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ABSTRACT - This research offers a thorough analysis of the dynamic behavior of 1, 2, and 3-
degrees-of-freedom (DoF) mechanical systems under a sinusoidal force, examining both
mechanical and dq coordinates. By utilizing standardized initial conditions, the 1-DoF system
displays fascinating oscillatory patterns with dual frequency components, highlighting the
significance of low damping. The adaptation to dq coordinates simplifies the analysis and h|gh||gh

the system's nuanced behavior. In contrast, the 2-DoF system exhibits intricate intera

oscillation phenomena, and multiple frequency components in mechanical coordma 3 ynamic analysis
contribution of masses that do not experience external forces in dq coordinates is Qltch)(r)ollénatets .

other hand, the 3-DoF system shows diverse interactions and frequency c 3 un-=Lr systems
; . , ) Mechanical system

different from the dq transformations. The observed dynamics not only enhan ion of Dynamics

these systems but also provide valuable insights for refining analytical approa
of dynamic systems. This study sets the stage for future investigation§fand urges
of streamlined analytical frameworks for a more focused explorafi@fEof externally influenced
variables in dynamic mechanical systems.

1.0 INTRODUCTION

Vibration analysis is a fundamental area withi @ al engineering that focuses on examining the oscillatory
behavior of mechanical systems subjected to rna ations, such as forces or displacements [1]. The ability to
analyze vibrations is essential across mgitiple i tries, including manufacturing [2]-[6], automation [7]-[10], and
aerospace [11], [12], as it provides @ ghts ¥Bto system performance, safety, and longevity. This field plays a
pivotal role in designing, optimizing, ‘aadgfaintaining mechanical systems by identifying and mitigating vibrational
effects that could lead to structural failures@r inefficiencies.

One of the key challenges in wbn’n analysis is the complexity introduced by various factors such as frequency,
damping characteristics, and s eractions. The study in [2] underscores the necessity of addressing these challenges
through advanced method , #ncluding modal analysis, Fourier transforms, wavelet-based techniques, and
computational simulati evefaging such methods, engineers can gain a deeper understanding of vibrational
phenomena and de p StkategieS to enhance the performance of mechanical systems.

A review ig loreSjuibration-based diagnostic techniques for identifying rolling bearing failures in industrial
machinery. broad range of operational conditions and failure modes, precise fault detection is critical to
ensuring system Yeliability. The study evaluates multiple vibration analysis methods, including time-domain, frequency-
domain, and time-figquency-domain approaches, emphasizing their role in predictive maintenance and minimizing
downtime.

Similarly, research on process plants, as discussed in[4], highlights the significance of effective machine management
in preventing costly operational disruptions. The study explores the implementation of condition monitoring and
preventive maintenance strategies, demonstrating the effectiveness of vibration analysis in early fault detection. Through
practical case studies, the study illustrates how dynamic vibration analysis can accurately diagnose mechanical
irregularities before they lead to critical failures.

The work in [5] focuses on fundamental vibration concepts, particularly for single-degree-of-freedom mechanical
systems. It presents a structured approach to analyzing dynamic behaviors in these systems, laying the foundation for
studying more complex mechanical structures. The study covers essential topics such as system response to harmonic
excitation, transient behavior, and resonance effects, reinforcing the importance of vibration analysis in engineering
design and maintenance.

The role of vibration analysis extends to the automotive industry, where it is crucial for enhancing vehicle stability,
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safety, and passenger comfort. The study in [6] discusses active vibration control techniques, emphasizing their role in
mitigating the negative effects of oscillatory motion in vehicles. The research explores cutting-edge control
methodologies designed to optimize vehicle performance and reduce driver discomfort caused by excessive vibrations.

An experimental investigation in [7] further explores the intricate relationship between vehicle maintenance and
mechanical vibrations. The study demonstrates how inadequate maintenance can lead to increased vibrations and,
subsequently, mechanical failures. Advanced sensor-based data acquisition techniques, including signal processing
methods such as fast Fourier transform, are employed to analyze and control vibrations. The research underscores the
importance of predictive maintenance in prolonging vehicle lifespan and ensuring operational efficiency.

In the context of mechanical transmission systems, the study in [8] examines strategies for mitigating torsional
vibrations in automotive applications. Effective torsional vibration control is critical for ensuring the longevity and
optimal performance of transmission components. The study evaluates damping mechanisms, gear optimization
techniques, and dynamic balancing strategies, highlighting their significance in enhancing drivetrain efficiency and
minimizing frictional losses.

Expanding this perspective, the study in [9] presents a comparative evaluation of various automotive vibration testing
methodologies. The research focuses on techniques such as frequency-domain analysis, time-domain analysis, and
statistical modeling to assess the reliability of automotive components. These methods are instrumental in refining vehicle
designs, improving ride quality, and ensuring adherence to safety standards.

Noise and vibration management in automobiles is another critical topic discussed in [10].
integration of advanced materials, structural optimization, and active noise control strategies tQgii

vehicles with superior noise and vibration characteristics.

In the aerospace sector, vibration analysis plays a crucial role in failure preventig
in [11] investigates the mechanical simulation of high-reliability aerospace elect
vibration testing for ensuring the durability of electronic components. i

reliability. The study
asizing the necessity of

computational modeling, and experimental validation are employed i itigate vibrational effects in
aerospace environments.
Research in [12] explores vibration suppression in flexiblegerospac es. The study examines innovative

approaches such as active disturbance rejection control and fre
challenges in aircraft structures. The findings contribute to the de
of withstanding extreme operational conditions.

As mechanical systems increase in complexity, the chal
study in [13] investigates lateral vibration dynamics
predicting and analyzing structural responses under ¥a
essential for designing transportation systems thatscal

The intersection of vibration analysis and r

y-domain techniques to manage vibration-induced
ment of more resilient aerospace systems capable

associated with vibration analysis also grow [1]. The
ation applications, highlighting the difficulties in
g conditions. Advanced computational methods are
ibrational stresses while maintaining structural integrity.

pgineering is explored in [14], which examines the effects of
vibrational fatigue on mechanical comgp6 e study emphasizes the importance of accurately modeling the
interaction between fatigue and dy w prove system reliability. By understanding these interactions,
engineers can develop robust mechanicalpdesfgns that resist premature failures.

The book in [15] presents an in-depth digeussion of modeling techniques for vibrational fatigue and structural fracture
analysis. It highlights the complexiti?so ated with predicting fatigue life under dynamic loading conditions, taking
into account factors such a ial properties, environmental influences, and resonance phenomena. The study
underscores the importance ing computational models that accurately reflect real-world vibrational behaviors.

In [16], a compreheqSive f vibration analysis techniques for rotating machinery is presented, focusing on
predictive maln e lications. The study compares traditional methods, such as time-domain and frequency-
emerging Al-based approaches, including neural networks and support vector machines. The

evaluates conventional approaches, such as finite element analysis and boundary element methods, as well as novel wave-
based techniques. The research provides valuable insights into optimizing structural designs for improved vibration and
acoustic performance.

The research in [18] examines the use of non-traditional dynamic vibration absorbers for mitigating vibrations in
damped linear structures. By leveraging advanced damping technologies, the study proposes innovative solutions for
controlling structural vibrations in diverse engineering applications.

A broader examination of machine diagnostics through vibration analysis is provided in [19]. The study discusses the
integration of artificial intelligence techniques, such as fuzzy logic and genetic algorithms, to enhance fault detection
capabilities in industrial machinery. The findings highlight the potential of Al-driven solutions in predictive maintenance.

The study in [20] conducts a modal analysis of the Karun-4 concrete arch dam, utilizing a finite element model (FEM)
to assess the dynamic behavior of the dam-reservoir-foundation system. To validate the computational model, the authors
compare the FEM results with ambient vibration test data. The analysis investigates the influence of several critical
factors, including reservoir water levels, foundation rock mass properties, and seismic excitations, on the natural
frequencies and mode shapes of the structure. The findings reveal that reservoir water levels significantly impact the
modal properties of the dam, while the foundation rock mass exhibits only minor effects. In contrast, earthquake-induced
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excitation has a negligible influence on the dam’s dynamic response. Based on these results, the study concludes that the
proposed FEM approach is a reliable tool for evaluating the structural dynamics of large-scale hydraulic infrastructures.

The study in [21] explores modal analysis, a fundamental technique for examining the dynamic characteristics of
mechanical structures and systems. The authors provide an extensive review of testing methodologies and system
identification techniques, highlighting their role in characterizing vibrational responses. Additionally, the paper addresses
key practical challenges encountered in modal analysis, along with emerging trends that enhance its application in
structural dynamics. To reinforce these concepts, the study incorporates case studies that illustrate real-world
implementations of modal analysis techniques. This work serves as a valuable reference for researchers and engineers
seeking deeper insights into vibration-based structural assessment and system behavior characterization.

From the literature review, it is evident that existing vibration analysis methods predominantly focus on frequency-
domain, time-domain, and Al-based techniques. However, these approaches often face limitations when applied to
vibrational systems with continuously varying states, particularly in cases involving sinusoidal oscillations. Traditional
control strategies struggle to regulate such systems effectively due to the dynamic nature of the variables involved [22]-
[24].

A promising alternative is the application of coordinate transformations to simplify the analysis of oscillatory systems.
The direct-quadrature-zero (dg0) transformation provides a means of converting time-varying system states into a rotating
reference frame, facilitating more efficient modeling and control [25]. Despite its widespread use in elegtrical engineering,
there is a notable absence of studies applying the dq0 transformation to mechanical vibration a is.

