐸(𝑡)

∂𝑝i(𝑡)
+
∂𝑃𝐸(𝑡)

∂𝑝i(𝑡)
+
∂𝐷𝐸(𝑡)

∂𝑝̇i(𝑡)
= 𝛹i(𝑡) (17) 

where Ψ1(t) represents the generalized external force applied to the system, defined in this case as Ψ1(t) = f1(t). Given that 

p1(t) = x1(t), substituting these expressions into the Lagrange equation and applying algebraic manipulations yield the 

state-space representation of the 1-DoF system: 

{

d𝐪(𝑡)

d𝑡
= 𝐀 ∙ 𝐪(𝑡) + 𝐁 ∙ 𝑢(𝑡)

𝐲(𝑡) = 𝐂 ∙ 𝐪(𝑡) + 𝐃 ∙ 𝑢(𝑡)
 (18) 

where q(t) and y(t) denote the state vector and output vector, while u(t) represents the scalar input. Specifically: q(t) = 

[q1(t), q2(t)]ᵀ, where q1(t) = x1(t) and q2(t) = dx1(t)/dt, and u(t) = f1(t). Symbolically, {q(t), y(t)}  {ℝ²}. The matrices A, 

B are defined as follows: 

The corresponding system matrices are defined as: 

𝐀 = [

0 1

−
𝑘eq1

𝑚1

−
𝑏eq1

𝑚1

]  𝐁 = [

0
1

𝑚1

] (19) 

The output (C) and direct transmission (D) matrices are given as C = I (identity matrix) and D = 0 (zero matrix), 

respectively. Symbolically, the matrices satisfy: {A, C}  ℳ2x2 and {B, D}  ℳ2x1. 

To facilitate the application of the dq0 transformation, the system is first transformed into the αβ coordinate frame 

using the following equivalences: 

{

d𝐪𝛂𝛃(𝑡)

d𝑡
= 𝐀𝛂𝛃 ∙ 𝐪𝛂𝛃(𝑡) + 𝐁𝛂𝛃 ∙ 𝐮𝛂𝛃(𝑡)

𝐲𝛂𝛃(𝑡) = 𝐂𝛂𝛃 ∙ 𝐪𝛂𝛃(𝑡) + 𝐃𝛂𝛃 ∙ 𝐮𝛂𝛃(𝑡)
 (21) 
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where the matrices in αβ coordinates are: 

𝐀𝛂𝛃 =

[
 
 
 
 
 

0 0 1 0
0 0 0 1

−
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

0

0 −
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1 ]

 
 
 
 
 

 𝐁𝛂𝛃 =

[
 
 
 
 
 
0 0
0 0
1

𝑚1

0

0
1

𝑚1]
 
 
 
 
 

 (22) 

The output (Cαβ) and direct transmission (Dαβ) matrices are the identity matrix (I) and zero matrix (0), respectively, 

satisfying:{A, C}  ℳ4x4 and {B, D}  ℳ4x2. 

To obtain the state-space representation in dq coordinates, the Kp matrix (defined in (14)) is applied to the model in 

αβ coordinates, resulting in (23). Here, the state, output, and input vectors in dq coordinates are: qdq(t) = [q1d(t), q1q(t), 

q2d(t), q2q(t)]ᵀ, ydq(t) = qdq(t), and udq(t) = [u1d(t), u1q(t)]ᵀ. These vectors can also be defined as {qdq(t), ydq(t)}  {ℝ⁴} and 

udq(t)  {ℝ²}. 

{

d𝐪𝐝𝐪(𝑡)

d𝑡
= 𝐀𝐝𝐪 ∙ 𝐪𝐝𝐪(𝑡) + 𝐁𝐝𝐪 ∙ 𝐮𝐝𝐪(𝑡)

𝐲𝐝𝐪(𝑡) = 𝐂𝐝𝐪 ∙ 𝐪𝐝𝐪(𝑡) + 𝐃𝐝𝐪 ∙ 𝐮𝐝𝐪(𝑡)
 (23) 

In this model, qdq(t), ydq(t), and udq(t) represent the state, output, and input vectors in dq coordinates, respectively. 

Specifically, The matrices Adq and Bdq are as described as follows: 

𝐀𝐝𝐪 =

[
 
 
 
 
 

0 𝜔 1 0
−𝜔 0 0 1

−
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

𝜔

0 −
𝑘eq1
𝑚1

−𝜔 −
𝑏eq1
𝑚1 ]

 
 
 
 
 

 𝐁𝐝𝐪 =

[
 
 
 
 
 
0 0
0 0
1

𝑚1

0

0
1

𝑚1]
 
 
 
 
 

 (24) 

and the matrices Cdq and Ddq are identity and zero, respectively. Here, ω represents the angular frequency corresponding 

to the excitation force. Symbolically, the matrices can be defined as {Adq, Cdq}  ℳ4x4 and {Bdq, Ddq}  ℳ4x1. 

Extending this model, a linear electrical analogy can be derived to represent the mechanical system. The electrical 

model is shown in Figure 3 and is developed for both the d and q channels. Each electrical network is configured using 

equivalent Thevenin circuits consisting of energy-storing elements (m1 as inductor and 1/keq1 as capacitor) and voltage 

sources controlled by charges (q1j(t) and q2j(t), where j  {d, q}). 

3.2 Analysis of a Mechanical-Vibrational-Dynamical System of Two-Degree-of-Freedom 

This section examines the dynamic behavior of a 2-DoF vibrational mechanical system, illustrated in Figure 2(b). The 

analysis follows the methodology applied to the 1-DoF system, extending it to derive the corresponding energy equations. 

The kinetic, potential, and dissipation energy expressions for the 2-DoF system are formulated as follows: 

{
 
 

 
 𝐾𝐸(𝑡) =

1

2
∙ 𝑚1 ∙ 𝑥̇1(𝑡)

2 +
1

2
∙ 𝑚2 ∙ 𝑥̇2(𝑡)

2

𝑃𝐸(𝑡) =
1

2
∙ 𝑘eq1 ∙ 𝑥1(𝑡)

2 − 𝑘2 ∙ 𝑥1(𝑡) ∙ 𝑥2(𝑡) +
1

2
∙ 𝑘eq2 ∙ 𝑥2(𝑡)

2

𝐷𝐸(𝑡) =
1

2
∙ 𝑏eq1 ∙ 𝑥̇1(𝑡)

2 − 𝑏2 ∙ 𝑥̇1(𝑡) ∙ 𝑥̇2(𝑡) +
1

2
∙ 𝑏eq2 ∙ 𝑥̇2(𝑡)

2

 (25) 

where the equivalent damping and stiffness coefficients are defined as: beq1 = b1 + b2, beq2 = b2 + b3, keq1 = k1 + k2, and keq2 

= k2 + k3. Applying (17) with p1(t) = x1(t) and p2(t) = x2(t), and performing algebraic manipulations, the 2-DoF system 

model is obtained in state-space representation. The state-space formulation enables a systematic representation of the 

vibrational system. The corresponding state-space equations are structured as follows in (18). For the sake of simplicity, 

the matrices C and D are the identities and zero matrices, the vector and matrix model of a vibrating system in mechanical 

coordinates in state-space representation follows the same, respectively. Mathematically, {A, C}  ℳ4x4 and {B, D}  

ℳ4x1 where A, B, C, and D are the state matrix, input matrix, output matrix, and direct transmission matrix, respectively. 

The state vector components are defined as: q(t) = [q1(t), q2(t), q3(t), q4(t)]T, the output vector y(t) = q(t), and the scalar 

input u(t) = f1(t). Moreover, q1(t) = x1(t), q2(t) = dx1(t)/dt, q3(t) = x2(t), and q4(t) = dx2(t)/dt. Symbolically, {q(t), y(t)}  

{ℝ4}.  
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(a) 

 

 
(b) 

Figure 3. Electrical analogy of the proposed 1-DoF mechanical system in dq coordinates. The two channels d and q are 

shown (a) Channel d; (b) Channel q 

The state-space matrices governing the dynamics of the 2-DoF system are expressed as: 

𝐀 =

[
 
 
 
 
 

0 1 0 0

−
𝑘eq1
𝑚1

−
𝑏eq1
𝑚1

𝑘2
𝑚1

𝑏2
𝑚1

0 0 0 1
𝑘2
𝑚2

𝑏2
𝑚2

−
𝑘eq2
𝑚2

−
𝑏eq2
𝑚2 ]

 
 
 
 
 

 𝐁 =

[
 
 
 
 
0
0
0
1

𝑚2]
 
 
 
 

 (26) 

The model (18) is then converted into αβ coordinates using the procedure developed previously in the 1-DoF system 

analysis. The equivalences defined as follows: 

{
 
 
 
 

 
 
 
 𝑞1α(𝑡) = 𝑞1(𝑡), 𝑞1β(𝑡) = 𝑞1 (𝑡 −

π

2
)

𝑞2α(𝑡) = 𝑞2(𝑡), 𝑞2β(𝑡) = 𝑞2 (𝑡 −
π

2
)

𝑞3α(𝑡) = 𝑞3(𝑡), 𝑞3β(𝑡) = 𝑞3 (𝑡 −
π

2
)

𝑞4α(𝑡) = 𝑞4(𝑡), 𝑞4β(𝑡) = 𝑞4 (𝑡 −
π

2
)

𝑢α(𝑡) = 𝑢(𝑡), 𝑢β(𝑡) = 𝑢 (𝑡 −
π

2
)

 (27) 

The 2-DoF vibrational mechanical system in αβ coordinates is formulated in state-space representation as described in 

(21). Consistent with the structural formulation of the mechanical coordinate model in (18), the state-space representation 

in αβ coordinates maintain the same fundamental structure, making it applicable to a generalized n-DoF system. The 

system's vectors are expressed as follows: the state vector is defined as q(t) = [q1(t), q1(t), q2(t), q2(t), q3(t), q3(t), 

q4(t), q4(t)]T, y(t) = q(t), and u(t) = [u1(t), u1(t)]T, where q(t), y(t), and u(t) are the state, output, and input 

vectors, respectively. Symbolically, {q(t), y(t)}  {ℝ8} and u(t)  {ℝ2}, ensuring that the system adheres to an 

eight-dimensional state-space framework. 

