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RESEARCH ARTICLE 

Modeling and Contact Stress Analysis of Crossed-Axes Helical Gear System 

Mohammed Abdulaal Kadhim*, Mohammad Qasim Abdullah   

Mechanical Engineering Department, College of Engineering, University of Baghdad, Iraq 

ABSTRACT – Crossed helical gears are susceptible to pitting damage resulting from contact stress, 
primarily due to the theoretical point of contact between the gears. The contact point transforms into 
an ellipse due to the deformation of the elastic material under varying loading conditions. The 
overheating between the tooth profiles during the engagement process contributes to the 
proliferation of pits, deteriorating the tooth surface and causing premature tooth failure. This study 
investigates the influence of two modifications: the tip relief design and the compound profile design, 
which combines involute and epicycloid profiles. A shaping process generates both standard and 
modified helical gears. The results indicate that increasing the amount of misalignment with a 
smaller harmonic waveform reduces the transmission error. The involute-epicycloid profile reduces 
the sliding velocity with the most significant improvement of approximately 16%. A decrease in the 
angle of pressure and an increase in the helix angle of 1.5 and 1.7, respectively, enhance the total 
contact ratio. The maximum contact stress observed for the modified involute-epicycloid surface 
decreased by 6%, 6%, and 2%, while the tooth root stress reduced by 6%, 8%, and 12% for the 
three positions, respectively. Meanwhile, the maximum contact stress for tip relief modification 
decreased by 2%, 6%, and -6%, whereas the tooth root stress reduced by 2%, 7%, and -1% for the 
three positions, respectively. Consequently, the modified crossed helical gear drive demonstrates 
superior performance compared to the standard gear drive for a given helix angle. Furthermore, the 
stress concentration factor decreased through the use of the modified helical teeth by about 2% and 
6%. 
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1. INTRODUCTION 

Gears are cylindrical wheels equipped with teeth that are designed to facilitate the transfer of mechanical power 

between rotating shafts. The gear wheel represents a gearing system that has captured the interest of numerous engineers 

due to the various technological challenges associated with meshing. Gears can be classified into many general categories 

depending on the orientation of the shaft axes: parallel axes, non-parallel intersecting axes, and non-parallel non-

intersecting axes. Crossed helical gears, referred to as crossed-axes helical gears, resemble regular helical gears but are 

mounted on non-parallel shafts and non-coplanar, featuring non-intersecting axes [1]. The relationship between the 

crossing angle 𝛌 and the helix angle 𝜷𝒊 (𝑖 = 1, 2) of mating gears is: 

𝜆 = 𝛽1 + 𝛽2 (1) 

Helical gears typically feature helicoid surfaces that are oriented in the same direction. A smaller helix angle is utilized 

in a negative direction. A typical shaft angle ranges from 0 to 90°. This occurs when gears with complementary helix 

angles are paired, maintaining the same direction of rotation. The operation of crossed helical gears fundamentally differs 

from that of parallel helical gears, as the engaging teeth slide against one another during rotation. The sliding velocity 

increases with an increase in the axis angle of rotation, reaching a minimum when the two helix angles are aligned in the 

same direction. The interaction between the surfaces of paralleled helical gear teeth occurs along a diagonal line, whereas 

the interaction between the tooth surfaces of crossed helical gear initiates as a point contact, which transforms into an 

elliptical shape due to elastic deformation under varying loading conditions. Crossed helical gearing, owing to its 

theoretical point contact, exhibits low load-carrying capacities, typically not exceeding a resultant tooth load of 400 N. 

Contact ratios of two or more are typically employed to enhance load capacity [2]. It is common to specify lower pressure 

angle values and relatively large tooth depth values to enhance the ratio of contact. A gear system that incorporates a 

helical gear represents a specific instance of gearing with crossed screw axes [3]. Numerous research studies have been 

conducted in this area. Despite the extensive research conducted in this field, the skew involute helical gear system 

remains a significant concern for designers and manufacturers. 

Sankar and Nataraj [4] examined the transmission errors between the driving and driven helical gears, which can result 

from manufacturing defects or misalignment in the gearbox assembly. These errors lead to noise and vibrations during 

gearbox operation. To prevent tooth damage in the helical teeth caused by transmission errors, the authors implemented 

tip relief on the gear tooth and utilized a combination of epicycloid with an involute surface. The study employed finite 

element analysis (FEA) to evaluate the performance of the existing standard and modified helical gear pairs. The findings 
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indicate that the adjusted design, which incorporates tip relief and modified helical gear, is better than the traditional 

standard gear for wind generator applications. This is especially pertinent as wind turbine generators experience variable 

wind forces, abrupt grid failures, and issues with pitching and braking systems.  