This study is primarily theoretical and aims to validate the suitability of dg@*trans ation-based models for
mechanical vibration analysis. The remainder of the paper is structured as follows: esents the mathematical
formulation of the Park and Clarke transformations, while Section 3 disc n of the dg0 transformation

derives the state-space representations of the models. Simulation resultS\are preseited in Section 6, followed by the
conclusions in Section 7.

2.0 ANALYSIS OF ROTATIONAL REFERENCE ME TRANSFORMATIONS

arke’ (0f0) and Park (dq0) transformations, plays a
analysis of three-phase systems [26]-[30]. These
variables—such as currents and voltages—from the

natural abc coordinate system to alternative doma implify modeling and control. The abc reference frame
represents three-phase electrical quantities as si i als with a phase shift of 120°, which, while fundamental to
power systems, is not always the most copaptitationally efficient framework for dynamic system analysis. For applications

The Park transformation (dg0) introddges a rotating coordinate system that follows a specific reference, such as the
magnetic field in an electric machine @y th

components into two orthogo he direct axis (d-axis), which aligns with active power, and the quadrature axis
(g-axis), associated with re ower. A third component, the zero-sequence term, represents any unbalanced or
neutral-point voltage varigtio 5].MMeanwhile, the Clarke transformation (ap0) acts as an intermediary step, projecting

tati two-axis system, where the a- and B-axes provide an equivalent representation of
implified orthogonal framework.

ese two transformations is dictated by a rotational transformation matrix. The Clarke
aps abc variables into the stationary aff0 frame, and then the Park transformation further rotates
these quantities int@§the dg0 frame, which follows the motion of the machine or inverter system [25]. The rotation angle
of the dg0 transformation corresponds to the angular position or frequency of the rotating system, allowing for an effective
dynamic representation of electrical variables in a more tractable form.

Beyond mere mathematical convenience, these transformations provide significant benefits in real-world applications.
By converting three-phase systems into equivalent two-phase representations, they simplify complex differential
equations governing electromechanical dynamics, thereby reducing computational overhead in real-time control
applications. Moreover, they facilitate independent control over active and reactive power, forming the basis of advanced
control methodologies such as field-oriented control (FOC) and direct torque control (DTC) in electrical machines. These
methods enhance precision in regulating parameters like torque, flux, voltage, and current, leading to improved efficiency
in motor drives, power electronics, and grid-tied inverters [25].

In summary, the Clarke and Park transformations serve as essential mathematical tools that bridge the abc reference
frame with the a0 and dq0 domains. Their ability to simplify system dynamics, improve analytical tractability, and
enhance control implementations makes them indispensable in power electronics, motor control, and grid-interfaced
applications. Their broad adoption underscores their fundamental role in improving stability, efficiency, and performance
in three-phase electrical systems.
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2.1 Derivation of the Clarke Transformation Matrix

The Clarke transformation provides a powerful method for re-expressing three-phase electrical variables in an
alternative coordinate system that simplifies analysis and control. By mapping the abc reference frame to a two-axis o0
reference frame, this transformation effectively decouples three-phase interactions and provides a clearer representation
of system behavior. One key advantage is its ability to isolate the common-mode, or zero-sequence, component, which
accounts for any unbalanced neutral currents or common-mode voltages [25], [31]. The of0 transformation ensures
energy conservation, follows the right-hand coordinate system convention, and maintains uniform scaling properties,
making it indispensable for applications such as power conversion, motor drives, and grid-connected electronics [25],
[31].

The transformation matrix used for Clarke's transformation, denoted as Kc, is formulated as a power-invariant, right-
handed transformation:

1 1 1
2 2
2 VERRE]
Ke= 3|0 — —-— 1
c= |3 = = M
1 1 1
V2 V2 W2
Applying this transformation to a three-phase column vector, manc(t), produces ng vector in the af0
domain:
Mggo (6) = K¢ " mgpc(t) 2
To revert to the original abc frame, the inverse transformationgis applie
mabc(t) = Kc_1 *Mggo 3)

ansformation preserves the fundamental properties
ejiransformation is particularly beneficial in vector control

phase systems in a reduced-dimensional space, improving

This bidirectional transformation capability ensures that
of the system while simplifying control equations. Thes@la
strategies, as it provides an effective means of analyz
control response and computational efficiency.

n

2.2 Derivation of the Park Transfq

‘@ dgO transformation, is another fundamental tool used to convert stationary
ap0 coordinates into a rotating referencejfifame that aligns with system dynamics [25], [31]. Widely applied in power
electronics, motor control, and grid-conpected systems, this transformation enables precise tracking and control of three-
phase variables. The primary feature %e Park transformation is its ability to "rotate™ the reference frame to align with
a desired frequency, typically; chronous frequency of an electrical machine. This results in a transformation where
sinusoidal variables in thegof3 aifl become dc quantities in the dq0 frame, greatly simplifying system control.

The Park transformation, also knof

A Kkey advantagee ansformation is its ability to modify the frequency spectrum of a signal. By aligning the

i e f with a system's synchronous frequency, it converts fundamental-frequency components

d es, while components at different frequencies appear as ac variations. This is particularly valuable

adologies such as field-oriented control (FOC), where separating active and reactive power components
otor and converter operation [25], [31].

for control met
is critical for efficie

Mathematically, the Park transformation matrix is expressed as:
The dq0 transformation is defined mathematically using the transformation matrix Ke, given by:
cos@(t) sinf(t) O

Kp =|[-sinf(t) cosf(t) 0 (4)
0 0 1

where 6(t) represents the instantaneous angular position of the reference frame. Applying this transformation to an a0
column vector results in:

Mgqo(t) = Kp - mgg(t) ®)

To return to the af0 frame, the inverse transformation is applied:
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Mg (t) = Kp "~ Mg (t) (6)

Alternatively, the transformation can be applied directly from the abc frame using the combined Clarke-Park
transformation matrix: Kcp = Kc:Kp. The resulting transformation matrix is expressed as:

cos8()  cos (H(t) _Z_H) cos <9(t) +2_1T)

3 3
Kep = \/g —sin0(®) —sin(0() - ZT“) —sin(0(5) + ZT“) (7)
V2 V2 V2
z z z

The inverse transformation matrix, used to return from the dqO reference frame back to the abc reference frame, is
given by:

cos@(t) cos (9 ) — ZTR) cos (9 () + ZTR)

2 2- 2-
Kep = \/; -|—sinf8(t) —sin (0 (t) — Tn) —sin (9 () + Tn) @)
V2 V2 V2
2 2
The direct transformation from abc to dg0 can be defined as:
Myq0 (t) = Kcp - My, ) (9)

The inverse transformation allows conversion back to the abc ence frame:

M, (t) = KCP_1 : @ (10)

The dqg0 transformation is fundamentally rooted i ojections and rotational transformations within a Cartesian
coordinate system [25], [31]. To conceptualize fhis, > both the af and dq coordinate frames being displayed
simultaneously, as illustrated in Figure 1. dgh r mqp(t), originally expressed in the af reference frame, undergoes a
transformation as the dq reference fram b angle (t) with respect to the fixed off frame.

Mathematically, in Cartesian notatid cctor within the off frame can be represented as:

M(t) m,(t) - Uy + mg(¢) - Up 11)
where U, and U are theyu 1s flectors of the stationary af} reference frame. The dq frame, being a rotated version
of the af frame, establishgs a entation defined by 4(t), where @i, and Uiz serve as its respective unit vectors [25],
[31]. The transf n ing these coordinate frames is given by:

{ iy = cos(0(1)) - Uy + sin(6(1)) - Ug 12)
0y = —sin(6()) U, + cos(6(1)) - G
Applying the dot product to project the afp components onto the dq axes results in:
{ mgy(t) = Gig - meg(t) = cos(6()) - my(t) + sin(6(t)) - mp(t) (13)
m(t) = G, - meg(t) = —sin(0(6)) - my(t) + cos(6(t)) - mg(t)

These transformed components, md(t)m_d(t)md(t) and mg(t)m_g(t)mq(t), form the new representation of the original
vector in the dqg reference frame. One important characteristic of this transformation is that a positive 0(t)\theta(t)0(t)
corresponds to a counterclockwise rotation, effectively shifting the vector’s angular representation in the dq domain. This
property is particularly useful in three-phase electrical systems, where rotating reference frames track system variables in
synchrony with fundamental electrical frequencies, ensuring that transformed dq components appear as stationary values
in the new coordinate system [25], [31].
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Meg(t)
af
q\‘\ mg(t)
.\‘ q
m,(t) \ -
Q() ‘\ ‘,‘/'md(t)
0N >
M, o

Figure 1. Geometric representation of an arbitrary vector mqg(t) in reference frames o8 and dg. In addition, the vector
components of the vector in its two reference frames are included [32]

These components, mq(t) and mg(t), constitute the transformed vector maq(t) in the dq reference frame. Notably, the
positive angle 6(t) corresponds to a counterclockwise rotation, effectively reducing the vector’s angle in the new dq frame.
This is due to the fact that the reference frame itself undergoes a forward rotation rather than the vector itself. As a result,
in scenarios such as three-phase electrical systems, where the reference frame rotates forward, the trangformed dqg vector
remains stationary in the new coordinate system [25], [31].