Furthermore, the state and input matrices associated with the αβ model are represented by Aαβ and Bαβ, respectively, 

defined as follows: 

𝐀𝛂𝛃 =

[
 
 
 
 
 
 
 
 
 
 
 
 

0 0 1 0
0 0 0 1

−
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

0

0 −
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

0 0 0 0
0 0 0 0
𝑘2
𝑚2

0
𝑏2
𝑚2

0

0
𝑘2
𝑚2

0
𝑏2
𝑚2

0 0 0 0
0 0 0 0
𝑘2
𝑚1

𝑘2
𝑚1

𝑏2
𝑚1

0

0 0 0
𝑏2
𝑚1

0 0 1 0
0 0 0 1

−
𝑘eq2
𝑚2

0 −
𝑏eq2
𝑚2

0

0 −
𝑘eq2
𝑚2

0 −
𝑏eq2
𝑚2 ]

 
 
 
 
 
 
 
 
 
 
 
 

 (28) 
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𝐁𝛂𝛃 =

[
 
 
 
 
 
 
 
 
 
 
 
 

0 0 1 0
0 0 0 1

−
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

0

0 −
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

0 0 0 0
0 0 0 0
𝑘2
𝑚2

0
𝑏2
𝑚2

0

0
𝑘2
𝑚2

0
𝑏2
𝑚2

0 0 0 0
0 0 0 0
𝑘2
𝑚1

𝑘2
𝑚1

𝑏2
𝑚1

0

0 0 0
𝑏2
𝑚1

0 0 1 0
0 0 0 1

−
𝑘eq2
𝑚2

0 −
𝑏eq2
𝑚2

0

0 −
𝑘eq2
𝑚2

0 −
𝑏eq2
𝑚2 ]

 
 
 
 
 
 
 
 
 
 
 
 

 

These matrices are defined as in Eq (28), maintaining consistency with the transformation applied to obtain the αβ 

coordinate formulation from its original mechanical representation. In addition, Cαβ and Dαβ are the output and direct 

transmission matrices representing the identity and zero matrices, respectively. Symbolically, {A, C}  ℳ8x8 and 

{B, D}  ℳ8x2. 

As the final step in the transformation process, the αβ coordinate model is converted into the dq reference frame. This 

transformation follows the same methodology as the 1-DoF system analysis, where the Kp matrix is applied to (21) to 

derive the state-space representation of the 2-DoF vibrational mechanical system in dq coordinates, as outlined in (23). 

Notably, the vector-matrix representation for an n-DoF mechanical system retains the same structural format as presented 

in (23), ensuring scalability and general applicability. The state-space vectors for the dq coordinate system are structured 

as follows: the state vector is qdq(t) = [q1d(t), q1q(t), q2d(t), q2q(t), q3d(t), q3q(t), q4d(t), q4q(t)]T, the output vector is ydq(t) = 

qdq(t), and the input vector is udq(t) = [u1d(t), u1q(t)]T. These vectors are mathematically defined within the spaces {qdq(t), 

ydq(t)}  {ℝ8} and udq(t)  {ℝ2}, preserving the system’s dynamic characteristics under the transformation. Following 

the approach used for the 1-DoF system, an electrical analogy model is developed for the 2-DoF system, as illustrated in 

Figure 4. These equivalent circuits leverage Thévenin voltage representations, where each channel—d and q—is 

represented separately. As depicted in Figure 4(a) and (b), the 2-DoF system introduces an increased number of state 

variables per channel, effectively doubling those present in the 1-DoF case, thereby highlighting the expanded complexity 

of the system’s vibrational dynamics in the dq domain. 

3.3 Analysis of a Mechanical-Vibrational-Dynamical System of Three-Degree-of-Freedom 

This section examines the dynamics of a 3-DoF vibrational mechanical system, as illustrated in Figure 2(c). The 

energy equations governing the system, which encompass kinetic, potential, and dissipation energy components, are 

expressed as follows: 

{
 
 

 
 𝐾𝐸(𝑡) =

1

2
∙ 𝑚1 ∙ 𝑥̇1(𝑡)

2 +
1

2
∙ 𝑚2 ∙ 𝑥̇2(𝑡)

2 +
1

2
∙ 𝑚3 ∙ 𝑥̇3(𝑡)

2

𝑃𝐸(𝑡) =
1

2
∙ 𝑘eq1 ∙ 𝑥1(𝑡)

2 +
1

2
∙ 𝑘eq2 ∙ 𝑥2(𝑡)

2 +
1

2
∙ 𝑘eq3 ∙ 𝑥3(𝑡)

2 − 𝑘2 ∙ 𝑥1(𝑡) ∙ 𝑥2(𝑡) − 𝑘3 ∙ 𝑥2(𝑡) ∙ 𝑥3(𝑡)

𝐷𝐸(𝑡) =
1

2
∙ 𝑏eq1 ∙ 𝑥̇1(𝑡)

2 +
1

2
∙ 𝑏eq2 ∙ 𝑥̇2(𝑡)

2 +
1

2
∙ 𝑏eq3 ∙ 𝑥̇3(𝑡)

2 − 𝑏2 ∙ 𝑥̇1(𝑡) ∙ 𝑥̇2(𝑡) − 𝑏3 ∙ 𝑥̇2(𝑡) ∙ 𝑥̇3(𝑡)

 (29) 

These equations follow the same formulation principles as those developed for the 1-DoF and 2-DoF systems. In this 

specific case, the system parameters are defined as beq1 = b1 + b2, beq2 = b2 + b3, beq3 = b3 + b4, keq1 = k1 + k2, keq2 = k2 + k3, 

and keq3 = k3 + k4. By applying (17) to these energy expressions, the state-space dynamic model is derived and structured 

as shown in (18). The system is characterized by a state vector q(t) = [qj(t)]T, where j  {1, 2, 3, 4, 5, 6}, while the output 

vector follows y(t) = q(t). The state variables are explicitly defined as follows: q1(t) = x1(t), q2(t) = dx1(t)/dt, q3(t) = x2(t), 

q4(t) = dx2(t)/dt, q5(t) = x3(t), and q6(t) = dx3(t)/dt. The scalar input affecting the system is denoted as u(t) = f1(t). 

Mathematically, the state-space representation of the system adheres to {q(t), y(t)} ∈ ℝ⁶. 

The state matrix (A) and input matrix (B) are structured as follows: 

𝐀 =

[
 
 
 
 
 
 
 
 
 

0 1 0 0

−
𝑘eq1
𝑚1

−
𝑏eq1
𝑚1

𝑘2
𝑚1

𝑏2
𝑚1

0 0 0 1
𝑘2
𝑚2

𝑏2
𝑚1

−
𝑘eq2
𝑚2

−
𝑏eq2
𝑚2

0 0 0 0

0 0
𝑘eq3
𝑚3

𝑏3
𝑚3

0 0
0 0
0 0
𝑘eq3
𝑚2

𝑏3
𝑚2

0 1

−
𝑘eq3
𝑚3

−
𝑏eq3
𝑚3 ]

 
 
 
 
 
 
 

 𝐁 =

[
 
 
 
 
 
 
0
0
0
0
0
1

𝑚3]
 
 
 
 
 
 

 (30) 
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Additionally, the output matrix (C) and the direct transmission matrix (D) are both identity and zero matrices, 

respectively. This representation can be expressed as {A, C}  ℳ6x6 and {B, D}  ℳ6x1. 

To extend the analysis of the 3-DoF vibrational mechanical system, the transformation into αβ coordinates is 

performed following a methodology analogous to that used for the 1-DoF and 2-DoF systems. This transformation, as 

described in (21), introduces the notations qiα(t) = qi(t) and qiβ(t) = qi(t − /2), while the external force components 

transform as u(t) = u(t) and u(t) = u(t − /2). As a result, new state (q(t)), input (u(t)), and output (y(t)) vectors are 

derived, where: q(t) = [qi(t), qi(t)]T for i  {1, 2, 3, 4, 5, 6}, y(t) = q(t), and u(t) = [u(t), uβ(t)]T. 

 
 

 
(a) 

 

 
 

 
(b) 

Figure 4. Electrical analogy of the proposed 2-DoF mechanical system in dq coordinates. The two channels d and q are 

shown (a) Channel d; (b) Channel q 
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From a mathematical perspective, this transformation results in {qαβ(t), yαβ(t)}  {ℝ12} and uαβ(t)  {ℝ2}. The state-space 

representation in αβ coordinates, derived from (21), is defined by the matrices: 

𝐀𝛂𝛃 = [
𝐀𝛂𝛃𝟏𝟏 𝐀𝛂𝛃𝟏𝟐
𝐀𝛂𝛃𝟐𝟏 𝐀𝛂𝛃𝟐𝟐

] ;  𝐁𝛂𝛃 = [
𝐁𝛂𝛃𝟏𝟏
𝐁𝛂𝛃𝟐𝟏

] (31) 

where Cαβ and Dαβ remain the identity and zero matrices, respectively. 