Natsuhiko et al. [5] employed an involute-cycloid compound tooth configuration for the spur gear. This gear type 

outperforms the standard spur gear in terms of bending strength, surface durability, and efficiency of power transfer. The 

study evaluated stresses in the tooth's root and contact area surface of the involute-cycloid compound tooth profile spur 

gear by modifying design factors, including the radius of rolling circle, angle of pressure, and depth of tooth, which 

determine the tooth profile. The authors examined the effect of design factors on the strength and driving performance of 

involute-cycloid composite tooth profile spur gears based on computational results. Additionally, the research assessed 

the tooth stress of contact and root stress while accounting for the center distance error, as well as analyzed the influence 

of center distance on the driving performance of involute-cycloid compound tooth profile spur gears based on 

experimental findings. Zhang and Liang [6] improved the method for manufacturing gears. The theory of gear ensures 

the basics of the curvilinear tooth gears. The convex and concave tooth surfaces were produced using two separate one-

sided face-milling cutters. The line contact was demonstrated in the final curvilinear gear drives that were mesh-generated. 

The work aimed to define gear drives based on the position of the line contact, namely double-helical gear drives. In 

addition, the study consisted of three main parts: a comparison of stresses and transmission errors in two-gear drives with 

identical contact ratios; the derivation of equations for the tooth surface, an analysis of transmission errors, and FEA; and 

four numerical examples illustrating the advantages and disadvantages of curvilinear cylindrical gear drives. 

 Liang et al. [7] introduced the curved contact element to the notion of contact and proposed a technique for 

constructing gear pairs with a short angle. The crossed helical gear unit was modeled mathematically. The stress analysis 

was carried out using ANSYS software. The FEA was conducted with a shaft angle of 10°, utilizing 3D models of a non-

parallel helical gear pair created in MATLAB. The findings indicated that the pinion could withstand a maximum von 

Mises stress of 793.69 MPa. The involute gear profile pair was used as a point of reference, with the meshing point 

experiencing a maximum contact stress of 1,639 MPa, which is distributed along the line of contact. The pinion 

demonstrated the capacity to withstand a von Mises stress of up to 1,233.8 MPa. Wu et al. [8] investigated the technical 

difficulties associated with high-strength gears. The study addressed the technicalities of transmission design, design and 

manufacturing integration, processing, and performance assessment of high-strength gears. The research focused on the 

technical aspects associated with design-manufacturing integration, particularly in wind power generation and aviation 

engines. The latest findings in anti-fatigue design, manufacture, and service performance assessment of high-strength 

gears were reviewed to encourage the development and use of high-strength gear technology. 

 Abdulaal and Abdullah [9] proposed a principle of the method involving the introduction of a contact line rather than 

a point between two meshing teeth. They employed a modified cutter tool with increased standard pressure angles of 25° 

and 35°. The design of the non-classic surface aims to prevent interference among the helical teeth. This modification 

incorporates a composite curve that includes an epicycloid-involute-hypocycloid gear tooth. The tensions in the 

intersecting helical gear teeth were decreased by raising the angle normal pressure values. The improvement percentages 

in contact stress and the tooth fillet area were approximately 29.345% and 15.421%, respectively. The most significant 

improvement in the gear system is attributed to the epicycloid-involute-hypocycloid gear tooth profile. The deviation in 

the line of action in intersecting helical gears is influenced by slight crossing angles. Kadhim and Abdullah [11] analyzed 

the effect of tool parameters on the resulting helical gear that integrates involute with epi-hypo-cycloidal profiles. They 

also assessed the impact of tooth thickness on the gear model, which was generated using the shaper-cutting technique, 

utilizing a suitable rack-cutter within a Cartesian coordinate framework. The findings indicate that the utilization of a 

hybrid profile, such as epi, involute, and hypocycloidal, within a single tooth results in an increased area of contact, 

thereby enhancing the gears' capacity to endure elevated pressures and extend their operating longevity. The higher 

stress in the contact area and the cumulative stress in the teeth region improved by approximately 33.169% and 26.08%, 

respectively, in comparison to the conventional involute profile, and by about 17.69% and 0.67%, respectively, in 

comparison to the conventional cycloidal profile. Zheng et al. [12] developed a theoretical system to reconfigure mesh 

excitation waveforms, reducing vibration intensities flexibly across various operating speeds and loads. An improved 

analytical mesh excitation model accurately determines the load correlation between tip relief and excitation harmonics. 

A method for tip relief design was proposed that consequently integrates harmonic components of mesh excitations to 

align with target operating speeds. Comparisons between finite element models and experimental results confirmed the 

accuracy of both quasi-static and dynamic analyses. The feasibility and effectiveness of the proposed method were 

demonstrated through parametric studies and application examples. 