From a matrix formulation perspective, the conversion between aff and dq coordi a structured

transformation matrix. The corresponding transformation matrix Ke is defined as:

_ [ cosB(t) sinf(t) (14)
P 7 —sin6(t) cosf(t)
which establishes the following relationship: maq(t) = Kp-mep(t). This f@presentati@n facilitates a direct mathematical
mapping between the stationary aff and rotating dq coordinate systems, progadin treamlined framework for dynamic
system analysis and control.

While the dgo transformation is typically applied to three-phase sy8tems, a similar approach can be utilized for single-
phase signals. In such cases, directly applying the transform % fingéd in (9) may not be straightforward due to the

absence of a naturally occurring quadrature component. TG ent this, a modified Clarke transformation can be
introduced, which generates an auxiliary 90-degree ph if ghal, enabling an equivalent two-phase representation.
This adaptation follows the transformation:

t) a(t) 5
15
© B, (¢ -2)
Here, mq(t) retains the original signal, While mg(t) represents a derived quadrature-phase component. Once mapped
into the aff coordinate system, the stdfidard dq0 transformation defined by Kp can be applied, allowing single-phase

signals to be analyzed and co in a similar manner to three-phase systems [25], [31].

3.0 APPLICAT
MECHANI

This secti

E PARK TRANSFORMS INTO A DYNAMIC VIBRATIONAL

nts a comprehensive mathematical examination of the dqO transformation method applied to
vibrational mechanical-dynamical systems. The analysis encompasses three distinct configurations: one-degree-of-
freedom (1-DoF), -degree-of-freedom (2-DoF), and three-degree-of-freedom (3-DoF) systems, as illustrated in
Figure 2(a), (b), and (c), respectively.

Each system is uniquely characterized by a set of dynamic parameters, including mass (m;), stiffness (ki), and damping
(bi), where i € {1,2,3}. These parameters define the structural and vibrational behavior of the system under external
excitation. Notably, the mass elements (m;) are assumed to be rigid and inelastic, remaining fixed to immovable reference
structures to ensure idealized vibrational analysis [34].

The simplest configuration, depicted in Figure 2(a), consists of a single mass element (m;) connected to a stationary
wall via a spring-damper system composed of a stiffness element (ki) and a damping element (by). This system exhibits
classical harmonic oscillation, serving as a foundational model for analyzing mechanical vibrations.

The two-degree-of-freedom (2-DoF) system, illustrated in Figure 2(b), introduces an additional mass element (m5),
resulting in a more complex vibrational interaction. In this configuration:

e mj remains connected to the stationary wall through elements k; and bs.

e myisalso coupled to m, via intermediate stiffness (k2) and damping (bz) elements.
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r===r x|(f)

N
=

m,

I >

A

_—

dqO will be applied. (a) 1-DoF. (b) 2-DoF. (c) 3-

This arrangement introduces coupled oscilla b here energy exchange between m; and m; leads to modal
interactions that significantly influence t dynamic response.

The three-degree-of-freedom (3-
interactions by incorporating a third m

, deprcted in Figure 2(c), further extends the complexity of vibrational
ent (m3). The structure is defined as follows:

e mg is anchored to the stationagwalldvia ki and b;.

e mgand ms are each d to m, through additional coupling elements (ko, b,) and (ks, bs), respectively.

This system introd
resonance phenomen
ideal model fog8

iplefdegrees of vibrational freedom, leading to higher-order modal interactions and
interdependent motion of my, mz, and ms results in complex vibrational modes, making it an
i-body oscillatory dynamics.

o  Stiffness (ki): Newton per meter (N/m)
e Damping (bi): Newton-seconds per meter (N-s/m)

The primary dynamic variables governing the system’s behavior include the external force fi(t) and the displacement
responses Xi(t), where i € {1,2,3} represents each mass element's positional deviation. The excitation force is
mathematically defined as: fi(t) = F-sin(w-t), where F denotes the force amplitude, and w represents the angular frequency
of excitation. This sinusoidal excitation drives the oscillatory motion of the system, serving as the basis for analyzing
vibrational behavior under harmonic forcing conditions.

3.1 Analysis of a Mechanical-Vibrational-Dynamical System of One-Degree-of-Freedom

This section presents a detailed analysis of the 1-DoF vibrational mechanical system, as illustrated in Figure 2(a).
The primary objective is to derive the system's energy equations and formulate the Lagrangian equation in terms of
generalized coordinates (pi(t)), facilitating the modeling of this non-conservative system [35]. By following this approach,
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the dynamic equation of motion for the system in Figure 2(a) is obtained. Specifically, expressions for the system’s
kinetic energy (KE(t)), potential energy (PE(t)), and dissipation energy (DE(t)) are given as follows:

(ke = Zomy (0
PE(t) = : keql "X (t)z (16)

DE(t) =

N =N =

' beql "Xy (t)z

From here, the equivalent damping coefficient and stiffness terms are defined as begt = b1 + by and kequ = k1 + ko,
respectively.

The Lagrangian equation for pi(t) is expressed as:

iaKE(t) B OKE(t) N dPE(t) N ODE(t)
de api(t)  opi(®)  ap(®)  ap(®)

()

where #1(t) represents the generalized external force applied to the system, defined in this casesa
pi(t) = xa(t), substituting these expressions into the Lagrange equation and applying alggh ani
state-space representation of the 1-DoF system:

dq(t)
— = A-q(t) + B-u(t) O (18)

y(@) =C-q(t) + D-u(t)

where q(t) and y(t) denote the state vector and output vector, while, u(t) re the scalar input. Specifically: q(t) =
[g1(1), g2(t)]7, where g1(t) = x1(t) and g2(t) = dx1(t)/dt, and u(t) = fy{h, Symbolically, {q(t), y(t)} € {R?}. The matrices A,
B are defined as follows

The corresponding system matrices are defined as:

(19)

The output (C) and direct trans
respectively. Symbolically, the matrice

matri€es are given as C = | (identity matrix) and D = 0 (zero matrix),
{A, C} € by and {B, D} € Aox.

To facilitate the application of thgpdgOSgransformation, the system is first transformed into the af\alpha\betaaf
coordinate frame using the fo quivalences:

g (t
2] O _ Ay - Qe (®) + Bg - s (© (21)

Yap ®) = CaB "Qap ®+ DaB *Ugg ®)

where the matric af} coordinates are:
0 0 1 0 0 0
0 0 0 1 0 o0
Keq, beq 1
_ |- 0 -—1 0 — 0
Agp =|" T, my Bag = |m, (22)
0 _ keql 0 _ be(h 0 i
ml m1 ml

The output (Cap) and direct transmission (Deg) matrices are the identity matrix (1) and zero matrix (0), respectively,
satisfying:{Acp, Cop} € Muxa and {Bap, Dap} € Maxo.

To obtain the state-space representation in dq coordinates, the Kp matrix (defined in (14)) is applied to the model in
af coordinates, resulting in (23). Here, the state, output, and input vectors in dq coordinates are: ddq(t) = [q14(t), q14(t),
g2d(t), 2q(t)]", Yaa(t) = qdq(t), and udq(t) = [u1d(t), uq(t)]™. These vectors can also be defined as {quq(t), yaq(t)} € {R*} and
Udg(t) € {R?}.

8 journal.ump.edu.my/ijame <
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dqaq(t)
d(; = Adq : qdq (t) + qu ’ l*ldq (t) (23)

qu(t) = qu ' qdq(t) + qu ' udq(t)

In this model, quq(t), Yaq(t), and udq(t) represent the state, output, and input vectors in dq coordinates, respectively.
Specifically, The matrices Adq and Baq are as described as follows:

0 w 1 0 0 o0

) 0 0 1 0 o0

k b 1

0 ke(h —w be‘h 0 i
ml ml ml

sources controlled by charges (qi(t) and g(t), where j € {d, q}).
3.2 Analysis of a Mechanical-Vibrational-Dynamical System of Twg

system, illustrated in Figure 2(b).
derive the corresponding energy
stem are formulated as follows:

This section examines the dynamic behavior of a 2-DoF vibrational
The analysis follows the methodology applied to the 1-DoF system, e
equations. The Kinetic, potential, and dissipation energy expressigns for th

KE(t) = %-ml %1 ()% + (t)*
5 ke, * X5 (6)? (25)

%

1
xZ (t) + eqz xZ (t)

PE(t) - eql xl(t) - k2

Nl»—kNIH

DE(t) =

beq, * %1 (®)?
where the equivalent damping and &ants are defined as: beql =bhy + bz, beqz = bz + b3, Keq1 = k1 + ko, and
Keqz = ko + k3. Applying (17) with p4(t
model is obtained in state-space repres
vibrational system. The correspondlng
the matrices C and D are the |d i

on. The state- space formulation enables a systematic representatlon of the
pace equatlons are structured as follows in (18) For the sake of 5|mpI|C|ty,

coordinates in state-space rep ation follows the same respectively. Mathematically, {A, C} € .#ux4 and {B, D} €
My Where A, B, C,and B a state matrix, input matrix, output matrix, and direct transmission matrix, respectively.
The state vector com ts are ed as: q(t) = [0a(t), gz2(t), gs(t), ga(t)]", the output vector y(t) = g(t), and the scalar
input u(t) = fa(t VERG1(t) = xa1(t), q2(t) = dxa(t)/dt, gs(t) = xo(t), and ga(t) = dxo(t)/dt. Symbolically, {q(t), y()}
{R}.
[ 7= <
l,‘ﬂ\'cch . 2-mL$‘r1q/{f)
J: ()“m(’) da 0y B doall)
a
m, ml-mlth(f)( )
—
l/.i'(cqI 2-m -6, (1)
i’()"mm dg, (0)/di butnl®)
(b)