The submatrices comprising Aαβ and Bαβ are explicitly given in (32) and (33), respectively. From a symbolic 

representation, {Aαβ, Cαβ}  ℳ12x12 and {Bαβ, Dαβ}  ℳ12x2. To further develop the model, the Kp matrix is applied to 

the system in αβ coordinates, leading to the dq-domain state-space representation of the 3-DoF mechanical system, as 

described in (23). The state, output, and input vectors in dq coordinates are: qdq(t) = [qid(t), qiq(t)]T for i  {1, 2, 3, 4, 5, 

6}, ydq(t) = qdq(t), and udq(t) = [ud(t), uq(t)]T. 

𝐀𝛂𝛃𝟏𝟏 =

[
 
 
 
 
 
 
 

0 0 1 0 0 0
0 0 0 1 0 0

−
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

0
𝑘2
𝑚1

0

0 −
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

0
𝑘2
𝑚1

0 0 0 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 
 
 

;  𝐀𝛂𝛃𝟏𝟐 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
𝑏2
𝑚1

0 0 0 0 0

0
𝑏2
𝑚1

0 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0]

 
 
 
 
 
 
 

; 

 

𝐀𝛂𝛃𝟐𝟏 =

[
 
 
 
 
 
 
 
 
 
 
𝑘2
𝑚2

0
𝑏2
𝑚2

0 −
𝑘eq2
𝑚2

0

0
𝑘2
𝑚2

0
𝑏2
𝑚2

0 −
𝑘eq2
𝑚2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
𝑘3
𝑚3

0

0 0 0 0 0
𝑘3
𝑚3 ]

 
 
 
 
 
 
 
 
 
 

; 

 

𝐀𝛂𝛃𝟐𝟐 =

[
 
 
 
 
 
 
 
 
 
 −
𝑏eq2
𝑚2

0
𝑘3
𝑚2

0
𝑏3
𝑚2

0

0 −
𝑏eq2
𝑚2

0
𝑘3
𝑚2

0
𝑏3
𝑚2

0 0 0 0 1 0
0 0 0 0 0 1
𝑏3
𝑚3

0 −
𝑘eq3
𝑚3

0 −
𝑏eq3
𝑚3

0

0
𝑏3
𝑚3

0 −
𝑘eq3
𝑚3

0 −
𝑏eq3
𝑚3 ]

 
 
 
 
 
 
 
 
 
 

 

(32) 

  

𝐁𝛂𝛃𝟏𝟏 = 0; 𝐁𝛂𝛃𝟐𝟏 =

[
 
 
 
 
 
 
 
0 0
0 0
0 0
0 0
1

𝑚3

0

0
1

𝑚3]
 
 
 
 
 
 
 

 (33) 

This system is characterized mathematically as {qdq(t), ydq(t)}  {ℝ12}, with udq(t)  {ℝ2}. The state-space formulation 

in dq coordinates follows: 

𝐀𝐝𝐪 = [
𝐀𝐝𝐪𝟏𝟏 𝐀𝐝𝐪𝟏𝟐
𝐀𝐝𝐪𝟐𝟏 𝐀𝐝𝐪𝟐𝟐

] ;  𝐁𝐝𝐪 = [
𝐁𝐝𝐪𝟏𝟏
𝐁𝐝𝐪𝟐𝟏

] (34) 

where the output (Cdq) and direct transmission (Ddq) matrices remain identity and zero matrices, respectively. The 

submatrices of Adq and Bdq are structured as indicated in (35) and (36). 
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An electrical analogy for the 3-DoF mechanical system is established based on the Thévenin equivalent circuit approach, 

as defined in (23). The corresponding circuit model is illustrated in Figure 5, with separate d- and q-channel 

representations shown in Figure 5(a) and (b). 

One notable conclusion from this analysis is that all 1, 2-, and 3-DoF models retain their linear properties regardless 

of the applied transformation. This is due to the intrinsically linear nature of the mechanical system and the linear 

transformations involved [36], [37]. Additionally, the dq models exhibit inter-variable coupling, which can be eliminated 

through nodal transformations, thereby reducing the system to uncoupled equations based on its eigenvalues [38]. 

Furthermore, the electrical analogy circuit models can be seamlessly implemented in simulation platforms, facilitating 

behavioral analysis and computational validation. 

𝐀𝐝𝐪𝟏𝟏 =

[
 
 
 
 
 
 
 

0 𝜔 1 0 0 0
−𝜔 0 0 1 0 0

−
𝑘eq1
𝑚1

0 −
𝑏eq1
𝑚1

𝜔
𝑘2
𝑚1

0

0 −
𝑘eq1
𝑚1

−𝜔 −
𝑏eq1
𝑚1

0
𝑘2
𝑚1

0 0 0 0 0 𝜔
0 0 0 0 −𝜔 0 ]

 
 
 
 
 
 
 

;  𝐀𝐝𝐪𝟏𝟐 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
𝑏2
𝑚1

0 0 0 0 0

0
𝑏2
𝑚1

0 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0]

 
 
 
 
 
 
 

 

 

𝐀𝐝𝐪𝟐𝟏 =

[
 
 
 
 
 
 
 
 
 
 
𝑘2
𝑚2

0
𝑏2
𝑚2

0 −
𝑘eq2
𝑚2

0

0
𝑘2
𝑚2

0
𝑏2
𝑚2

0 −
𝑘eq2
𝑚2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
𝑘3
𝑚3

0

0 0 0 0 0
𝑘3
𝑚3 ]

 
 
 
 
 
 
 
 
 
 

; 

 

𝐀𝐝𝐪𝟐𝟐 =

[
 
 
 
 
 
 
 
 
 
 −
𝑏eq2
𝑚2

𝜔
𝑘3
𝑚2

0
𝑏3
𝑚2

0

−𝜔 −
𝑏eq2
𝑚2

0
𝑘3
𝑚2

0
𝑏3
𝑚2

0 0 0 𝜔 1 0
0 0 −𝜔 0 0 1
𝑏3
𝑚3

0 −
𝑘eq3
𝑚3

0 −
𝑏eq3
𝑚3

𝜔

0
𝑏3
𝑚3

0 −
𝑘eq3
𝑚3

−𝜔 −
𝑏eq3
𝑚3 ]

 
 
 
 
 
 
 
 
 
 

 

(35) 

  

𝐁𝛂𝛃𝟏𝟏 = 0 ; 𝐁𝛂𝛃𝟐𝟏 =

[
 
 
 
 
 
 
 
0 0
0 0
0 0
0 0
1

𝑚3

0

0
1

𝑚3]
 
 
 
 
 
 
 

 (36) 

4. ANALYSIS OF ENERGY EQUATIONS: MECHANICAL ENERGY CURVES AND DQ 

ENERGY SURFACES IN 1-, 2-, AND 3-DOF SYSTEMS 

The investigation of energy equations within both mechanical and dq coordinate systems for vibrational mechanical 

systems with 1-, 2-, and 3-DoF offers significant insights into system dynamics. This study provides a quantitative 

assessment of energy losses, identifies resonance effects, supports control and optimization strategies, and facilitates 

comparative evaluations across different coordinate systems. Additionally, this analysis serves as an educational tool and 

extends its applicability to interdisciplinary domains, contributing to the broader advancement of engineering and applied 

mechanics [39], [40]. In this work, the energy equations in mechanical coordinates have been previously derived for: 
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• The 1-DoF system, given in (16), 

• The 2-DoF system, detailed in (25), and 

• The 3-DoF system, formulated in (29). 

Building upon these formulations, the expressions for kinetic, potential, and dissipation energy in dq coordinates are now 

derived. 

To streamline the transformation process, the energy equations in mechanical coordinates for the 1-DoF system (16) 

are restated as follows: 

  
  

  
  

  
(a) (b) 

Figure 5. Electrical analogy of the proposed 3-DoF mechanical system in dq coordinates. The two channels d and q are 

shown (a) Channel d; (b) Channel q 

{
 
 

 
 𝐾𝐸(𝑡) =

1

2
∙ 𝑚1 ∙ 𝑥̇1(𝑡)

2

𝑃𝐸(𝑡) =
1

2
∙ 𝑘eq1 ∙ 𝑥1(𝑡)

2

𝐷𝐸(𝑡) =
1

2
∙ 𝑏eq1 ∙ 𝑥̇1(𝑡)

2

 (37) 

The kinetic energy expression is initially converted into αβ coordinates using the transformation approach developed 

in earlier sections. The corresponding expression is: 
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𝐾𝐸αβ(𝑡) =
1

2
∙ 𝑚1 ∙ [𝑥̇1α(𝑡) 𝑥̇1β(𝑡)] ∙ [

𝑥̇1α(𝑡)

𝑥̇1β(𝑡)
]
T

 (38) 

Applying the Kp transformation matrix to (38) results in the kinetic energy expression in dq coordinates, as given in (39). 

Applying the same transformation approach to the potential energy and dissipation energy expressions, their dq-

coordinate equivalents are obtained in (40). 

Some key takeaways and implications can be: 

{
  
 

  
 𝐾𝐸dq(𝑡) =

1

2
∙ 𝑚1 ∙ (Kp ∙ [

𝑥̇1d(𝑡)

𝑥̇1q(𝑡)
])
T

∙ 𝐊𝐩 ∙ [
𝑥̇1d(𝑡)

𝑥̇1q(𝑡)
]

𝐾𝐸dq(𝑡) =
1

2
∙ 𝑚1 ∙ [𝑥̇1d(𝑡) 𝑥̇1q(𝑡)] ∙ 𝐊𝐩

𝐓 ∙ 𝐊𝐩 ∙ [
𝑥̇1d(𝑡)

𝑥̇1q(𝑡)
]

𝐾𝐸dq(𝑡) =
1

2
∙ 𝑚1 ∙ (𝑥̇1d(𝑡)

2 + 𝑥̇1q(𝑡)
2)

 (39) 

  

{
𝑃𝐸dq(𝑡) =

1

2
∙ 𝑘eq1 ∙ (𝑥1d(𝑡)

2 + 𝑥1q(𝑡)
2)

𝐷𝐸dq(𝑡) =
1

2
∙ 𝑏eq1 ∙ (𝑥̇1d(𝑡)

2 + 𝑥̇1q(𝑡)
2)

 (40) 

• Energy invariance across transformations: The total energy remains invariant under the dq transformation, confirming 

the preservation of physical properties in the new coordinate system. 