The current study diverges from prior studies by comparing the present teeth design to a regular gear tooth under 

identical conditions and by analyzing the unique tooth profile to assess the contact stress area and dynamic performance 

through two mechanical adjustments. A specialized method has been developed, which may serve as a template for 

computer numerical control machining to produce a modified crossed helical gear. This study introduces and assesses 

new strategies for mitigating contact and root stress in crossed helical gear drives, considering anticipated changes in the 

performance requirements related to drive strength. Surface degradation is a common issue associated with crossed-axes 

helical gears, which show increased vulnerability to pitting damage. This phenomenon is characterized by the formation 

of pits that compromise the tooth surface and, in some cases, result in premature tooth failure due to overheating that 
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occurs between the tooth profiles during engagement. Scoring can occur rapidly in high-temperature environments, 

resulting in an accelerated wear rate. The methods employed to circumvent the scoring region involve the selection of 

appropriate tooth parameters and the regulation of lubricant flow. This failure is indicated by the presence of pits that 

progressively enlarge, compromising the tooth surface and, in certain instances, leading to premature tooth fracture [13], 

[14]. One of the assessments used to evaluate tooth strength is derived from the magnitude of Stress due to Hertzian 

interaction and the number of stress cycles. Hertzian stress is associated with classical contact mechanics and the 

deformation of two elastic bodies in contact with one another at one or more points [15]. The contact stress is one of the 

sources of surface distortion in the non-parallel helical gear system [16]. This investigation determines the angular 

positions of points that establish surface contact along the arc of action for three contact points between a pair of crossed 

helical teeth. Standard helical gears and non-standard helical gears are generated utilizing the shaping process. The 

creation of hybrid teeth gears using a modified gear cutter is a common practice in the industry [17], [18]. Two 

modifications have been implemented to reduce contact stress and enhance tooth deflection and root stress: 1) tip relief, 

and 2) compound profile design, which combines involute and epicycloid profiles to prevent the helical gear failure within 

the gearbox [19]. A comparative analysis was carried out with the three contact point options on the tooth profile to 

identify the best profile for the crossed helical gear drive. 

2. GEOMETRY MODIFICATIONS  

Conventional methods are employed to improve transmission error and contact stress between meshing gear teeth. 

These improvements are achieved through two geometry modifications, which are as follows. 

2.1 Tip Relief  

The carrying out of tip relief modification mitigates the manufacturing error effect inaccuracies on errors of 

transmission and stress of contact across different accuracy grades. Tip relief refers to the tooth surface alteration at the 

tip region that deviates from the traditional involute curve, achieved by the removal of a small quantity of material from 

it. This modification is employed to prevent early mating between engaging teeth, which can occur due to the deformation 

of the teeth's profile at an elastic boundary. Tip relief for cylindrical gears with involute surfaces can be quantified by 

specifying the tip relief amount from the outer circle (radius of addendum, 𝒓𝒂), the tip relief form (either intermediate 

line or parabolic curve), and the point starting on the tooth surface. Three methods can be proposed to define the starting 

point: (1) the tip relief length, 𝓵 (2) the length of rolling, 𝒓𝓵, and (3) the angle of rolling, 𝝋𝝐. In Figure 1, it can be seen 

how the rolling length is related to the rolling angle [20], [21]: 

𝑟ℓ = 𝑟𝑏  𝜑𝜖 (2) 

where 𝒓𝒃 is the radius of the involute base. 

 

Figure 1. The involutometry relation for length and angle based on rolling 

Three types of tip relief can be classified depending on the first location of the tooth tip relief: short, intermediate, and 

long tip relief. In this study, an intermediate tip relief modification was applied by removing an appropriate amount of 

material from the gear tooth flank. This adjustment is based on the deformation amount of the tooth within the elastic 

boundary, which must be removed to correct the transmission error [22]. An essential component in identifying the first 

point of tip relief is the gear's pitch circle, as outlined below: 

ℓ = 𝑟𝑎 − 𝑟𝑝 (3) 
  

𝑟ℓ = √𝑟𝑝
2 − 𝑟𝑏

2 (4) 
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𝜑𝜖 = √
𝑟𝑝

2

𝑟𝑏
2
− 1 (5) 

The initial point for tooth tip relief is modified based on the pitch radius, 𝒓𝒑 and the addendum radius, 𝒓𝒂 of the involute 

tooth surface. Figure 2 illustrates the topographical shapes (linear and parabolic) for the tooth's tip relief. Figure 3 depicts 

the relationship between the tip relief length, 𝓵 and the quantity of material removed adjacent to the tooth tip, 𝒎𝒔𝒍. The 

parameters for the removal of a significant amount and length of relief can be modified based on the elastic tooth 

deformation required to correct transmission errors. The relief modification at the tooth tip mitigates contact stress and 

facilitates the smooth engagement of the gear teeth pair, thus reducing the sudden impact between the crossed helical gear 

teeth [23]. The quantity of materials that can be removed is quantified in terms of roll distance as follows: 

𝑚𝑠𝑙 =
𝐹𝑡

𝐹𝑐𝑠𝑐𝑜𝑠𝛼𝑡

 (6) 

  

ℓ =
𝐴𝐵̅̅ ̅̅ − 𝑝𝑏𝑡

2 −
𝐹(12,𝑛)

𝑑𝑒𝑠𝑖𝑔𝑛

𝑐𝑠 𝑚𝑠𝑙 𝐹 𝑐𝑜𝑠𝛼𝑡

 
(7) 

𝑭𝒕: Tangential force 

𝑭 : Face width 

𝒄𝒔: Tooth mesh stiffness 

𝜶𝒕: Transverse pressure angle 

𝑨𝑩̅̅ ̅̅ : Tooth distance 

𝒑𝒃𝒕
: Base pitch 

In this study, MATLAB was used to estimate the transmission error [24]. The program was conceived in accordance 

with the principles of gearing theory. The calculations consist of five rows and twenty-five columns, where the rows 

correspond to the lines of contact and the columns represent slices that cross the helical teeth width. The input parameters 

for the matrices included microparameters, such as tip relief and helix relief. Furthermore, interferences between gear 

surfaces were incorporated to assess the interference at certain spots along the contact lines [25]. 