Figure 3. Electrical analogy of the proposed 1-DoF mechanical system in dg coordinates. The two channels d and q are
shown. (a) Channel d. (b) Channel g
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The state-space matrices governing the dynamics of the 2-DoF system are expressed as:

0 1 0 0 0
_keay _beay k2 b2 0
_ m my m m _
A= 0 0 0 1 L (1) (26)
ka by keqy beq, p~
m; m; m; m;

The model (18) is then converted into aff coordinates using the procedure developed previously in the 1-DoF system
analysis. The equivalences defined as follows:

(G1a() = (), q1p(®) = @1 (t _ g)
G2 = (), qop(0) = q; (t _ g)
Lsa® = g:(6), qap(®) = g5 (£ - g) -
Qaa®) = q4(®),  qup(®) = q4 (t _ g)
u () =u(®),  up(®) =u(t- g)

representation as described
odel in (18), the state-space
applicable to a generalized n-DoF

The 2-DoF vibrational mechanical system in aff coordinates is formul
in (21). Consistent with the structural formulation of the mechanic
representation in aff coordinates maintain the same fundamental structu

system.
efined as gap(t) = [A1a(t), Qup(t), Goa(t), G2p(t), Gaa(t),

Jap(t), Yap(t), and uep(t) are the state, output, and
Usg(t) € {R?}, ensuring that the system adheres to

The system's vectors are expressed as follows: the state vector,
Gsp(t), Qaa(t), Aap(D)]", Yap(t) = Gop(t), and Uap(t) = [ua(t), usp(t)]5
input vectors, respectively. Symbolically, {g«s(t), yep(t)} €
an eight-dimensional state-space framework.

Furthermore, the state and input matrices associa
defined as follows:

0 0 0 0 0 0 7
0 0 0 0 0 0
_ l‘;:lql 0 _€d1 0 -2 % % 0
1 1 1 1 1
0 ke( o P 0 0 ba
A m1 ml
o 0 0 0 0 0 1 0
0 0 0 0 0 1
—N 0 ﬁ 0 - keq, 0 — @ 0
m, m, m, m,
0 % 0 % 0 - ];el% 0 - b;:]z
2 2 2 2 -
28
0 0 1 0 0 0 0 0 (28)
0 0 0 1 0 0 0 0
_ keql 0 _ beql 0 E ﬁ 2 0
my m m my 1
0 k;;“ 0o - % 0 0 0 %
1 1 1
Bag =1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
il 0 by 0 - Keqy 0 e, 0
m; m; m; m;
0 E 0 ﬁ 0 _ kqu 0 _ bqu
m; m; m; m;

10 journal.ump.edu.myfijame <«



Author et al. | International Journal of Automotive and Mechanical Engineering | Vol. XX, Issue X (2025)

These matrices are defined as in Eq (28), maintaining consistency with the transformation applied to obtain the off
coordinate formulation from its original mechanical representation. In addition, Ces and Deg are the output and direct
transmission matrices representing the identity and zero matrices, respectively. Symbolically, {Aep, Cap} € Asxs and

{BGB, DaB} € </”8x2.

As the final step in the transformation process, the aff coordinate model is converted into the dq reference frame. This
transformation follows the same methodology as the 1-DoF system analysis, where the Kp matrix is applied to (21) to
derive the state-space representation of the 2-DoF vibrational mechanical system in dq coordinates, as outlined in (23).
Notably, the vector-matrix representation for an n-DoF mechanical system retains the same structural format as presented
in (23), ensuring scalability and general applicability.

The state-space vectors for the dq coordinate system are structured as follows: the state vector is qaq(t) = [014(t), qaq(t),
02d(t), Gag(t), gza(t), gsq(t), gaa(t), Gaq(t)]”, the output vector is Yaq(t) = quq(t), and the input vector is Udq(t) = [U1d(t), Usg(t)]™.
These vectors are mathematically defined within the spaces {quq(t), Yaa()} € {R®} and ugq(t) € {R?}, preserving the
system’s dynamic characteristics under the transformation.

Following the approach used for the 1-DoF system, an electrical analogy model is developed for the 2-DoF system,
as illustrated in Figure 4. These equivalent circuits leverage Thévenin voltage representations, whetg each channel—d
and g—is represented separately. As depicted in Figure 4(a) and (b), the 2-DoF system introduces an\increased number
of state variables per channel, effectively doubling those present in the 1-DoF case, thereby hig the expanded
complexity of the system’s vibrational dynamics in the dg domain.

3.3 Analysis of a Mechanical-Vibrational-Dynamical System of Three-Degree-of-

energy equations governing the system, which encompass kinetic, pote
expressed as follows:

1 1
KE(t) =Em1xl(t)2+§m2x2
1 ) 1 ) 1
PE(t) = E keql - x,(t) +§' keqz x5 () +§. keq3 "X (29)
1 , 1 _ 1
tDE(t) = E beq1 -xl(t)z +§' beq2 'Xz(t)z +Eb

Sithose developed for the 1-DoF and 2-DoF systems. In this

These equations follow the same formulation
D2, Deg2 = b2 + D3, Degz = b3 + D4, Kegr = K1 + Ko, Kegz = k2 + ks,

specific case, the system parameters are define
and keq3 = ks + ka.

beql

sions, the state-space dynamic model is derived and structured as shown in
e vector q(t) = [gj(t)]", where j € {1, 2, 3, 4, 5, 6}, while the output vector
icitly defined as follows: ga(t) = xa1(t), g2(t) = dxa(t)/dt, gs(t) = X2(t), qa(t) =

By applying (17) to these energy €
(18). The system is characterized by a s

follows y(t) = q(t). The state variables age e
dxz(t)/dt, gs(t) = xs(t), and gs(t (ﬁ

The scalar input affecti ystem is denoted as u(t) = fi(t). Mathematically, the state-space representation of the
system adheres to {q(t)@At)} SRS
The state andfinput matrix (B) are structured as follows:
0 1 0 0
_ kefh _ beq1 E & 8 8 0 7
my my my my 0 0 0
0 0 0 1 k, by 0
A=| k2 b, keqy  beg, =2 — |B=|0 (30)
— — - - m; m; 0
m, m m; mz 9 1 1
Y ke b [
0 0 s = ms ms | o
m3 ms

Additionally, the output matrix (C) and the direct transmission matrix (D) are both identity and zero matrices,
respectively. This representation can be expressed as {A, C} € s and {B, D} € Msx1.

To extend the analysis of the 3-DoF vibrational mechanical system, the transformation into aff coordinates is
performed following a methodology analogous to that used for the 1-DoF and 2-DoF systems. This transformation, as
described in (21), introduces the notations gi«(t) = qgi(t) and gip(t) = gi(t — =/2), while the external force components
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transform as uq«(t) = u(t) and up(t) = u(t — ©/2). As a result, new state (qep(t)), input (Uap(t)), and output (yap(t)) vectors are
derived, where: qap(t) = [qi(t), qip(t)]" for i € {1, 2, 3, 4, 5, 63}, Yas(t) = dap(t), and Uap(t) = [Ua(t), up(t)]™.

m, my-ar-q4(1)
Vk é beql'qld(f)
d 1/dt
214 é Ky (1)
e byq ()
n, 1y @y 1)

17k

eq2

Ky 14(1)
n dgg(1)/de A
_() (1) 9 byl

2-my @rq (1)

(@
m, ml-(z)z-qlq(t)
TN —< >
Vk.q 2myor é Begr )
dg, (H)/dt
) (k)
é by quy1)

1y @+ 3(1)

>—<>
eq2 2'”’2"”“?4(1“) kz_qlq(r)
dgsy(1)/dr
bz'%q(f )
beqz'quq(r]
(b)

Figure 4. Electrical analogy of the proposed 2-DoF mechanical system in dg coordinates. The two channels d and g are
shown. (a) Channel d. (b) Channel g

From a mathematical perspective, this transformation results in {qes(t), Yes(t)} € {R*?} and uep(t) € {R%}. The state-
space representation in of coordinates, derived from (21), is defined by the matrices:

A A B
Agg = [ a1y A“B12]; By = [Baﬂu] (31)

Aqgp,, ap22 afz1

where Cap and Dap remain the identity and zero matrices, respectively.

The submatrices comprising A« and Bep are explicitly given in (32) and (33), respectively. From a symbolic
representation, {Aup, Cop} € AMi2x12 and {Bap, Do} € M12x2.
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To further develop the model, the Kp matrix is applied to the system in off coordinates, leading to the dg-domain state-
space representation of the 3-DoF mechanical system, as described in (23). The state, output, and input vectors in dq

coordinates are: qaq(t) = [qia(t), Gig(t)]” for i € {1, 2, 3, 4,5, 6}, Ydq(t) = quq(t), and ugq(t) = [ua(t), ug(t)]".