• Simplification of control design: The separation of d and q components in the transformed equations enables easier 

implementation of control techniques, particularly for applications involving resonance suppression and energy 

regulation. 

• Comparative analysis with mechanical coordinates: The transformation highlights differences in energy distribution 

and provides insights into damping effects, energy losses, and system response in both mechanical and dq domains. 

By leveraging these energy equations in dq coordinates, this study advances the analytical methods used in vibration 

analysis and contributes to the enhancement of dynamic system modeling. 

4.1 Derivation of the Expressions for the Kinetic, Potential, and Dissipation Energies Involved in the 2-DoF 

System 

Applying the same procedure developed in the case of 1-DoF, the expressions of KE(t), PE(t), and DE(t) in dq 

coordinates related to the case of the 2-DoF system are obtained and defined as follows 

{
 
 
 
 
 

 
 
 
 
 𝐾𝐸dq(𝑡) =

1

2
∙ 𝑚1 ∙ (𝑥̇1d(𝑡)

2 + 𝑥̇1q(𝑡)
2) +

1

2
∙ 𝑚2 ∙ (𝑥̇2d(𝑡)

2 + 𝑥̇2q(𝑡)
2)

𝑃𝐸dq(𝑡) =
1

2
∙ 𝑘eq1 ∙ (𝑥1d(𝑡)

2 + 𝑥1q(𝑡)
2) − 𝑘2 ∙ (𝑥1d(𝑡) ∙ 𝑥2d(𝑡) + 𝑥1q(𝑡) ∙ 𝑥2q(𝑡)) +

+
1

2
∙ 𝑘eq2 ∙ (𝑥2d(𝑡)

2 + 𝑥2q(𝑡)
2)

𝐷𝐸dq(𝑡) =
1

2
∙ 𝑏eq1 ∙ (𝑥̇1d(𝑡)

2 + 𝑥̇1q(𝑡)
2) − 𝑏2 ∙ (𝑥̇1d(𝑡) ∙ 𝑥̇2d(𝑡) + 𝑥̇1q(𝑡) ∙ 𝑥̇2q(𝑡)) +

+
1

2
∙ 𝑏eq2 ∙ (𝑥̇2d(𝑡)

2 + 𝑥̇2q(𝑡)
2)

 (41) 

4.2 Derivation of the Expressions for the Kinetic, Potential, and Dissipation Energies Involved in the 3-DoF 

System 

Following the same transformation methodology applied to the 1-DoF system, the kinetic energy (KE(t)), potential 

energy (PE(t)), and dissipation energy (DE(t)) equations are now derived for the 3-DoF vibrational mechanical system in 

dq coordinates. These energy expressions are obtained through the direct application of the dq transformation to the 

original equations formulated in mechanical coordinates, ensuring consistency with the previous analytical approach. 

By systematically extending the transformation process, the resulting energy equations in dq coordinates for the 3-

DoF system are expressed as follows: 
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{
 
 
 
 
 

 
 
 
 
 𝐾𝐸dq(𝑡) =

1

2
∙ 𝑚1 ∙ (𝑥̇1d(𝑡)

2 + 𝑥̇1q(𝑡)
2) +

1

2
∙ 𝑚2 ∙ (𝑥̇2d(𝑡)

2 + 𝑥̇2q(𝑡)
2) +

1

2
∙ 𝑚3 ∙ (𝑥̇3d(𝑡)

2 + 𝑥̇3q(𝑡)
2)

𝑃𝐸dq(𝑡) =
1

2
∙ 𝑘eq1 ∙ (𝑥1d(𝑡)

2 + 𝑥1q(𝑡)
2) +

1

2
∙ 𝑘eq2 ∙ (𝑥2d(𝑡)

2 + 𝑥2q(𝑡)
2) +

1

2
∙ 𝑘eq3 ∙ (𝑥3d(𝑡)

2 + 𝑥3q(𝑡)
2)

−𝑘2 ∙ (𝑥1d(𝑡) ∙ 𝑥2d(𝑡) + 𝑥1q(𝑡) ∙ 𝑥2q(𝑡)) − 𝑘3 ∙ (𝑥2d(𝑡) ∙ 𝑥3d(𝑡) + 𝑥2q(𝑡) ∙ 𝑥3q(𝑡)) +

+
1

2
∙ 𝑘eq2 ∙ (𝑥2d(𝑡)

2 + 𝑥2q(𝑡)
2)

𝐷𝐸dq(𝑡) =
1

2
∙ 𝑏eq1 ∙ (𝑥̇1d(𝑡)

2 + 𝑥̇1q(𝑡)
2) +

1

2
∙ 𝑏eq2 ∙ (𝑥̇2d(𝑡)

2 + 𝑥̇2q(𝑡)
2) + +

1

2
∙ 𝑏eq3 ∙ (𝑥̇2d(𝑡)

2 + 𝑥̇2q(𝑡)
2)

−𝑏2 ∙ (𝑥̇1d(𝑡) ∙ 𝑥̇2d(𝑡) + 𝑥̇1q(𝑡) ∙ 𝑥̇2q(𝑡)) − 𝑏3 ∙ (𝑥̇2d(𝑡) ∙ 𝑥̇3d(𝑡) + 𝑥̇2q(𝑡) ∙ 𝑥̇3q(𝑡))

 (42) 

These transformed equations provide a comprehensive representation of the system's energy dynamics in the dq reference 

frame, facilitating deeper insights into energy distribution, dissipation mechanisms, and resonance behavior within the 3-

DoF vibrational model. 

5. SOLUTION OF THE SYSTEM IN MECHANICAL AND DQ COORDINATES 

To achieve a comprehensive understanding of the state variable dynamics within the studied vibrational mechanical 

systems, it is essential to derive their mathematical expressions by solving the governing dynamic models based on the 

equations of motion. This process enables a systematic investigation of the variables in both mechanical coordinates and 

the dq reference frame, providing a rigorous foundation for analytical comparisons. 

The primary objective of this section is to: 

• Establish the mathematical structures for each state variable. 

• Compare these analytical solutions with simulation results to validate model accuracy. 

• Present a formal representation of the mathematical formulations governing the system behavior. 

By systematically deriving these expressions, the analysis not only facilitates a direct evaluation of system dynamics but 

also strengthens the interpretation of transformations between the mechanical and dq domains, ultimately enhancing the 

precision of the proposed vibrational system models. 

5.1 Solution for 1-DoF in Mechanical Coordinates 

The equation of motion (EoM) for the 1-DoF vibrational mechanical system is given in (17) and is rewritten explicitly 

as: 

𝑚1 ∙ 𝑥̈1(𝑡) + 𝑏eq1 ∙ 𝑥̇1(𝑡) + 𝑘eq1 ∙ 𝑥1(𝑡) = 𝐹 ∙ sin(𝜔 ∙ 𝑡) (43) 

where x1(t) represents the displacement of the system, and all system parameters are previously defined in Section 3.0. 

To determine the general solution for x1(t), the solving (43) by obtaining both the homogeneous (complementary) solution 

and the particular solution, which are then summed to derive the complete response of the system [41], [42]. 

The homogeneous component is derived from the unforced version of (43): 

𝑚1 ∙ 𝑥̈1c(𝑡) + 𝑏eq1 ∙ 𝑥̇1c(𝑡) + 𝑘eq1 ∙ 𝑥1c(𝑡) = 0 (44) 

where x1c(t) represents the complementary part of x1(t). 

By assuming a trial solution of the form: x1c(t) = e(D·t) and substituting it into (44), the characteristic equation is obtained: 

m1∙D2 + beq1∙D + keq1 = 0 (45) 

Solving for D, the roots of the characteristic equation are: 

D1,2 = −  j∙, where:: 𝑥1c(𝑡) = 𝐶1 ∙ e
−(𝛼−j∙𝜁)∙𝑡 + 𝐶2 ∙ e

−(𝛼+j∙𝜁)∙𝑡 (46) 

where C1 and C2 are integration constants determined by initial conditions [41], [42]. 

Using Euler’s equation [43] and trigonometric identities, the above expression can be rewritten as: 

𝑥1c(𝑡) = e
−𝛼∙𝑡 ∙ (𝑋1 ∙ cos(𝜁 ∙ 𝑡) + 𝑋2 ∙ sin(𝜁 ∙ 𝑡)) (47) 

where X1 = C1 + C2 and X2 = j·(C1 − C2). 

For the forced response, a particular solution of the following form is assumed, using the indeterminate coefficients 

method [41], i.e., x1p(t) = A·cos(·t) + B·sin(·t). Differentiating: 𝑥̇1p(𝑡) = −𝐴 ∙ 𝜔 ∙ sin(𝜔 ∙ 𝑡) + 𝐵 ∙ 𝜔 ∙ cos(𝜔 ∙ 𝑡) and 

𝑥̈1p(𝑡) = −𝐴 ∙ 𝜔
2 ∙ sin(𝜔 ∙ 𝑡) − 𝐵 ∙ 𝜔2 ∙ cos(𝜔 ∙ 𝑡). In addition, A and B are coefficients to be determined. Substituting 

these into (43) and equating the coefficients of sin(ω∙t) and cos(ω∙t), the following system is obtained: 
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[
𝑘eq1 − 𝜔

2 ∙ 𝑚1 𝜔 ∙ 𝑏eq1
−𝜔 ∙ 𝑏eq1 𝑘eq1 − 𝜔

2 ∙ 𝑚1

] ∙ [
𝐴
𝐵
] = [

0
𝐹
] (48) 

Solving for A and B as follows in (49). Applying trigonometric transformations, the total solution for x1(t) is given by 

(50). 