 

Figure 2. The topographical tooth's tip relief shape 

 

Figure 3. The relationship between the tip relief length and the amount of relief 
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2.2 Modified Involute or Compound Tooth System 

This work features the second mechanical modification, which is the integration of an involute surface with an 

epicycloid surface. The integrated tooth surface is engineered to reduce deflection of the teeth, as well as bending and 

contact stresses, thereby mitigating the risk of failure in the gearbox's pinion. The proposed crossed helical gear features 

an involute-epicycloid conjugate profile. The structure comprises an involute section adjacent to the pitch area and an 

epicycloid tooth profile extending to the addendum circle. The convex flank of one cycloidal tooth engages with the 

concave flank of the corresponding tooth, resulting in an extensive contact area that enhances wear resistance. The contact 

in the involute gear profile occurs between two convex surfaces on the meshing teeth, leading to a reduced contact area 

and diminished wear resistance. Figure 4 illustrates a cross-section of the profile of a composite tooth, which consists of 

an involute-epicycloid curve [26], [27]. 

 

Figure 4. The cross-section of the compound tooth profile 

The trajectory of a point that is closely associated with a circle and rolls over another circle is the basis for epicycloid 

curves, as shown in Figure 5. 𝛾1 and 𝛾2 are the radii of the cycloid circles' creation. Point M is firmly attached to the 

second gear's circle and draws out an epicycloid, which is firmly linked to the circle of the first gear within the original 

coordinates system [28].  

 

Figure 5. Epicycloid curves 

Epicycloid curves are yielded by the following equations: 

𝑥 = (𝛾1 + 𝛾2)𝑠𝑖𝑛∅1 − 𝑎 𝑠𝑖𝑛 [∅2 (1 +
𝛾1

𝛾2

)] (8) 

  

𝑦 = (𝛾1 + 𝛾2)𝑐𝑜𝑠∅1 − 𝑎 𝑐𝑜𝑠 [∅2 (1 +
𝛾1

𝛾2

)] (9) 

where 𝑎 = 𝑂2𝑀 > 𝛾2 

In practice, involute tooth systems are employed in industry due to their ease of manufacturing and cost-effectiveness. 

The involute curve extends from the inner circle and toward the outer circle, and one pair of tooth surfaces is in contact 

with a small fraction of another surface. The creation of an involute curve is done at a point fixed by a straight line that 
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rolls without slipping over a generating circle of toothed gears. The following equations provide the basis for the involute 

curve derivation. [29]: 

𝑥 = −𝑎𝑠𝑖𝑛∅ + 𝑅𝑏(𝑠𝑖𝑛∅ − ∅𝑐𝑜𝑠∅) (10) 

  

𝑦 = −𝑎𝑐𝑜𝑠∅ + 𝑅𝑏(𝑐𝑜𝑠∅ + ∅𝑠𝑖𝑛∅) (11) 

One issue with the involute profile is interference. The motion is not transmitted continuously; rather, a subsequent pair 

of teeth must engage before disengaging the first pair. There is invariably a period of simultaneous overlap between two 

pairs of meshed teeth. The configuration of the tooth surface, the teeth number, and the positioning of the gear pair during 

meshing contribute to the interference between the flanks of the gear teeth [30]. It is essential to identify a strategy for 

mitigating or eliminating this interference. The objective is to reposition the working profiles along the involute curve to 

exclude the segment near the gear teeth base, thus enhancing the contact conditions for the tooth surfaces [31]. The 

analytical method to avoid the undesired area of the teeth is by cutting the common tangent to the base circles between 

the points of tangency. The defining condition will be satisfied when the outer circles of the driver and driven gear pass 

through points C1 and C2, respectively, as illustrated in Figure 6. 

 

Figure 6. Gear tooth engagement 

 In order to prevent interference, the maximum allowable radius between the pinion and the tip of the gear teeth has been 

determined. The following equations, derived from research, are essential for determining the largest feasible radius: 

∆𝑂1𝑃𝐴 

(𝑂1𝐴)2 = (𝑂1𝑃)2 + (𝑃𝐴)2 − 2(𝑂1𝑃)(𝑃𝐴)𝑐𝑜𝑠 (𝑎𝑛𝑔(𝑂1𝑃𝐴)) (12) 

  

(𝑟𝑎1𝑚𝑎𝑥
)2 = (𝑟𝑝1

)2 + (𝑟𝑝2
𝑠𝑖𝑛(𝛼))2 − 2𝑟𝑝1

𝑟𝑝2
𝑠𝑖𝑛 (𝛼)𝑐𝑜𝑠 (90 + 𝛼) (13) 