0 0 1 0 0 01 0 0 0 0 0 O
0 0 0 1 0 0 0 0 0 0 0 O
k b k b
—;lql 0 —;l‘“ 0 m—20 m—zooooo
_ 1 1 1 . _ 1 .
Aapyy = k ) k|’ Aapy, = b ’
0 - oo _Eu 5 2 0 = 00 0 0
my my m; my
0 0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 o0/ L1 0 0 0 0 O
L) 0 bz 0 Az 0
m, m, m,
0 L) 0 b 0 _Keqy
m; m; m;
A. |0 0 0 0 0 0
“1 "o o0 0 0 0 o |
ks
o 0 o0 o — 0 (32)
mg
ks
0 0 0 0 0 —=
b k
-2 9 = 0 0
m, m, m
0 beay X 0 =
m, m; m,
| o 0 0 0
T 0 0 0 1
ﬁ 0 _k _beﬁ 0
m3 m3
0 ﬁ keq3 0 _beq3
3 ms |
Baﬂu =0; B04321 = (33)

w§|)—‘ oS O O oo

This system is characterized mathematically as {qaq(t), Yaa()} € {R¥?}, with udq(t) € {R?}. The state-space
formulation in dq coordinates follows:

_ Ad'hl Adcuz]; qu _ qu11] (34)

Agq = =
q
AdQZ1 AdlIzz Bd‘lZI

where the output (Cuqg) and direct transmission (Ddq) matrices remain identity and zero matrices, respectively.
The submatrices of Adq and Budgq are structured as indicated in (35) and (36).

An electrical analogy for the 3-DoF mechanical system is established based on the Thévenin equivalent circuit approach,
as defined in (23). The corresponding circuit model is illustrated in Figure 5, with separate d- and g-channel
representations shown in Figure 5(a) and (b).

One notable conclusion from this analysis is that all 1, 2-, and 3-DoF models retain their linear properties regardless
of the applied transformation. This is due to the intrinsically linear nature of the mechanical system and the linear
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transformations involved [36], [37]. Additionally, the dq models exhibit inter-variable coupling, which can be eliminated
through nodal transformations, thereby reducing the system to uncoupled equations based on its eigenvalues [38].
Furthermore, the electrical analogy circuit models can be seamlessly implemented in simulation platforms, facilitating
behavioral analysis and computational validation.

0 W 1 0 0 0 r 0 0O 0 0 0 O
—w 0 0 1 0 0 0 0 0 0 0 O
_Keq, 0 _beq, w L) 0 by 0 00 0O
_ my my my . _1m
Adqy = Keq beq k, |’ Adqy, = b,
0 -— - ——+ 0 —= 0O — 0 0 0 O
my my my my
0 0 0 0 0 W 1 0O 0 0 0 O
0 0 0 0 —w 0 L0 1 0 0 0 O
k2 0 by 0 9z 0
m, m, m;
0 E 0 2 0 _@
m; m; m;
A _10 0 0 0 0 0 .
dz1 =1 g 0 0 0 0 0o |
k 35
o 0o o0 o0 —= 0 (35)
ms
k
0 0 0 0 0
3
@ W E 0 b_
m; m; m;
b k b
—w _ €% 0 ) 0 -3
m; m;
0 0 0 0
Adgz =| g 0 0 1
ﬁ 0 _% W
ms ms
0 —w —%
ms
0 07
0 0
V4 0 0
0 0
Baﬂu =0; Baﬁu = i 0 (36)
ms
1
0 —
| ms

4.0 ANALYSIS OF ENERGY EQUATIONS: MECHANICAL ENERGY CURVES AND DQ
ENERGY SURFACES IN 1-, 2-, AND 3-DOF SYSTEMS

The investigation of energy equations within both mechanical and dq coordinate systems for vibrational mechanical
systems with 1-, 2-, and 3-DoF offers significant insights into system dynamics. This study provides a quantitative
assessment of energy losses, identifies resonance effects, supports control and optimization strategies, and facilitates
comparative evaluations across different coordinate systems. Additionally, this analysis serves as an educational tool and
extends its applicability to interdisciplinary domains, contributing to the broader advancement of engineering and applied

mechanics [39], [40].
In this work, the energy equations in mechanical coordinates have been previously derived for:

e The 1-DoF system, given in (16),
e  The 2-DoF system, detailed in (25), and
e The 3-DoF system, formulated in (29).
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Building upon these formulations, the expressions for kinetic, potential, and dissipation energy in dg coordinates are

now derived.
To streamline the transformation process, the energy equations in mechanical coordinates for the 1-DoF system (16)

are restated as follows:

mo et o meeg D)
1/k, 211y @ @y(1)
Vkeg: 2-my- (1) é bt cal 1O é begr+ (1)
T dg, (0)/dt
dg,4(H)y/de q .
d14(0) é ksl é hy s (1)
e byq (1) é b i)
n;, My @ q34(1) "
e > T \\
]/keql 2.m2.([}q4q(t) e kl-qld(l) ka qlq(f)
by gy (1)
_— é by qry(1) 9 x
dgsy(1)/dt
begrqaq(t)
é begrqaa(?) é R
é k3'qwq(t)
e bs"l(,q(f)
nty, My s (1)
m, My @™ 4(1) oo 5q
g 3 p T P m v ~N G
kegs 2y @rqy(t), l/keq,'i 2:my @ qe4(1) k;-ng(fj
dgutyide dgs (1)t |
O ) ’ O g0 bydut
é begsQealt beg3 g
% (b)
Figure 5. El analogy ‘of the proposed 3-DoF mechanical system in dg coordinates. The two channels d and q are

shown. (a) Channel d. (b) Channel q

1

KE(t) = E my '551(02
1

PE(t) = 5 keg, "1 (£)? 37
1

DE(t) - E eql xl (t)

The Kkinetic energy expression is initially converted into off coordinates using the transformation approach developed
in earlier sections. The corresponding expression is:

KEa(© =3 me- a5 [20)] )
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Applying the Kp transformation matrix to (38) results in the kinetic energy expression in dq coordinates, as given in
(39).

Applying the same transformation approach to the potential energy and dissipation energy expressions, their dg-
coordinate equivalents are obtained in (40).

Some key takeaways and implications can be:

KEqq() = 1 m, (Kp_[xld(t) )T_K _[xld(t)

X14(1) X1q(0)

1
KE4q(t) = 3 my - (551d(t)2 + J'C1q(t)2)

PEdq(t) - eq1 (xld(t)z + xlq(t)z)

(40)

Nlb—*l\”’—‘

DEdq (t) eq1 (xld(t)z + xlq(t)z)

e Energy invariance across transformations: The total energy remains invariant &‘v dg 4ransformation,
confirming the preservation of physical properties in the new coordinate sygster

o Simplification of control design: The separation of d and g com %
easier implementation of control techniques, particularly for apghications invol
energy regulation.

sformed equations enables
g resonance suppression and

e Comparative analysis with mechanical coordinates: grhe trans n highlights differences in energy
distribution and provides insights into damping effects, gy losses, and system response in both mechanical
and dq domains.

By leveraging these energy equations in dg coordinates,
analysis and contributes to the enhancement of dynamic _syst

advances the analytical methods used in vibration
ling.

4.1 Derivation of the expressions for the kineti I, and dissipation energies involved in the 2-DoF system

Applying the same procedure developed ingthe ca f”1-DoF, the expressions of KE(t), PE(t), and DE(t) in dqg
coordinates related to the case of the 2- teMyare obtained and defined as follows

1 2 v 2 1 o 2 o 2
KEdq(t) - (RE(O? + 21(0) + 5 My - (%24(6)? + 224(0)°)
PEgq(®) =5 A %07 - k- (318 - X4 (6) + 21q(8) - x39(0)) +
1
) E eqz : (xzd(t)z + qu(t)Z) (41)

- (414 (6)? +x1q(t>) by - (1a() - 0 (8) + 1 () - g (8)) +

5 beg, = (F2a(©)? + 354(t)?)

4.2 Derivation of the expressions for the kinetic, potential, and dissipation energies involved in the 3-DoF system

Following the same transformation methodology applied to the 1-DoF system, the kinetic energy (KE(t)), potential
energy (PE(t)), and dissipation energy (DE(t)) equations are now derived for the 3-DoF vibrational mechanical system in
dqg coordinates. These energy expressions are obtained through the direct application of the dq transformation to the
original equations formulated in mechanical coordinates, ensuring consistency with the previous analytical approach.

By systematically extending the transformation process, the resulting energy equations in dq coordinates for the 3-
DoF system are expressed as follows:
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1 1 1
KE4q(t) = 5 M (%14(D? + %14(D)?) + 5 M (%24 (®)? + %2q(D?) + 5 M (%3a(D)? + %34(D)?)
1 1 1
PEgq(t) =5 keg, - (202 + x14(D)?) + 7 ke, ° (x2a ()% + x24(0)%) + > Heq, * (230 (D)% + x34(D)?)

—kz -+ (x1a() * %20() + X1q(8) - x2q(8) ) = ks - (20(E) - X3 (£) + X3q(£) - x54(1)) +

< . (42)
+ E ’ keqz : (xzd(t)z + x2q(t)2)
1 1 1
DEdq(t) = E ' beql ' (xld(t)z + qu(t)z) + E ' beq2 ' (xzd(t)z + J2:2q(t)2) + +E ' beq3 ' (xzd(t)z + JE:Zq(t)z)

by - (%1a(6) - %2a(E) + 51 (£ - %z () = by - (a (£) - H3q (£) + g (£) - g (©))

These transformed equations provide a comprehensive representation of the system's energy dynamics in the dg
reference frame, facilitating deeper insights into energy distribution, dissipation mechanisms, and resonance behavior
within the 3-DoF vibrational model.

5.0 SOLUTION OF THE SYSTEM IN MECHANICAL AND dg COORDIN

To achieve a comprehensive understanding of the state variable dynamics within the
systems, it is essential to derive their mathematical expressions by solving the governing'e
equations of motion. This process enables a systematic investigation of the variablesd
the dq reference frame, providing a rigorous foundation for analytical comparisons.

| mechanical
based on the

The primary objective of this section is to:

e Establish the mathematical structures for each state variable.

e Compare these analytical solutions with simulation res valida el accuracy.

e  Present a formal representation of the mathematical for ions governing the system behavior.