{
 
 

 
 𝐴 = −

𝐹 ∙ 𝜔 ∙ 𝑏eq1

(𝑘eq1 − 𝜔
2 ∙ 𝑚1) + (𝜔 ∙ 𝑏eq1)

2

𝐵 = −
𝐹 ∙ (𝑘eq1 − 𝜔

2 ∙ 𝑚1)

(𝑘eq1 − 𝜔
2 ∙ 𝑚1) + (𝜔 ∙ 𝑏eq1)

2

 (49) 

  

𝑥1(𝑡) = 𝑥1c(𝑡) + 𝑥1p(𝑡) = e−𝛼∙𝑡 ∙ 𝑋 ∙ sin(𝜁 ∙ 𝑡 + 𝜌) + 𝑇 ∙ sin(𝜔 ∙ 𝑡 + 𝜙) (50) 

where X = sqrt(X1
2 + X2

2),  = atan(X1/X2), T = sqrt(A2 + B2), and  = atan(A/B). 

In order to interpretate the solution, one can state the following: 

• The first term represents the transient response due to initial conditions, which decays exponentially over time at a 

rate defined by α. 

• The second term represents the steady-state response, which follows the external forcing function but is shifted in 

phase by ϕ. 

This solution provides a rigorous mathematical foundation for understanding oscillatory behavior in the 1-DoF vibrational 

system under sinusoidal excitation. 

5.2 Solution for 1-DoF in dq Coordinates 

The EoM for the 1-DoF vibrational mechanical system in dq coordinates is derived from (23). Using the variable 

transformation q1d(t) = q2q(t) = q2d(t) = q2q(t) = q2q(t) = e(D·t), and substituting into (23), the resulting system model in terms 

of D is expressed as: 

[
 
 
 
 
 
𝐷 −𝜔 −1 0
𝜔 𝐷 0 −1
𝑘eq1
𝑚1

0 𝐷 +
𝑏eq1
𝑚1

−𝜔

0
𝑘eq1
𝑚1

𝜔 𝐷 +
𝑏eq1
𝑚1 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑞1d(𝑡)

𝑞1q(𝑡)

𝑞2d(𝑡)

𝑞2q(𝑡)]
 
 
 
 

=

[
 
 
 
 
 
 

0
0

𝑢1d(𝑡)

𝑚1

𝑢1q(𝑡)

𝑚1 ]
 
 
 
 
 
 

 (51) 

where u1d(t) and u1q(t) correspond to the d and q components of the external force acting on the transformed system. 

By solving the unforced equation, the determination of the complementary solution of the system is given by: 

(𝑚1
2 ∙ 𝐷4 + 2 ∙ 𝑏eq1 ∙ 𝑚1 ∙ 𝐷

3 +(𝑏eq1
2 + 2 ∙ 𝑚1 ∙ 𝜔

2 + 2 ∙ 𝑘eq1 ∙ 𝑚1) ∙ 𝐷
2 + 

+(2 ∙ 𝑏eq1 ∙ 𝑚1 ∙ 𝜔
2 + 2 ∙ 𝑏eq1 ∙ 𝑘eq1) ∙ 𝐷 + 𝑏eq1

2 ∙ 𝜔2 + 𝑘eq1
2 − 2 ∙ 𝑘eq1 ∙ 𝑚1 ∙ 𝜔

2 + 

+𝑚1
2 ∙ 𝜔4) ∙ e𝐷∙𝑡 = 0 

(52) 

Solving for D, the characteristic roots are:  

{
 
 

 
 𝐷1 = −

1

2
∙ (
𝑏eq1 + j ∙ 𝛤1

𝑚1

) , 𝐷2 = −
1

2
∙ (
𝑏eq1 + j ∙ 𝛤2

𝑚1

)

𝐷3 = −
1

2
∙ (
𝑏eq1 − j ∙ 𝛤1

𝑚1

) , 𝐷4 = −
1

2
∙ (
𝑏eq1 − j ∙ 𝛤2

𝑚1

)

 (53) 

where Γ1 and Γ2 are defined as: 

{
 
 

 
 
𝛤1 = 2 ∙ (𝑘eq1 ∙𝑚1 +𝑚1

2 ∙ 𝜔2 − (
1

2
∙ 𝑏eq1)

2

+j ∙ 𝑚1 ∙ 𝜔 ∙ √𝑏eq1
2 − 4 ∙ 𝑘eq1 ∙ 𝑚1)

1
2

𝛤2 = 2 ∙ (𝑘eq1 ∙𝑚1 +𝑚1
2 ∙ 𝜔2 − (

1

2
∙ 𝑏eq1)

2

−j ∙ 𝑚1 ∙ 𝜔 ∙ √𝑏eq1
2 − 4 ∙ 𝑘eq1 ∙ 𝑚1)

1
2

 (54) 

Using these roots, the complementary solution for qijc(t) (where i  {1,2} and j  {d, q}) is: 

𝑞𝑖𝑗c(𝑡) = 𝐶1 ∙ e
−𝐷1∙𝑡 + 𝐶2 ∙ e

−𝐷2∙𝑡 + 𝐶3 ∙ e
−𝐷3∙𝑡 + 𝐶4 ∙ e

−𝐷4∙𝑡 (55) 

where Cn where n  {1, 2, 3, 4} are integration constants determined from initial conditions. Applying Euler’s equation 

and trigonometric transformations, the complementary solution can be rewritten as: 
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𝑞𝑖𝑗c(𝑡) = e
−𝛼dq∙𝑡 ∙ (𝑋1dq ∙ cos (𝜁1dq ∙ 𝑡 + 𝜌1dq) + 𝑋2dq ∙ sin (𝜁2dq ∙ 𝑡 + 𝜌2dq)) (56) 

The particular solution is obtained using the method for solving linear differential equations with constant coefficients  

[42]. Starting with: 

𝑞1dp
(𝑡) =∏

1

𝐷 + 𝐷𝑖

4

𝑖=1

∙ 𝐹 ∙ 𝑏eq1 ∙ 𝜔 (57) 

Applying the variable change: 

𝑣1(𝑡) =
1

𝐷 + 𝐷4
∙ 𝐹 ∙ 𝑏eq1 ∙ 𝜔 ⇒

d𝑣1(𝑡)

d𝑡
+ 𝐷4 ∙ 𝑣1(𝑡) = 𝐹 ∙ 𝑏eq1 ∙ 𝜔 (58) 

Solving this equation, the result is: 

𝑉1 = −2 ∙ (
𝐹 ∙ 𝑏eq1 ∙ 𝜔 ∙ 𝑚1

𝑏eq1 − j ∙ 𝛤2
) (59) 

Repeating the variable transformation process for V2(t), V3(t), and V4(t), one obtains: 

{
 
 
 

 
 
 𝑉2 = −4 ∙ (

𝐹 ∙ 𝑏eq1 ∙ 𝜔 ∙ 𝑚1
2

(𝑏eq1 − j ∙ 𝛤1) ∙ (𝑏eq1 − j ∙ 𝛤2)
)

𝑉3 = −4 ∙ (
𝐹 ∙ 𝑏eq1 ∙ 𝜔 ∙ 𝑚1

3

(𝑏eq1 − j ∙ 𝛤1) ∙ (𝑏eq1
2 + 𝛤2

2)
)

𝑞1dp
(𝑡) = 𝑉4 = 16 ∙ (

𝐹 ∙ 𝑏eq1 ∙ 𝜔 ∙ 𝑚1
4

(𝑏eq1
2 + 𝛤1

2) ∙ (𝑏eq1
2 + 𝛤2

2)
)

 (60) 

The final expression for q1d(t) is: 

𝑞1d(𝑡) = 𝑞1dc
(𝑡) + 𝑞1dp

(𝑡) = e−𝛼dq∙𝑡 ∙ (𝑋1dq ∙ cos (𝜁1dq ∙ 𝑡 + 𝜌1dq)+𝑋2dq ∙ sin (𝜁2dq ∙ 𝑡 + 𝜌2dq)) + 

+16 ∙ (
𝐹 ∙ 𝑏eq1 ∙ 𝜔 ∙ 𝑚1

4

(𝑏eq1
2 + 𝛤1

2) ∙ (𝑏eq1
2 + 𝛤2

2)
) 

(61) 

Using a similar process, we obtain the remaining state variables . q1q(t), q2d(t), and q2q(t), are derived and shown as follows: 

𝑞1q(𝑡) = e−𝛼dq∙𝑡 ∙ (𝑋1dq ∙ cos (𝜁1dq ∙ 𝑡 + 𝜌1dq) + 𝑋2dq ∙ sin (𝜁2dq ∙ 𝑡 + 𝜌2dq)) + 

+16 ∙ (
𝐹 ∙ (𝑘eq1 −𝑚1 ∙ 𝜔

2) ∙ 𝑚1
4

(𝑏eq1
2 + 𝛤1

2) ∙ (𝑏eq1
2 + 𝛤2

2)
) 

(62) 

  

𝑞2d(𝑡) = e
−𝛼dq∙𝑡 ∙ (𝑋1dq ∙ cos (𝜁1dq ∙ 𝑡 + 𝜌1dq)+𝑋2dq ∙ sin (𝜁2dq ∙ 𝑡 + 𝜌2dq)) + 

+16 ∙ (
𝐹 ∙ 𝜔 ∙ (𝑘eq1 −𝑚1 ∙ 𝜔

2) ∙ 𝑚1
4

(𝑏eq1
2 + 𝛤1

2) ∙ (𝑏eq1
2 + 𝛤2

2)
) 

(63) 

  

𝑞2q(𝑡) = e
−𝛼dq∙𝑡 ∙ (𝑋1dq ∙ cos (𝜁1dq ∙ 𝑡 + 𝜌1dq)+𝑋2dq ∙ sin (𝜁2dq ∙ 𝑡 + 𝜌2dq)) + 

+16 ∙ (
𝐹 + 𝜔2 ∙ 𝑚1

4 ∙ 𝑏eq1
(𝑏eq1

2 + 𝛤1
2) ∙ (𝑏eq1

2 + 𝛤2
2)
) 

(64) 

5.3 Solution for 2-DoF in Mechanical Coordinates 

The EoM for the 2-DoF vibrational mechanical system in mechanical coordinates is characterized by 17 and (25). 