  

(𝑟𝑎1𝑚𝑎𝑥
)2 = (𝑟𝑝1

)2 + (𝑟𝑝2
𝑠𝑖𝑛(𝛼))2 + 2𝑟𝑝1

𝑟𝑝2
𝑠𝑖𝑛 (𝛼)𝑠𝑖𝑛 (𝛼) (14) 

  

(𝑟𝑎1𝑚𝑎𝑥
)2 = (𝑟𝑝1

)2 + (𝑟𝑝2
𝑠𝑖𝑛(𝛼))2 + 2𝑟𝑝1

𝑟𝑝2
(𝑠𝑖𝑛 (𝛼))2 (15) 

  

(𝑟𝑎1𝑚𝑎𝑥
)2 = (𝑟𝑝1

)2 [1 +
(𝑟𝑝2

𝑠𝑖𝑛(𝛼))2

(𝑟𝑝1
)2

+
2𝑟𝑝1

𝑟𝑝2
(𝑠𝑖𝑛 (𝛼))2

(𝑟𝑝1
)2

] (16) 

  

(𝑟𝑎1𝑚𝑎𝑥
)2 = (𝑟𝑝1

)2 [1 +
𝑟𝑝2

𝑟𝑝1

(
𝑟𝑝2

𝑟𝑝1

+ 2) (𝑠𝑖𝑛 (𝛼))2] (17) 

  

𝑟𝑎1𝑚𝑎𝑥
= 𝑟𝑝1

√1 +
𝑟𝑝2

𝑟𝑝1

(
𝑟𝑝2

𝑟𝑝1

+ 2) (𝑠𝑖𝑛 (𝛼))2 (18) 

  

𝑟𝑎2𝑚𝑎𝑥
= 𝑟𝑝2

√1 +
𝑟𝑝1

𝑟𝑝2

(
𝑟𝑝1

𝑟𝑝2

+ 2) (𝑠𝑖𝑛 (𝛼))2 (19) 

The maximum possible radius on the pinion to avoid interference, = (𝑂1𝐴) — ( 𝑂1𝑃) = 𝑟. 

𝑟 =  𝑟𝑝2
√1 +

𝑟𝑝1

𝑟𝑝2

(
𝑟𝑝1

𝑟𝑝2

+ 2) (𝑠𝑖𝑛 (𝛼))2 − 𝑟𝑝1
 (20) 

The maximum radius parameter is used to determine the start position of the involute-epicycloid curve on the rolling 

circle. 
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3. GENERATION OF HELICAL GEAR TEETH BY CUTTER TOOLS 

In this analysis, three types of helical gear drives were generated for comparison purposes. The standard helical gear, 

along with two modifications of helical gear drives, were produced using a rack-cutter, which is a common practice in 

the industry. The process of generating these gears using a rack-cutter is illustrated in Figure 7. The cutting-blank cylinder 

spins at an angle to the rotational axis alongside the rack-cutter, which moves quickly along the centroidal line. The linear 

velocity and rotational velocity are expressed as follows: 

𝑣

𝑤
= 𝑟𝑝 =

𝑍

𝐷𝑝

 (21) 

 

  

Figure 7. Generation of the tooth profile using a rack-cutter 

The circle of pitch is an imaginary gear circle. It is a gear centrode by cutting. The cutting tool center is the horizontal 

line that is tangent to the operating circle and may be parallel to the linear velocity of the rack. Throughout the cutting 

operation, the rack-cutter rotates in a circular motion that is perpendicular to the gear axis. The cross-section of the 

resulting tooth shape is created by a set of various rack positions that are sequenced in a logical order to form the whole 

tooth. The final shape is represented by the coordinate system rigidly connected to the gear being created. The shape of 

the tooth is a conventional involute curve [32], [33]. This curve is characterized by a base circle denoted as 𝑟𝑏 and it is 

determined as follows: 

𝑟𝑏 =
𝑍 𝑐𝑜𝑠𝛼

2𝐷𝑝

 (22) 

  

𝑟𝑏 = 𝑟𝑝𝑐𝑜𝑠𝛼 (23) 

or:  

𝑟𝑏 =
𝑣

𝑤
𝑐𝑜𝑠𝛼 (24) 

where 𝛼 is the angle of the rack-cutter or the normal pressure angle of the gear tooth profile. 

The principles of the computer program are established through the application of gear tooth envelope theory. Various 

curves of the tooth surface can be produced using a non-standard rack-cutter. The computer program was developed using 

the QBasic language. The resulting shape was imported into the SolidWorks software. The application programming 

interface was utilized to simulate the generation of gear teeth. The primary approach of generation through coordinate 

transformation was utilized in deriving curves and surfaces that represent the gear tooth profile. The method of coordinate 

transformation is used in deriving the equation for the helicoid surface, which is formed as a family of curves of identical 

shape. [22]. 