By systematically deriving these expressions, the analysi 0 ilitates a direct evaluation of system dynamics
but also strengthens the interpretation of transformations bete mechanical and dq domains, ultimately enhancing

the precision of the proposed vibrational system mod
51 Solution for 1-DoF in mechanical coor
The equation of motion (EoM) for th ational mechanical system is given in (17) and is rewritten explicitly

as:
my - Xy (t) + begay: X1(8) + keqr * %, (t) = F * sin(w - t) (43)

where xi(t) represents the dis| ﬁf the system, and all system parameters are previously defined in Section 3.0.

To determine the gengra tiofy for xa(t), the solving (43) by obtaining both the homogeneous (complementary)
solution and the particufansolu hich are then summed to derive the complete response of the system [41], [42].

The homog @ om nt is derived from the unforced version of (43):
my - X (8) + beql “X1c() + keql “x1c(t) =0 (44)

where xi¢(t) represents the complementary part of xi(t).

By assuming a trial solution of the form: xic(t) = e®? and substituting it into (44), the characteristic equation is
obtained:

rn:['D2 + beql'D + keql = O (45)
Solving for D, the roots of the characteristic equation are:
Di2=—a+j¢ where:x, (t) = C; - e @ Tt 4 ¢, - e@H O (46)

where C; and C; are integration constants determined by initial conditions [41], [42].

Using Euler’s equation [43] and trigonometric identities, the above expression can be rewritten as:
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x1c(t) = €7@+ (X, - cos(¢ - £) + X, - sin({ - £)) (47)
where X1 = Cy + Cz and Xz =j-(C1 — Cy).

For the forced response, a particular solution of the following form is assumed, using the indeterminate coefficients
method [41], i.e., x1p(t) = A-cos(a-t) + B-sin(e-t). Differentiating: x;,(t) = —A - w - sin(w - t) + B - w - cos(w - t) and
¥ip(t) = —A- w? - sin(w * t) — B - w? - cos(w - t). In addition, A and B are coefficients to be determined. Substituting
these into (43) and equating the coefficients of sin(w-t) and cos(w-t), the following system is obtained:

Koo — w? -
b I o

Solving for A and B as follows in (49). Applying trigonometric transformations, the total solution for xs(t) is given by
(50).

(A:— F:w-beq,
(kefh —w? ml) + (w ) be(h) (49)

B =— F.(kech_wZIml) ﬁ
(keq1 —w?- ml) + (w ) be(h)
x1(6) = x1(8) + x5 (t) = e - X -sin({ - t + p) + T - sin(w @ (50)

where X = sqrt(Xs? + X22), p = atan(X1/Xz), T = sqrt(A% + B?), and ¢ = ata

In order to interpretate the solution, one can state the following:

e The first term represents the transient response due to i conditions, which decays exponentially over time
at a rate defined by o.

e The second term represents the steady-state respon follows the external forcing function but is shifted
in phase by ¢.

This solution provides a rigorous mathematical
vibrational system under sinusoidal excitation.

5.2 Solution for 1-DoF in dq coordifa

The EoM for the 1-DoF vibratio ‘@
transformation qiq(t) = qaq(t) = qaa(t) = qz
of D is expressed as:

0 0
-1 q1,4(0) 0
eth _ . Chq(t) _ uld(t)
“ o] 7| =D
keq, D +@ O) Uy (0
my my

where uiq(t) and usg(t) correspond to the d and g components of the external force acting on the transformed system.

ation for understanding oscillatory behavior in the 1-DoF

nical system in dg coordinates is derived from (23). Using the variable
= Ozq(t) = e®Y, and substituting into (23), the resulting system model in terms

By solving the unforced equation, the determination of the complementary solution of the system is given by:

(mlz'D4+2'beq1'm1'D3 +(beq12+2'm1'(1)2+2'keq1'm1)'D2+
+(2'beq1'm1'w2 +2'beq1'keq1)'D +beq12 'w2+keq12_2'keq1 'ml'(x)z + (52)

+m? - w?)-ePt =0

Solving for D, the characteristic roots are:
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l.(M) D =_1.(M)
2 m ’ ) my (53)
D3=—1-<M>, D4=_l.<w)
2 my 2 my
where I'; and I are defined as:

1

1 2
=2 (keq1 my +my? - w? — (E ’ beq1 +J my - \/beql =4 Keq, m1>
) (54)
2. ,.2 1 ’
I =2 (keg, My +my® - w? — (E ’ beql —jmy bea,” =4+ Keg, ™4

Using these roots, the complementary solution for g;ic(t) (where i € {1,2} and j € {d, q}) is:

qijc (t) — C1 . e—Drt + CZ . e—Dz't + C3 . e—D3-t + C4 . e—D4 t (55)
Where C, where n € {1, 2, 3, 4} are integration constants determined from initial conditig - ler’s equation
and trigonometric transformations, the complementary solution can be rewritten as:

o8 .

ifferentiallequations with constant coefficients

ql‘jc (t) — e—adq-t . (deq - CoS ((1dq t+ pldq) + deq . S.

The particular solution is obtained using the method for solving linear
[42].

Starting with:

14, () = H D (57)
Applying the variable change 6
1( )
Ul(t)_ +D4'U1(t) =F'beq1'w (58)
Solving this equation, the result i |s
F beg, @M
€d1 — 1) (59)
beq1 j I
Repeating ble tragsformation process for Vy(t), Vs(t), and Va(t), one obtains:
Fbey, * @ my?
Vz = —4. ( : €q1 1 : >
(beCh - Fl) ) (befh . FZ)
Fbeg, *w-my
w=—+< —— ) (60)
(beq, =+ 11) - (beq,” + %)
Fbeg - -my?*
Auq, (1) =V, = 16 < L - >

(beChZ + 1—'12) ’ (befhz + FZZ)

The final expression for qq(t) is:

‘hd (t) = qldc (t) + qldp (t) = e_adq.t : (deq * Cos (Zldq t+ pldq) +X2dq - sin (Equ t+ pqu)) +

o Eotmom ) ©
OREYDRONEYD
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Using a similar process, we obtain the remaining state variables . qiq(t), g2d4(t), and gxq(t), are derived and shown as
follows:

qlq(t) =g %q't. (deq ‘- cos (Cldq “t+ pldq) + Xqu - sin ((qu “t+ pqu)) +

e (e o) it 2
(s + 1) (g, + 1)

q2,(t) = e %dqt . (deq - cos ((1dq t+ pldq) +X34, " SiN ({qu t+ pqu)) +

+16.(F""  (keq, —m1 - @?) 'm14> (63)
(be%z + Flz) ’ (bthz + 1—‘22)

qzq(t) = e %dq't. (deq * COS ((1dq “t+ pldq) +Xchq - sin ({qu “t+ pqu)) +

F +(,U2 'm14 'beql (64)
+16- 2 2\ . 2 2
(beCh +['1 ) (bth +F2 )

5.3 Solution for 2-DoF in mechanical coordinates

The EoM for the 2-DoF vibrational mechanical system in mechanical coordin naragterized by 17 and (25).
However, for practical purposes, the EoMs are rewritten as shown as follo

(65)

my - X1 (t) + beg, %1 () + keq, * X1 (t) — by~ %,(¢)
{ -sin(w - t)

My« X5(t) + beg, " %2(t) + Keg, * %2(6) — by~ %4

Using the same solution method applied to the 1-DoF system
the solutions for xi1(t) and x»(t) are derived as follows:

ving the complementary and particular solutions),

{xl(t) =e %t X, -sin({y - t + py) + e7%2% t+p,)+ T -sin(w-t+ ¢;) (66)

x,(t) = e 1t X, -sin({ - t+py) + e in((; - t+p,) + T, sin(w-t+ @)

where the parameters ai, Xi, &, o, Ti, ¢ fined as follows: ai = pi1, Xi = sqrt(Ai? + Bi?), & = piz, o =

atan(Ai/Bi), Ti = sqrt(A’? + B’?), and ¢

The parameters A’; and B’; are obta ﬂii y solving the following linear system of equations:

Ay F -k,
M12 B', F-b, w
A= 67
MZZ A 2 F " (keql - (IJZ " bz) ( )
& BIZ F- be‘h
where the ma nent re defined as:
11_ eq1 —w? m —w-be(h ]M1z=[ k, a)-bz]
beq, keq, — w* - my —w-b, —k, )
M., = [_kz w - bz] M., = keq, = @* M, —® " beg,
27 =b,  —k, 22 W * beg, keq, — w? - m,

The constants pi; and pi. correspond to the roots of the characteristic equation derived from the D operator method
(similar to the 1-DoF case). The characteristic roots are defined as:

{Dl,z =—putipe (69)

D34 = —p21 ) D22

Since the expressions for pi; and pi are lengthy, they are referenced from previous calculations rather than explicitly
stated.

The coefficients A; and B; are defined as:
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{Al = Cyy + Cyp, By =j-(Ciy — Ci2)

. 70
Ay = Ci3+ Cy, By =j-(Ci3— Cia) (70)

where Cin (n € {1, 2, 3, 4}) are integration constants determined based on the initial conditions of the system.
Some observations can be drawn from the latter results, for instance:

e The general solutions for x1(t) and x-(t) include transient components (exponentially decaying terms) and steady-
state components (sinusoidal forcing terms).

e The constants pi; and pi; describe the damping and oscillatory behavior of the system.
e The matrix equation (68) provides the steady-state amplitude and phase shift for the system's response.
e This methodology can be extended to higher degrees of freedom systems (i.e., 3-DoF).