However, for practical purposes, the EoMs are rewritten as shown as follows: 

{
𝑚1 ∙ 𝑥̈1(𝑡) + 𝑏eq1 ∙ 𝑥̇1(𝑡) + 𝑘eq1 ∙ 𝑥1(𝑡) − 𝑏2 ∙ 𝑥̇2(𝑡) − 𝑘2 ∙ 𝑥2(𝑡) = 0

𝑚2 ∙ 𝑥̈2(𝑡) + 𝑏eq2 ∙ 𝑥̇2(𝑡) + 𝑘eq2 ∙ 𝑥2(𝑡) − 𝑏2 ∙ 𝑥̇1(𝑡) − 𝑘2 ∙ 𝑥1(𝑡) = 𝐹 ∙ sin(𝜔 ∙ 𝑡)
 (65) 

Using the same solution method applied to the 1-DoF system (involving the complementary and particular solutions), the 

solutions for x1(t) and x2(t) are derived as follows: 

{
𝑥1(𝑡) = e

−𝛼1∙𝑡 ∙ 𝑋1 ∙ sin(𝜁1 ∙ 𝑡 + 𝜌1) + e
−𝛼2∙𝑡 ∙ 𝑋2 ∙ sin(𝜁2 ∙ 𝑡 + 𝜌2) + 𝑇1 ∙ sin(𝜔 ∙ 𝑡 + 𝜙1)

𝑥2(𝑡) = e
−𝛼1∙𝑡 ∙ 𝑋1 ∙ sin(𝜁1 ∙ 𝑡 + 𝜌1) + e

−𝛼2∙𝑡 ∙ 𝑋2 ∙ sin(𝜁2 ∙ 𝑡 + 𝜌2) + 𝑇2 ∙ sin(𝜔 ∙ 𝑡 + 𝜙2)
 (66) 

where the parameters  i, Xi, i, i, Ti, i (i  {1, 2}) are defined as follows: i = pi1, Xi = sqrt(Ai
2 + Bi

2), i = pi2, i = 

atan(Ai/Bi), Ti = sqrt(A’i
2 + B’i

2), and i = atan(B’i/A’i). 
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The parameters A’i and B’i are obtained by solving the following linear system of equations: 

[
𝐌𝟏𝟏 𝐌𝟏𝟐

𝐌𝟐𝟏 𝐌𝟐𝟐
] ∙ [

𝐴′1
𝐵′1
𝐴′2
𝐵′2

] =

[
 
 
 
 

𝐹 ∙ 𝑘2
𝐹 ∙ 𝑏2 ∙ 𝜔

𝐹 ∙ (𝑘eq1 − 𝜔
2 ∙ 𝑏2)

𝐹 ∙ 𝑏eq1 ∙ 𝜔 ]
 
 
 
 

 (67) 

where the matrix components are defined as: 

𝐌𝟏𝟏 = [
𝑘eq1 − 𝜔

2 ∙ 𝑚1 −𝜔 ∙ 𝑏eq1
𝜔 ∙ 𝑏eq1 𝑘eq1 − 𝜔

2 ∙ 𝑚1

] 𝐌𝟏𝟐 = [
𝑘2 𝜔 ∙ 𝑏2

−𝜔 ∙ 𝑏2 −𝑘2
] 

 

𝐌𝟐𝟏 = [
−𝑘2 𝜔 ∙ 𝑏2
−𝑏2 −𝑘2

]  𝐌𝟐𝟐 = [
𝑘eq2 −𝜔

2 ∙ 𝑚2 −𝜔 ∙ 𝑏eq2
𝜔 ∙ 𝑏eq2 𝑘eq2 − 𝜔

2 ∙ 𝑚2

] 

(68) 

The constants pi1 and pi2 correspond to the roots of the characteristic equation derived from the D operator method (similar 

to the 1-DoF case). The characteristic roots are defined as: 

{
𝐷1,2 = −𝑝11 ± j ∙ 𝑝12
𝐷3,4 = −𝑝21 ± j ∙ 𝑝22

 (69) 

Since the expressions for pi1 and pi2 are lengthy, they are referenced from previous calculations rather than explicitly 

stated. 

The coefficients Ai and Bi are defined as: 

{
𝐴1 = 𝐶11 + 𝐶12, 𝐵1 = j ∙ (𝐶11 − 𝐶12)

𝐴2 = 𝐶13 + 𝐶14, 𝐵2 = j ∙ (𝐶13 − 𝐶14)
 (70) 

where C1n (n  {1, 2, 3, 4}) are integration constants determined based on the initial conditions of the system. 

Some observations can be drawn from the latter results, for instance: 

• The general solutions for x1(t) and x2(t) include transient components (exponentially decaying terms) and steady-state 

components (sinusoidal forcing terms). 

• The constants pi1 and pi2 describe the damping and oscillatory behavior of the system. 

• The matrix equation (68) provides the steady-state amplitude and phase shift for the system's response. 

• This methodology can be extended to higher degrees of freedom systems (i.e., 3-DoF). 

This analysis provides valuable insight into the coupled vibrational behavior of a two-mass system, crucial for engineering 

applications such as structural dynamics, automotive suspensions, and mechanical oscillators. 

5.4 Solution for 2-DoF in dq Coordinates 

The model in dq coordinates is defined in (23). By following the same solution methodology applied in subsection 

5.2 (which includes solving the homogeneous and particular solutions), the general solutions for the state variables qij(t), 

where i  {1, 2, 3, 4} and j  {d, q}, are expressed as: 

𝑞𝑖𝑗(𝑡) = ∑[e
−𝛼𝑖dq∙𝑡 ∙ 𝑋𝑖dq ∙ sin (𝜁𝑖dq ∙ 𝑡 + 𝜌𝑖dq)+

𝑘𝑖
𝑑

∏ (𝑝𝑖1
2 + 𝑝𝑖2

2)4
𝑖=0

]

4

𝑖=1

 (71) 

The solutions for D (eigenvalues of the system matrix) are given by: 

{
 

 
𝐷1,2 = −𝑝11 ± j ∙ 𝑝12
𝐷3,4 = −𝑝21 ± j ∙ 𝑝22
𝐷5,6 = −𝑝31 ± j ∙ 𝑝32
𝐷7,8 = −𝑝41 ± j ∙ 𝑝42

 (72) 

These roots represent the damping and oscillatory components of the system in the dq reference frame. Some parameter 

definition: 

• Damping component: idq = e{Dn}, (real part of Dn). 

• Oscillatory component: ζidq = ℑm{Dn}, (imaginary part of Dn), where n  {1, 3, 5, 7}. 

• Phase shift: i = atan(Ai/Bi). 

• Amplitude component: Xidq = sqrt(Ai
2 + Bi

2). 
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The coefficients Ai and Bi are expressed as: Ai = C1h + C1(h+1) and Bi = C1h − C1(h+1), where h  {1, 2, 3, 4, 5, 6, 7, 8}, and 

C1h represents integration constants derived from the system’s initial conditions. From the latter, it is possible to state 

that: 

• The general solutions for qij(t) contain transient (exponentially decaying) and steady-state (sinusoidal response) 

components. 

• The eigenvalues Dn determine damping and oscillatory frequencies. 

• The amplitude and phase shift are determined using Xidq and ρi. 

• The results validate that the dq-transformed system preserves the original system's linearity and oscillatory nature. 

This approach provides a comprehensive mathematical framework to analyze mechanical vibration systems in dq 

coordinates, enabling control, optimization, and predictive maintenance applications in engineering. 

5.5 Solution for 3-DoF in Mechanical Coordinates 

The EoMs governing the 3-DoF system in mechanical coordinates are given by: 

{

𝑚1 ∙ 𝑥̈1(𝑡) + 𝑏eq1 ∙ 𝑥̇1(𝑡) + 𝑘eq1 ∙ 𝑥1(𝑡) − 𝑏2 ∙ 𝑥̇2(𝑡) − 𝑘2 ∙ 𝑥2(𝑡) = 0

𝑚2 ∙ 𝑥̈2(𝑡) + 𝑏eq2 ∙ 𝑥̇2(𝑡) + 𝑘eq2 ∙ 𝑥2(𝑡) − 𝑏2 ∙ 𝑥̇1(𝑡) − 𝑘2 ∙ 𝑥1(𝑡) = 0

𝑚3 ∙ 𝑥̈3(𝑡) + 𝑏eq3 ∙ 𝑥̇3(𝑡) + 𝑘eq3 ∙ 𝑥3(𝑡) − 𝑏3 ∙ 𝑥̇2(𝑡) − 𝑘3 ∙ 𝑥2(𝑡) = 𝐹 ∙ sin(𝜔 ∙ 𝑡)

 (73) 

The solutions for the displacement variables x1(t), x2(t), x3(t) in mechanical coordinates are obtained as follows in (74). 