4. ANALYSIS OF CROSSED HELICAL GEARS MODELING 

Figure 8 depicts the fundamental study of the connecting topology of crossed helical gear drives. The surface of the 

tooth profile geometry is generated by helical involute gears. The rotation axes of two intersecting helical gears intersect 

at the crossing angle 𝜆. The minimal distance between the gears is 𝐸. The pitch cylinders make contact at a single point 

𝑃, referred to as the pitch point. The angle of the helix at their pitch cylinder is denoted as 𝛽𝑝, while those at their base 

cylinders are represented as 𝛽𝑏. The angles of rotation for both gears are 𝜃1 and 𝜃2. The normal modulus is denoted as 

𝑚𝑛, the transverse modulus is represented as 𝑚𝑡, and the angles of pressure in the normal plane section and the transverse 

plane section are 𝛼𝑛 and 𝛼𝑡, respectively. The teeth number is indicated as 𝑍. The global coordinate system is defined by 

the axes 𝑥, 𝑦, and 𝑧. Correspondingly, 𝑥1, 𝑦1, and 𝑧1 and 𝑥2, 𝑦2, and 𝑧2 depict the systems of model coordinates for gear 

1 and gear 2, respectively, and are defined in relation to the global system. The 𝑦1 and 𝑦2 axes correspond to the rotation 

axes of gear 1 and gear 2, respectively. The remaining axes complete the coordinate system for the two gears [34]. 
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Figure 8. Geometry of non-parallel helical gears at a crossing angle of 45° 

The pitch points are determined according to Figure 8. Let 𝑝1(𝑥𝑝1
, 𝑦𝑝1

, 𝑧𝑝1
) represent the system of model coordinates of 

the pitch point for gear 1. The coordinate system of the pitch point for gear 2 is represented as 𝑝2(𝑥𝑝2
, 𝑦𝑝2

, 𝑧𝑝2
). These 

coordinate systems are required to facilitate the calculations. 

𝑧𝑝1
= 𝐸 −

𝑟𝑝1

𝑐𝑜𝑠𝜃1

 (25) 

  

𝑧𝑝2
=

𝑟𝑝2

𝑐𝑜𝑠𝜃2

 (26) 

  

𝑦𝑝2
= 0 (27) 
  

𝑥𝑝2−2
= 0 (28) 

  

𝑥𝑝1−2
=

𝐸 −
𝑟𝑝1

𝑐𝑜𝑠𝜃1
−

𝑟𝑝2

𝑐𝑜𝑠𝜃2
 

−𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝛽𝑏2

× (−𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝛽𝑏2
) (29) 

  

𝑦𝑝2
=

𝑟𝑝2

𝑐𝑜𝑠𝜃2
− 𝐸 −

𝑟𝑝1

𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝛽𝑏1

× (𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝛽𝑏1
) (30) 

  

𝑦𝑝1−2
=

−𝑠𝑖𝑛𝜆

𝑐𝑜𝑠𝜆
×

𝐸 −
𝑟𝑝1

𝑐𝑜𝑠𝜃1
−

𝑟𝑝2

𝑐𝑜𝑠𝜃2
 

−𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝛽𝑏2

× (−𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝛽𝑏2
) (31) 

  

𝑦𝑝2−2
=

𝑟𝑝2

𝑐𝑜𝑠𝜃2
− 𝐸 −

𝑟𝑝1

𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝛽𝑏1

× (𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝛽𝑏1
)

𝑐𝑜𝑠𝜆
 

(32) 

  

𝑥𝑝1
=

𝐸 −
𝑟𝑝1

𝑐𝑜𝑠𝜃1
−

𝑟𝑝2

𝑐𝑜𝑠𝜃2
 

−𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝛽𝑏2

× (−𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝛽𝑏2
) × 𝑐𝑜𝑠𝜆—𝑠𝑖𝑛𝜆𝑐𝑜𝑠𝜆 ×

𝐸 −
𝑟𝑝1

𝑐𝑜𝑠𝜃1
−

𝑟𝑝2

𝑐𝑜𝑠𝜃2
 

−𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝛽𝑏2

× (−𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝛽𝑏2
) × 𝑠𝑖𝑛𝜆 

(33) 

  

𝑦𝑝1
=

𝐸 −
𝑟𝑝1

𝑐𝑜𝑠𝜃1
−

𝑟𝑝2

𝑐𝑜𝑠𝜃2
 

−𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝛽𝑏2

× (−𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝛽𝑏2
) × 𝑠𝑖𝑛𝜆

+
−𝑠𝑖𝑛𝜆

𝑐𝑜𝑠𝜆
×

𝐸 −
𝑟𝑝1

𝑐𝑜𝑠𝜃1
−

𝑟𝑝2

𝑐𝑜𝑠𝜃2
 

−𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝛽𝑏2

× (−𝑐𝑜𝑠𝜃2 𝑐𝑜𝑠𝛽𝑏2
) × 𝑐𝑜𝑠𝜆 

(34) 
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𝑥𝑝2
= −

𝑟𝑝2

𝑐𝑜𝑠𝜃2
− 𝐸 −

𝑟𝑝1

𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝛽𝑏1

× (𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝛽𝑏1
)