This analysis provides valuable insight into the coupled vibrational behavior of a two-mass system, crucial for
engineering applications such as structural dynamics, automotive suspensions, and mechanical oscillators.

54 Solution for 2-DoF in dqg coordinates

The model in dg coordinates is defined in (23). By following the same solution methodole subsection

5.2 (which includes solving the homogeneous and particular solutions), the general soluti@
where i e {1, 2, 3,4} and j € {d, q}, are expressed as:

statevariables g;j(t),

4
qi; ®) = Z le_aidq.t . Xidq sin ((idq "t pidq) + (1)
i=1
The solutions for D (eigenvalues of the system matrix) are gi V-
(72)

These roots represent the damping
parameter definition:

scilatory components of the system in the dq reference frame. Some

e  Damping component: cigq n}, (real part of Dy).

e  Oscillatory component: n}, (imaginary part of D,), where n € {1, 3, 5, 7}.

e The general solutions for g;(t) contain transient (exponentially decaying) and steady-state (sinusoidal
response) components.

e The eigenvalues D, determine damping and oscillatory frequencies.
e  The amplitude and phase shift are determined using Xiqq and pi.

e The results validate that the dg-transformed system preserves the original system's linearity and oscillatory
nature.

This approach provides a comprehensive mathematical framework to analyze mechanical vibration systems in dq
coordinates, enabling control, optimization, and predictive maintenance applications in engineering.

5.5 Solution for 3-DoF in mechanical coordinates

The EoMs governing the 3-DoF system in mechanical coordinates are given by:
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my - X%, () + beql FAGRES keq1 “x1(8) = by Xp(t) —ky - x,() = 0
My = %5(£) + beq, " %2 () + Keg, * x2(8) — by = %1 (t) — ky - x1(£) =0 (73)
ms - X’:},(t) + beq3 " J'C3(t) + keq3 " X3(t) - b3 * J‘CZ(t) - k3 " xz(t) =F- Sln((l) : t)

The solutions for the displacement variables xi(t), x2(t), x3(t) in mechanical coordinates are obtained as follows in (74).
This solution consists of two parts:

x () =e vt X -sin({y -t + p)e 2t X, -sin({p -t + py) +e - X sin({5 -t + p3) +
+T; - sin(w " t + ¢;)
x(t) = e 1t X, -sin({ rt+p) + et X, -sin({ ct+ py) + e Xy -sin((s  t+ ps) +
+T, -sin(w - t + ¢,)
x3(t) = e 1t X, -sin({ ct+py) + et X, -sin({, c t+ py) + e X -sin({5  t+ ps) +
+T; - sin(w - t + ¢3)

(74)

1. Transient response: e *"X;-sin(¢i-t + pi), which represents the natural oscillations that deay over time.
2. Steady-state response: Ti-sin(ew-t + ¢;), which is the forced response due to the exte citation.
Some parameters definition:
e Amplitude componets: X; = sqrt(A? + Bi?)
e Phase shifts: p; = atan(Ai/Bi), where i € {1, 2, 3}.

o Definition of Ajand Bi: A; = C11 + Ci2, B1 = j-(C11 — C12), A2 = Cs + Cu4, By =§8(€13 — C14), A3 = Ci5 + Cy, and
B3 =j-(Ci5 — Cig), Where Cin (n € {1, 2, 3, 4, 5, 6}) are integratiofi\constantsj@etermined by the initial conditions.

e  Steady-state response parameters: Ti = sqrt(A’i + B’i?)
solving a system of equations, which is too lengthy to b licitly included.

To solve for the homogeneous solution, the characteristic

(75)
Some parameter definition:
e Damping component: ¢ =
e  Oscillatory frequency cown
From here, it can be seen
e The 3-DoF syst its three natural oscillatory modes, each with distinct frequencies ¢ and decay rates ai.
e The foreed e depends on the excitation frequency w and results in a steady-state oscillation with
ampli and e shifts ¢i.
e Thee lues Dy characterize the dynamical behavior and are obtained from the system's characteristic

equation.
e The integration constants C1, must be calculated from the initial conditions.

This analytical framework allows to predict vibrational behavior, optimize system parameters, and design effective
damping and control strategies.

5.6 Solution for 3-DoF in dq coordinates

The 3-DoF system in dqg coordinates is represented by the state-space model defined in:

5 k;
_ “@iggt.y. . . . d
qi; ®) = ; Ie dq deq sin ((qu t+ pldq) + iS:o(PmZ + piz?) (76)

wherei e {1,2,3,4,5}and j € {d, q}.

To solve the system, the characteristic equation is analyzed and determine its roots, denoted as Dp:
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Dy =—pi1 ) P12 D34 =—p21tj P2
Ds¢ = —p31 L) P32s D7g = —D41 £ Daz ()
Dy19 = —Ps1 £ D52
From these solutions:
e  Damping component: cidq = Re{Dn}-
e  Oscillatory frequency component: (igq = 3m{Dn}, where n € {1, 3,5, 7, 9}.
e  Phase shift: p; = atan(Ai/B;).
e  Amplitude component: Xigq = sqrt(AiZ + Bi?).
The constants A; and B; are defined as: Aj = Cin + Cinea), Bi = Cin — Cyn+1), Where h € {1, 2, 3,4, 5,6, 7, 8, 9, 10}.
From the mathematical modeling and solution approach, three fundamental insights emerge:
1. Scalability of the solution to higher-order systems:
a. The solution approach for vibrational systems in both mechanical and dq ¢ inates is fully linear.

b. As a result, the same methodology can be applied to higher-degree- m (nsDoF) systems,
making it extendable and generalizable.

2. Distinct components in mechanical coordinates:

a. The solutions for mechanical coordinate systems exhi op omponents:

= Transient vibration: This occurs due to the ini
and results in decaying oscillations.

ent from the equilibrium position

= Forced vibration: This occurs due to t ternal excitation force f(t) = F-sin(w-t). The system
resonates at its natural frequency while following the external frequency.

b.  This duality in vibration is well establj vibrational mechanics and is a key characteristic of
oscillatory systems [44], [45].

3. Distinct components in dg coordinates: Q
a. Unlike mechanical coordinates, the ions in dq coordinates consist of:

= Atransient ¢

ich exhibits exponential decay over time.

= A constant Stéa
b. This is a definin
converts time—véng sy
6.0 SIMULATIO

This section prowi

ate component, which remains invariant over time.

acteristic of systems modeled in dqg coordinates, as the transformation
tem variables into steady-state quantities in the dg domain [25], [27]-[29].

L¥S

in- examination of simulation results for the proposed 1-, 2-, and 3- DoF vibrational
nd dg coordinate domains. All simulations were conducted under the influence of a
a peak amplitude of 900 N and a linear frequency of 10 kHz. Table 1 summarizes the
s for each system, ensuring consistent initial conditions where: xio(t) = dxio(t)/dt = 0 for i € {1, 2, 3}.
implemented using MATLAB-Simulink.

The simulations we

The simulation results for the 1-DoF system in mechanical coordinates are presented in Figure 6, which provides a
comprehensive visualization of its dynamic behavior:

Table 1. Parameters of 1-, 2-, and 3-DoF system

System Parameters Values
ki 10 [N/m]
k2 1 [N/m]
1-DoF b1 10-107* [N-s/m]
b2 1.5 [N-s/m]
my 100 [kg]
ke 10 [N/m]
2-DoF ke 1 [N/m]

23 journal.ump.edu.my/ijame <



Author et al. | International Journal of Automotive and Mechanical Engineering | Vol. XX, Issue X (2025)

ks 1.1 [N/m]

b1 10 [N-s/m]

b 11 [N-s/m]

bs 1 [N-s/m]

my 100 [kg]

m; 100 [kg]

ke 10 [N/m]

kz 1 [N/m]

ks 11 [N/m]

ks 1.1 [N/m]

b1 1 [N-s/m]
3-DoF b, 1.1-107° [N-s/m]

bs 1.-107% [N-s/m]

b4 10-10°6 [N-s/m]

m 100 [kg]

m; 100 [kg]

ms 100 [kg]

e Figure 6(a) and (b): Depict the position variable xi(t) and velocity varij

e Figure 6(c) and (d): Show zoomed-in views to highlight key dynamic c

e Figure 6(d): Represents the excitation force fi(t).

From Figure 6(a), the forced vibration component exhibits @smaller ampii than the free vibration component,
consistent with the expression derived in (50), where: T << X.

equation: %) =Ja?2+2-X- et .

@ sient and steady-state components. The natural
ation frequency corresponds to w ~ 62.832x10° rad/s.

Analyzing Figure 6(b), the ve
cos({-t+p+tan? (%)) +w-T-cos(w-t+ ¢) reveals
frequency is approximately {~ 0.323 rad/s, while the d

The transient response in dq coordinates is depi re 7, illustrating the dynamics of:

*  Qud (t) and gaq(t).
*  Qad(t) and gzq(t).
o fiq(t) and fiq(t).

Some key observations can be dral from'the latter, for instasnce:

e Thee conversion in dq coordinates results in:
=0 N (d-axis component).
o =900 N (g-axis component).
Table 2 summarizes the steady-state values of gnm(t), where n € {1, 2} and m € {d, q}.