This solution consists of two parts: 

{
  
 

  
 
𝑥1(𝑡) = e

−𝛼1∙𝑡 ∙ 𝑋1 ∙ sin(𝜁1 ∙ 𝑡 + 𝜌1) e
−𝛼2∙𝑡 ∙ 𝑋2 ∙ sin(𝜁2 ∙ 𝑡 + 𝜌2) + e

−𝛼3∙𝑡 ∙ 𝑋3 ∙ sin(𝜁3 ∙ 𝑡 + 𝜌3) +

+𝑇1 ∙ sin(𝜔 ∙ 𝑡 + 𝜙1)

𝑥2(𝑡) = e−𝛼1∙𝑡 ∙ 𝑋1 ∙ sin(𝜁1 ∙ 𝑡 + 𝜌1) + e
−𝛼2∙𝑡 ∙ 𝑋2 ∙ sin(𝜁2 ∙ 𝑡 + 𝜌2) + e

−𝛼3∙𝑡 ∙ 𝑋3 ∙ sin(𝜁3 ∙ 𝑡 + 𝜌3) +

+𝑇2 ∙ sin(𝜔 ∙ 𝑡 + 𝜙2)

𝑥3(𝑡) = e−𝛼1∙𝑡 ∙ 𝑋1 ∙ sin(𝜁1 ∙ 𝑡 + 𝜌1) + e
−𝛼2∙𝑡 ∙ 𝑋2 ∙ sin(𝜁2 ∙ 𝑡 + 𝜌2) + e

−𝛼3∙𝑡 ∙ 𝑋3 ∙ sin(𝜁3 ∙ 𝑡 + 𝜌3) +

+𝑇3 ∙ sin(𝜔 ∙ 𝑡 + 𝜙3)

 (74) 

i) Transient response: e−α∙i∙t∙Xi∙sin(ζi∙t + ρi), which represents the natural oscillations that decay over time. 

ii) Steady-state response: Ti∙sin(ω∙t + ϕi), which is the forced response due to the external excitation. 

Some parameters definition: 

• Amplitude componets: Xi = sqrt(Ai
2 + Bi

2) 

• Phase shifts: i = atan(Ai/Bi), where i  {1, 2, 3}. 

• Definition of Ai and Bi: A1 = C11 + C12, B1 = j·(C11 − C12), A2 = C13 + C14, B2 = j·(C13 − C14), A3 = C15 + C16, and B3 = 

j·(C15 − C16), where C1n (n  {1, 2, 3, 4, 5, 6}) are integration constants determined by the initial conditions. 

• Steady-state response parameters: Ti = sqrt(A’i
2 + B’i

2) and i = atan(B’i/A’i), where A'i and B'i are determined by 

solving a system of equations, which is too lengthy to be explicitly included. 

To solve for the homogeneous solution, the characteristic equation is analyzed: 

{

𝐷1,2 = −𝑝11 ± j ∙ 𝑝12
𝐷3,4 = −𝑝21 ± j ∙ 𝑝22
𝐷5,5 = −𝑝31 ± j ∙ 𝑝32

 (75) 

Some parameter definition: 

• Damping component: i = e{Dn}. 

• Oscillatory frequency component: ζi = ℑm{Dn}, where n  {1, 3, 5}. 

From here, it can be seen that: 

• The 3-DoF system exhibits three natural oscillatory modes, each with distinct frequencies ζi and decay rates αi. 

• The forced response depends on the excitation frequency ω and results in a steady-state oscillation with amplitudes Ti 

and phase shifts ϕi. 

• The eigenvalues Dn characterize the dynamical behavior and are obtained from the system's characteristic equation. 

• The integration constants C1n must be calculated from the initial conditions. 

This analytical framework allows to predict vibrational behavior, optimize system parameters, and design effective 

damping and control strategies. 

5.6 Solution for 3-DoF in dq Coordinates 

The 3-DoF system in dq coordinates is represented by the state-space model defined in: 
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𝑞𝑖𝑗(𝑡) = ∑[e
−𝛼𝑖dq∙𝑡 ∙ 𝑋𝑖dq ∙ sin (𝜁𝑖dq ∙ 𝑡 + 𝜌𝑖dq)+

𝑘𝑖
𝑑

∏ (𝑝𝑖1
2 + 𝑝𝑖2

2)5
𝑖=0

]

5

𝑖=1

 (76) 

where i  {1, 2, 3, 4, 5} and j  {d, q}. 

To solve the system, the characteristic equation is analyzed and determine its roots, denoted as Dn: 

{

𝐷1,2 = −𝑝11 ± j ∙ 𝑝12, 𝐷3,4 = −𝑝21 ± j ∙ 𝑝22
𝐷5,6 = −𝑝31 ± j ∙ 𝑝32, 𝐷7,8 = −𝑝41 ± j ∙ 𝑝42

𝐷9,10 = −𝑝51 ± j ∙ 𝑝52

 (77) 

From these solutions: 

• Damping component: idq = e{Dn}. 

• Oscillatory frequency component: ζidq = ℑm{Dn}, where n  {1, 3, 5, 7, 9}. 

• Phase shift: i = atan(Ai/Bi). 

• Amplitude component: Xidq = sqrt(Ai
2 + Bi

2). 

The constants Ai and Bi are defined as: Ai = C1h + C1(h+1), Bi = C1h − C1(h+1), where h  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

From the mathematical modeling and solution approach, three fundamental insights emerge: 

1) Scalability of the solution to higher-order systems: 

a) The solution approach for vibrational systems in both mechanical and dq coordinates is fully linear. 

b) As a result, the same methodology can be applied to higher-degree-of-freedom (n-DoF) systems, making it 

extendable and generalizable. 

2) Distinct components in mechanical coordinates: 

a) The solutions for mechanical coordinate systems exhibit two primary components: 

• Transient vibration: This occurs due to the initial displacement from the equilibrium position and results in 

decaying oscillations. 

• Forced vibration: This occurs due to the external excitation force f(t) = F∙sin(ω∙t). The system resonates at 

its natural frequency while also following the external frequency. 

b) This duality in vibration is well established in vibrational mechanics and is a key characteristic of oscillatory 

systems [44], [45]. 

3) Distinct components in dq coordinates: 

a) Unlike mechanical coordinates, the solutions in dq coordinates consist of: 

• A transient component, which exhibits exponential decay over time. 

• A constant steady-state component, which remains invariant over time. 

b) This is a defining characteristic of systems modeled in dq coordinates, as the transformation converts time-

varying system variables into steady-state quantities in the dq domain [25], [27]–[29]. 

6. SIMULATION RESULTS 

This section provides an in-depth examination of simulation results for the proposed 1-, 2-, and 3- DoF vibrational 

systems in both mechanical and dq coordinate domains. All simulations were conducted under the influence of a 

sinusoidal excitation force with a peak amplitude of 900 N and a linear frequency of 10 kHz. Table 1 summarizes the 

simulation parameters for each system, ensuring consistent initial conditions where: xi0(t) = dxi0(t)/dt = 0 for i  {1, 2, 3}. 

The simulations were implemented using MATLAB-Simulink. 

The simulation results for the 1-DoF system in mechanical coordinates are presented in Figure 6, which provides a 

comprehensive visualization of its dynamic behavior: 

• Figure 6(a) and (b): Depict the position variable x1(t) and velocity variable dx1(t)/dt. 

• Figure 6(c) and (d): Show zoomed-in views to highlight key dynamic characteristics. 

• Figure 6(d): Represents the excitation force f1(t). 

From Figure 6(a), the forced vibration component exhibits a smaller amplitude than the free vibration component, 

consistent with the expression derived in (50), where: T << X. 

 

  



J. M. Campos-Salazar et al. │ International Journal of Automotive and Mechanical Engineering │ Volume 22, Issue 1 (2025) 

journal.ump.edu.my/ijame  12229 

Table 1. Parameters of 1-, 2-, and 3-DoF system 

System Parameters Values  System Parameters Values 

1-DoF k1 10 [N/m]  3-DoF k1 10 [N/m] 

 k2 1 [N/m]   k2 1 [N/m] 

 b1 10·10−1 [N-s/m]   k3 11 [N/m] 

 b2 1.5 [N-s/m]   k4 1.1 [N/m] 

 m1 100 [kg]   b1 1 [N-s/m] 

2-DoF k1 10 [N/m]   b2 1.1·10−5 [N-s/m] 

 k2 1 [N/m]   b3 1.·10−6 [N-s/m] 

 k3 1.1 [N/m]   b4 10·10−6 [N-s/m] 

 b1 10 [N-s/m]   m1 100 [kg] 

 b2 11 [N-s/m]   m2 100 [kg] 

 b3 1 [N-s/m]   m3 100 [kg] 

 m1 100 [kg]     

 m2 100 [kg]     

 

Analyzing Figure 6(b), the velocity equation: 𝑥̇1(𝑡) = √𝛼
2 + 𝜁2 ∙ 𝑋 ∙ e−𝛼∙𝑡 ∙  cos (𝜁 ∙ 𝑡 + 𝜌 + tan−1 (𝛼𝜁)) + 𝜔 ∙ 𝑇 ∙ cos(𝜔 ∙

𝑡 + 𝜙) reveals the transient and steady-state components. The natural frequency is approximately ζ ≈ 0.323 rad/s, while 

the forced vibration frequency corresponds to ω ≈ 62.832×103 rad/s. 

The transient response in dq coordinates is depicted in Figure 7, illustrating the dynamics of: 

• q1d (t) and q1q(t). 

• q2d(t) and q2q(t). 

• f1d(t) and f1q(t). 

Some key observations can be drawn from the latter, for instasnce: 

The transient component follows a cosine waveform, while the steady-state component remains constant, confirming the 

validity of expressions (61)–(64). 