𝑐𝑜𝑠𝜆
× 𝑠𝑖𝑛𝜆 

(35) 

  

𝑦𝑝2
=

𝑟𝑝2

𝑐𝑜𝑠𝜃2
− 𝐸 −

𝑟𝑝1

𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝛽𝑏1

× (𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝛽𝑏1
)

𝑐𝑜𝑠𝜆
× 𝑐𝑜𝑠𝜆 

(36) 

To determine the pitch points positions 𝑝1 and 𝑝2 in the notation for vectors: 

𝑝1⃗⃗  ⃗ = [

𝑥𝑝1

𝑦𝑝1

𝑧𝑝1

] =

[
 
 
 
𝑐𝑜𝑠𝜆 × 𝑥𝑝1−2

− 𝑠𝑖𝑛𝜆 × 𝑦𝑝1−2

𝑠𝑖𝑛𝜆 × 𝑥𝑝1−2
+ 𝑐𝑜𝑠𝜆 × 𝑦𝑝1−2

𝐸 −
𝑟𝑝1

𝑐𝑜𝑠𝜃1 ]
 
 
 

 (37) 

  

𝑝2⃗⃗⃗⃗ = [

𝑥𝑝2

𝑦𝑝2

𝑧𝑝2

] =

[
 
 
 
 
 
 
 
 
 

−𝑠𝑖𝑛𝜆 ×

𝑟𝑝2

𝑐𝑜𝑠𝜃2
− 𝐸 −

𝑟𝑝1

𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝛽𝑏1

× (𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝛽𝑏1
)

𝑐𝑜𝑠𝜆

𝑐𝑜𝑠𝜆 ×

𝑟𝑝2

𝑐𝑜𝑠𝜃2
− 𝐸 −

𝑟𝑝1

𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝛽𝑏1

× (𝑐𝑜𝑠𝜃1 𝑐𝑜𝑠𝛽𝑏1
)

𝑐𝑜𝑠𝜆
𝑟𝑝2

𝑐𝑜𝑠𝜃2 ]
 
 
 
 
 
 
 
 
 

 (38) 

In this case, the operating cylinders are moving along the x-axis. Through this location, the action line passes through this 

point. Figure 9 displays the cross-sectional view of the pitch cylinders' angular velocities 𝑤1 and 𝑤2 at an angle 𝜆. 

 

Figure 9. The polygon of angular velocities 

A common normal line 𝑡�̅� that passes through a fixed point associated with the point of contact bisects the central 

distance intersecting at the pitch point. As in this figure, the axis 𝑡�̅� forms an angle 𝜌𝑖 with the horizontal gear axis (𝑖 =
 1, 2). In the original position at point 𝑝, the pitch velocities for crossed helical gears were resolved into two components 

𝑣1 and 𝑣2 have directions as shown in Figure 9 and magnitude values 𝑟𝑖𝑤𝑖  (𝑖 =  1, 2). The relative velocity of sliding 

|𝑣2 − 𝑣1| is a parallel direction with the straight 𝑡�̅�. Furthermore, utilizing the sine rule in relation to the velocity polygon, 

encompassing the angles, λ, π ⁄ 2 + 𝜌1, and π ⁄ 2 + 𝜌2, results indicate that the angular velocity is constant and is 

demonstrated by the relationship (𝑟2𝑤2)⁄(cos𝜌1) = (𝑟1𝑤1)⁄(cos𝜌2). As for the sliding velocity |𝑣2 − 𝑣1|, the cosine law 

produces the following formula. [35]: 

|𝑣2 − 𝑣1| =  𝑤1𝑟1 √1 + (
𝑤2𝑟2
𝑤1𝑟1

)2 − 2
𝑤2𝑟2
𝑤1𝑟1

𝑐𝑜𝑠 (𝜆) (39) 

Synchronously, the engagement between the helical teeth, the tooth begins rolling from the starting contact point at 

the tooth's tip for pinion in the tooth's root area for gear and ends at the point with the contact of the tooth's tip of pinion 
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in the tooth's root area of gear. The coordinates of both the starting and ending points were determined based on the 

surface angles at the outer diameter required for gears as follows: 

𝛾𝑖 = 𝑐𝑜𝑠−1
𝑟𝑏𝑖

𝑟𝑎𝑖

    (𝑖 = 1, 2) (40) 

  

𝛼 = 𝑐𝑜𝑠−1
𝑟𝑏𝑖

𝑟𝑝𝑖

     (𝑖 = 1, 2) (41) 

The contact line 𝐴𝐴̅̅ ̅̅  situated on the contact line is restricted to the section 𝐶1𝐶2
̅̅ ̅̅ ̅̅  within the outer circles with radii 𝑟𝑎1

 and 

𝑟𝑎2
. They are defined by the angles 𝜇1 and 𝜇2. The length of the segment line ȴ can be determined using the following 

calculation: 

ȴ𝑖 = 𝑟𝑏𝑖
(𝑡𝑎𝑛𝜇𝑖 − 𝑡𝑎𝑛𝛼)         (𝑖 = 1, 2) (42) 