The transient dynamics for the 2-DoF system in mechanical coordinates are illustrated in Figure 8, showing the
responses of xi(t), Xo(t), and their derivatives. Notable observations include:

e Figure 8(a): Confirms the expected dynamic response of x(t).
e The presence of two distinct frequency components in the transient state, corresponding to (66).
e Figure 8(d): Highlights a beating effect, a well-documented phenomenon in vibrational systems [44], [45].
e The displacement x»(t) exhibits:
o A low-frequency component at 1.31 mHz (natural frequency).

o A high-frequency component at 10 kHz, originating from fi(t).
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The dq transformation results for the 2-DoF system are presented in Figure 9, showcasing variables: gmn(t), where m
e {1, 2, 3,4} and n € {d, q}. Some key insights:

e Transient and steady-state components confirm the validity of (71).
e Table 3 shows that steady-state values are close to zero, indicating effective transformation.

The dynamic behavior of the 3-DoF system in mechanical coordinates is shown in Figure 10, depicting variables:
xi(t) and dxi(t)/dt for i € {1, 2, 3}.

Some observations:
e Figure 10(a): Confirms the expected transient and steady-state dynamics of xi(t).
Figures 10(e) and (f): Highlight the response of dxa(t)/dt under external excitation.

The dg-domain responses for the 3-DoF system are illustrated in Figure 11, focusing on: gmn(t) where m € {1, 2, 3, 4,

Table 2. 1-DoF steady-state values of qnm(t) V m € {1, 2} and n € {1, 2}

Parameters Values
Qaa(t) ~0 [m]
Qq(t) -2.28:107° [m]
Qaa(t) 1.432-107* [m/s]
Q2q(t) ~0 [m/s]

—I (t)

0 ' 400

0 ‘ 260
4 s
(b)

d

><10

E L VAVAVAVAVAVAVA

6.9738 56.974 56.9742 56.9744 56.9746
[s]

(©
—fi(t),
1000
A
-1000
0 100 200 300 400
[s]
(d)
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~h®)

1000

l%%(.)9738 56.974 56.9742 56.9744 56.9746
[s]
()
Figure 6. Transient simulation results of the 1-DoF system in mechanical coordinates. Initial conditions Xio(t) =
dxio(t)/dt = 0. (a) Dynamics of xi(t). (b) Dynamics of dxi(t)/dt. (c) Zoomed view of xi(t). (d) Dynamics of fi(t). (e)
Zoomed view of fi(t)

5,6}andn e {d, q}.
e Two components (transient and steady-state) align with (76).

e Table 4 confirms negligible steady-state magnitudes of qmn(t).

This study systematically analyzes 1-, 2-, and 3-DoF vibrational systems under sinusoid ion, drawing three
major conclusions:
1. dq coordinates simplify analysis and control:

a. In mechanical coordinates, the oscillatory response contains

% e Cy components.
b. dqtransformation simplifies the system to steady-st c variablesgimproving control and stability.

2. Multi-DoF systems exhibit beating and multi-frequency effects:

x
20 40 60 80 100
[s]
(b)
—f1a(t) —f1,(¢)
1000 ;
500
0 s
0 50 100
[s]
©

Figure 7. Transient simulation results of the 1-DoF system in dq coordinates. Initial conditions gmn(t) = 0 where m e {1,
2} and n € {d, q}. (a) Dynamics of gi4(t) and quq(t). (b) Dynamics of gia(t) and quq(t). () Dynamics of fia(t) and fi4(t)

Table 3. 2-DoF Steady-state values of gum(t) V m € {1, 2, 3,4} and n € {d, q}
Parameters Values

Gaa(t) ~0 [m]
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Qq(t) ~0 [m]
Qad(t) ~0 [m/s]
Gaq(t) ~0 [m/s]
gad(t) ~0 [m/s]
Gaq(t) ~0 [m/s]
Qaa(t) 1.432-10* [m/s]
Gaq(t) ~0 [m/s]

Table 4. 3-DoF Steady-state values of gum(t) Vv m € {1, 2, 3,4, 5,6} and n € {d, q}

Parameters ~ Values  Parameters Values
Qua(t) ~0 [m] Qad(t) ~0 [m/s]
Qao(t) ~0 [m] Gaq(t) ~0 [m/s]
g2d(t) ~0 [m/s] Qgsa(t) ~0 [m/s]
gq(t) ~0 [m/s] Qsq(t) -2.28-107° [m]
0a(t) ~0 [m/s] Qea(t) 1.432:107* [m/s]
Gaq(t) ~0 [m/s] Gea(t) ~0 [m/s]

a. The 2-DoF system exhibits beating phenomena due to multi-freque

b. The 3-DoF system contains two primary frequency compong
interactions.

dq transformation enhances convergence and control design:

0 100 300 400 0 100 200 300 400
[s]
() C)

Figure 8. Tran lati@r results of the 2-DoF system in mechanical coordinates. Initial conditions xio(t) = dxio(t)/dt

=0 where i & a) Dynamics of xu(t). (b) Dynamics of dx(t)/dt. (c) Dynamics of x.(t). (d) Dynamics of dx(t)/dt
g1, (8) —qu (B) ---qo, (t) —go, ()
107 [ 108

U —

0 0

030 40 60 80 100 O 20 40 60 80 100
[s] [s]
(@) (b)
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g, —g5. (1) —4(t) —41,(¢)

0 20 40 60 80 10C 20 40 60 30 100
[s] [s]
(© (d)
Figure 9. Transient simulation results of the 2-DoF system in dq coordinates. Initial conditions gmn(t) = 0 where m € {1,
2,3,4}and n € {d, q}. (a) Dynamics of gi4(t) and gu4(t). (b) Dynamics of g24(t) and gzq4(t). () Dynamics of gsq(t) and
03q(t). (d) Dynamics of gaq(t) and gaq(t)

a. Faster convergence to steady-state conditions is observed in dq coordinate

b. dq transformation facilitates the design of linear compensators by traj
equivalents.

ignals into dc

nics, particularly for

Finally, this work attempts to show the effectiveness of dq transformation in vih
ntal validation of dq-

multi-DoF systems. Future research can further explore linear compensator desig
based control strategies for complex vibrational systems.

7.0 CONCLUSION

Through a comprehensive simulation study and analysis of
excitation, this research provides valuable insights into system d
vibrational mechanics. The study highlights the transformati

-, and ibrational systems under sinusoidal
ics and the advantages of the dq transformation in
ffectiveness in simplifying dynamic analysis,
omplex mechanical systems.

ct oscillatory pattern composed of two frequency

o+ 10
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Figure 10. Transient simulation results of the 3-DoF system in mechanical coordinates. Initial conditions xio(t) =
dxio(t)/dt = 0 for i € {1, 2, 3}. (a) Dynamics of xy(t). (b) Dynamics of dxi(t)/dt. (c) Dynamics of x,(t). (d) Dynamics of
dxa(t)/dt. () Dynamics of xs(t). (f) Dynamics of dxa(t)/dt

components. The application of the dq transformation offers a strategic reduction in system complexity, effectively
decoupling system dynamics and providing a clearer understanding of steady-state behavior. This transformation
improves the response characteristics of the system, particularly in control applications, where it aids in stability
enhancement and performance optimization.

Moving to the 2-DoF system, a higher degree of complexity emerges in mechanical coordinates, as interactions

106 106 [l u®
52 : : : . 5% : : .
0 0
- \ . . , -5 s . . .
0 20 40 60 80 100 O 20 40 _6 0 10¢
[s]
(a)
105
5)(
0
-5 . . . . J .
0 20 40 60 80 100 80  10C
[s]
(©)
Figure 11. Transient simulation results of the 3-DoF syste ordinates. Initial conditions gma(t) = 0 where m ¢

{1,2,3,4,5,6}and n e {d, g}. (a) Dynamics of g4
i-frequéncy oscillations. The dq transformation decouples complex
3 e system responses. It also reveals the minimal influence of masses not
atio streamlines control implementation, demonstrating its practicality for
derscores how dq analysis enhances the understanding of multi-DoF systems,
ions and resonance effects.

The 3-DoF system furth
influences and understandin mdnteractions. Notably, the system contains dual frequency components, which are
simplified through dq tr, tiopy Additionally, the dq transformation converts ac signals into dc, facilitating linear
compensator applieatio thod ultimately improves system stability and enhances control performance. By
d allowing independent analysis of interacting components, the dq transformation provides

significant advantages’in vibrational system modeling and control.

The sinusoidalgxcitation used in this study directly influences system energy distributions, leading to complex
interactions between'@scillatory components. It also results in transient and steady-state behaviors, which are effectively
decoupled in dq coordinates, providing a deeper understanding of energy transformations within multi-DoF systems. The
results underscore the effectiveness of the dqg transformation in providing a clear, structured framework for analyzing and
optimizing dynamic responses in complex vibrational systems.

The findings of this study hold significant implications for advanced control systems, particularly in designing
controllers for multi-DoF systems that require precise system behavior modeling. Furthermore, the dg transformation
enhances stability and performance by simplifying control algorithms and facilitates real-time implementation of
advanced controllers, where dq conversion minimizes computational complexity.

By demonstrating the advantages of dg transformation in vibrational mechanics, this research lays a foundation for
future studies aimed at optimizing control strategies for nonlinear, multi-DoF systems. Additionally, it opens the door for
exploring applications beyond mechanical systems, including power electronics, electrical machines, and robotics.
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