The excitation force conversion in dq coordinates results in: 

• f1d(t) = 0 N (d-axis component). 

• f1q(t) = 900 N (q-axis component). 

Table 2 summarizes the steady-state values of qnm(t), where n  {1, 2} and m  {d, q}. 

The transient dynamics for the 2-DoF system in mechanical coordinates are illustrated in Figure 8, showing the responses 

of x1(t), x2(t), and their derivatives. Notable observations include: 

• Figure 8(a): Confirms the expected dynamic response of x1(t). 

• The presence of two distinct frequency components in the transient state, corresponding to (66). 

• Figure 8(d): Highlights a beating effect, a well-documented phenomenon in vibrational systems [44], [45]. 

• The displacement x2(t) exhibits: 

o A low-frequency component at 1.31 mHz (natural frequency). 

o A high-frequency component at 10 kHz, originating from f1(t). 

The dq transformation results for the 2-DoF system are presented in Figure 9, showcasing variables: qmn(t), where m  

{1, 2, 3, 4} and n  {d, q}. Some key insights: 

• Transient and steady-state components confirm the validity of (71). 

• Table 3 shows that steady-state values are close to zero, indicating effective transformation. 

The dynamic behavior of the 3-DoF system in mechanical coordinates is shown in Figure 10, depicting variables: xi(t) 

and dxi(t)/dt for i  {1, 2, 3}. 

Some observations: 

• Figure 10(a): Confirms the expected transient and steady-state dynamics of x1(t).  

• Figures 10(e) and (f): Highlight the response of dx3(t)/dt under external excitation. 
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The dq-domain responses for the 3-DoF system are illustrated in Figure 11, focusing on: qmn(t) where m  {1, 2, 3, 4, 5, 

6} and n  {d, q}. 

• Two components (transient and steady-state) align with (76). 

• Table 4 confirms negligible steady-state magnitudes of qmn(t). 

Table 2. 1-DoF steady-state values of qnm(t)  m  {1, 2} and n  {1, 2} 

Parameters Values 

q1d(t) 0 [m] 

q1q(t) −2.28·10−9 [m] 

q2d(t) 1.432·10−4 [m/s] 

q2q(t) 0 [m/s] 

 

  
(a) (b) 
  

  
(c) (d) 
  

 
(e) 

Figure 6. Transient simulation results of the 1-DoF system in mechanical coordinates. Initial conditions x10(t) = 

dx10(t)/dt = 0. (a) Dynamics of x1(t); (b) Dynamics of dx1(t)/dt; (c) Zoomed view of x1(t); (d) Dynamics of f1(t); (e) 

Zoomed view of f1(t) 

This study systematically analyzes 1-, 2-, and 3-DoF vibrational systems under sinusoidal excitation, drawing three major 

conclusions: 

1) dq coordinates simplify analysis and control: 

a) In mechanical coordinates, the oscillatory response contains multiple frequency components. 

b) dq transformation simplifies the system to steady-state DC variables, improving control and stability. 

2) Multi-DoF systems exhibit beating and multi-frequency effects: 

a) The 2-DoF system exhibits beating phenomena due to multi-frequency interactions. 

b) The 3-DoF system contains two primary frequency components, illustrating complex vibrational interactions.  

3) dq transformation enhances convergence and control design: 

a) Faster convergence to steady-state conditions is observed in dq coordinates. 

b) dq transformation facilitates the design of linear compensators by transforming AC signals into DC equivalents. 
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(a) (b) 

 
(c) 

Figure 7. Transient simulation results of the 1-DoF system in dq coordinates. Initial conditions qmn(t) = 0 where 

 m  {1, 2} and n  {d, q}. (a) Dynamics of q1d(t) and q1q(t). (b) Dynamics of q1d(t) and q1q(t). (c) Dynamics of f1d(t) 

and f1q(t) 

Table 3. 2-DoF Steady-state values of qnm(t)  m  {1, 2, 3, 4} and n  {d, q} 

Parameters Values 

q1d(t) 0 [m] 

q1q(t) 0 [m] 

q2d(t) 0 [m/s] 

q2q(t) 0 [m/s] 

q3d(t) 0 [m/s] 

q3q(t) 0 [m/s] 

q4d(t) 1.432·10−4 [m/s] 

q4q(t) 0 [m/s] 

Table 4. 3-DoF Steady-state values of qnm(t)  m  {1, 2, 3, 4, 5, 6} and n  {d, q} 

Parameters Values Parameters Values 

q1d(t) 0 [m] q4d(t) 0 [m/s] 

q1q(t) 0 [m] q4q(t) 0 [m/s] 

q2d(t) 0 [m/s] q5d(t) 0 [m/s] 

q2q(t) 0 [m/s] q5q(t) −2.28·10−9 [m] 

q3d(t) 0 [m/s] q6d(t) 1.432·10−4 [m/s] 

q3q(t) 0 [m/s] q6q(t) 0 [m/s] 

 

  
(a) (b) 

  

  
(c) (d) 

Figure 8. Transient simulation results of the 2-DoF system in mechanical coordinates. Initial conditions  

xi0(t) = dxi0(t)/dt = 0 where i  {1, 2}. (a) Dynamics of x1(t). (b) Dynamics of dx1(t)/dt. (c) Dynamics of x2(t). (d) 

Dynamics of dx2(t)/dt 
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(a) (b) 

  

  
(c) (d) 

Figure 9. Transient simulation results of the 2-DoF system in dq coordinates. Initial conditions qmn(t) = 0 where 

 m  {1, 2, 3, 4} and n  {d, q}. (a) Dynamics of q1d(t) and q1q(t). (b) Dynamics of q2d(t) and q2q(t). (c) Dynamics of 

q3d(t) and q3q(t). (d) Dynamics of q4d(t) and q4q(t) 

Finally, this work attempts to show the effectiveness of dq transformation in vibrational mechanics, particularly for 

multi-DoF systems. Future research can further explore linear compensator design and experimental validation of dq-

based control strategies for complex vibrational systems. 

7. CONCLUSION 

Through a comprehensive simulation study and analysis of 1-, 2-, and 3-DoF vibrational systems under sinusoidal 

excitation, this research provides valuable insights into system dynamics and the advantages of the dq transformation in 

vibrational mechanics. The study highlights the transformation’s effectiveness in simplifying dynamic analysis, 

improving control strategies, and facilitating steady-state convergence in complex mechanical systems. 

The 1-DoF system, characterized by low damping, exhibits a distinct oscillatory pattern composed of two frequency 

components. The application of the dq transformation offers a strategic reduction in system complexity, effectively 

decoupling system dynamics and providing a clearer understanding of steady-state behavior. This transformation 

improves the response characteristics of the system, particularly in control applications, where it aids in stability 

enhancement and performance optimization. 

  
(a) (b) 
  

  
(c) (d) 
  

  
(e) (f) 

Figure 10. Transient simulation results of the 3-DoF system in mechanical coordinates. Initial conditions 

 xi0(t) = dxi0(t)/dt = 0 for i  {1, 2, 3} (a) Dynamics of x1(t); (b) Dynamics of dx1(t)/dt; (c) Dynamics of x2(t);  

(d) Dynamics of dx2(t)/dt; (e) Dynamics of x3(t); (f) Dynamics of dx3(t)/dt 
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(a) (b) 

  

  
(c) (d) 

Figure 11. Transient simulation results of the 3-DoF system in dq coordinates. Initial conditions qmn(t) = 0 where  

m  {1, 2, 3, 4, 5, 6} and n  {d, q} (a) Dynamics of q1d(t) and q1q(t); (b) Dynamics of q2d(t) and q2q(t); (c) Dynamics of 

q3d(t) and q3q(t); (e) Dynamics of q5d(t) and q5q(t); (f) Dynamics of q6d(t) and q6q(t) 

Moving to the 2-DoF system, a higher degree of complexity emerges in mechanical coordinates, as interactions 

between masses result in beating effects and multi-frequency oscillations. The dq transformation decouples complex 

frequency behaviors, making it easier to analyze system responses. It also reveals the minimal influence of masses not 

directly subjected to external excitation and streamlines control implementation, demonstrating its practicality for 

complex mechanical systems. This study underscores how dq analysis enhances the understanding of multi-DoF systems, 

particularly when investigating energy interactions and resonance effects. The 3-DoF system further demonstrates the 

effectiveness of the dq transformation in analyzing external force influences and understanding system interactions. 

Notably, the system contains dual frequency components, which are simplified through dq transformation. Additionally, 

the dq transformation converts AC signals into DC, facilitating linear compensator applications. This method ultimately 

improves system stability and enhances control performance. By reducing system complexity and allowing independent 

analysis of interacting components, the dq transformation provides significant advantages in vibrational system modeling 

and control. 

The sinusoidal excitation used in this study directly influences system energy distributions, leading to complex 

interactions between oscillatory components. It also results in transient and steady-state behaviors, which are effectively 

decoupled in dq coordinates, providing a deeper understanding of energy transformations within multi-DoF systems. The 

results underscore the effectiveness of the dq transformation in providing a clear, structured framework for analyzing and 

optimizing dynamic responses in complex vibrational systems. The findings of this study hold significant implications 

for advanced control systems, particularly in designing controllers for multi-DoF systems that require precise system 

behavior modeling. Furthermore, the dq transformation enhances stability and performance by simplifying control 

algorithms and facilitates real-time implementation of advanced controllers, where dq conversion minimizes 

computational complexity. By demonstrating the advantages of dq transformation in vibrational mechanics, this research 

lays a foundation for future studies aimed at optimizing control strategies for nonlinear, multi-DoF systems. Additionally, 

it opens the door for exploring applications beyond mechanical systems, including power electronics, electrical machines, 

and robotics. 
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