The distance between the engagement sites of consecutive teeth is: 

𝛿 =
2𝜋𝑟𝑏𝑖

𝑍𝑖

 (43) 

Here, 𝜹 is the length of the arc. The contact ratio equals to:  

𝐶𝑟 =
ȴ

𝛿
 (44) 

The formula for the contact ratio of skewed helical gear axes is [35]: 

𝐶𝑟 =
1

2𝜋
{𝑍1 (

𝑡𝑎𝑛𝜇1 −
𝑡𝑎𝑛𝛼
𝑐𝑜𝑠𝛽𝑝1

𝑐𝑜𝑠2𝛽𝑝1

) + 𝑍2 (

𝑡𝑎𝑛𝜇2 −
𝑡𝑎𝑛𝛼
𝑐𝑜𝑠𝛽𝑝2

𝑐𝑜𝑠2𝛽𝑝2

)} (45) 

5. GENERAL CONSIDERATIONS 

It is evident that the cross-based cylinders of the helical gears, as depicted in Figure 10, possess a common tangent 

line. Two lines, 𝐴1
̅̅ ̅ and 𝐴2

̅̅ ̅, are tangent to the base cylinders at points 𝐴11, 𝐴12, 𝐴21, and 𝐴22. The lines conform to the 

meshing of the appropriate flanks of the tooth profiles and intersect at point 𝑃. Figure 11 shows the relationship between 

the base cylinders and the action lines for a system of two crossed helical gears that make contact at point 𝑃.  

 

Figure 10. Relationship between the lines of action and the axis of rotation 

The crossing angle between the axes of rotation is 𝛌, while 𝛽𝑏1
 and 𝛽𝑏2

 are angles base helix. The line 𝐻1𝐻2
̅̅ ̅̅ ̅̅ ̅ is a common 

tangent to two centerlines of both cylinders and passes through the contact point. The contacting point C moves on the 

course of action in the normal section. Curvature radii of the two teeth's surfaces are 𝛿1 and 𝛿2. Curvature radii at the 

pitch point are defined by 𝛿1𝑝 and 𝛿2𝑝, which are expressed by the following equations [36]:  

𝛿1𝑝 =
𝑟𝑝1

𝑠𝑖𝑛𝛼𝑛

𝑐𝑜𝑠2𝛽𝑏1

 (46) 
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𝛿2𝑝 =
𝑟𝑝2

𝑠𝑖𝑛𝛼𝑛

𝑐𝑜𝑠2𝛽𝑏2

 (47) 

The radii of curvatures 𝛿1 and 𝛿2 for tooth surfaces are independent of the position of the contact point C. The length of 

the course of action ϻ is calculated as follows [37]: 

ϻ =
𝐸 − 𝑟𝑏1

𝑐𝑜𝑠𝛼𝑡1 − 𝑟𝑏2
𝑐𝑜𝑠𝛼𝑡2

𝑠𝑖𝑛𝛼𝑛

= 
𝑟𝑏1

 𝑡𝑎𝑛𝛼𝑡1

𝑐𝑜𝑠𝛽𝑏1

+
𝑟𝑏2

 𝑡𝑎𝑛𝛼𝑡2

𝑐𝑜𝑠𝛽𝑏2

 (48) 

  

ϻ = 𝛿1 + 𝛿2 = 𝛿1𝑝 + 𝛿2𝑝   (49) 
  

ϻ =  𝛿1𝑚𝑎𝑥 + 𝛿2𝑚𝑖𝑛 = 𝛿1𝑚𝑖𝑛 + 𝛿2𝑚𝑎𝑥  (50) 

The radius of equivalent cylinders is represented by: 

𝛿1𝑚𝑎𝑥 = 
√𝑟𝑎1

2 − 𝑟𝑏1

2

𝑐𝑜𝑠𝛽𝑏1

 
(51) 

  

𝛿2𝑚𝑖𝑛 = 
√𝑟𝑎2

2 − 𝑟𝑏2

2

𝑐𝑜𝑠𝛽𝑏2

 
(52) 

  

𝛿1𝑚𝑖𝑛 =  ϻ − 𝛿2𝑚𝑖𝑛  (53) 
  

𝛿2𝑚𝑎𝑥 =  ϻ − 𝛿1𝑚𝑎𝑥   (54) 

Figure 11 shows the engagement of the crossed axes of the helical gear and the relationship between the enclosed 

angles Ω1, Ω2, and 𝜗. These relationships are represented in the figure and are described by the following equations: 

Ω1 = 𝑡𝑎𝑛−1(𝑡𝑎𝑛𝛽𝑝1
 𝑠𝑖𝑛𝛼𝑛) (55) 

  

Ω2 = 𝑡𝑎𝑛−1(𝑡𝑎𝑛𝛽𝑝2
 𝑠𝑖𝑛𝛼𝑛) (56) 

  

𝜗 =  Ω1 + Ω2  (57) 

Therefore, the relationship between the angle enclosed by two contact lines and the crossing angle is: 

ϑ =  sin−1 (
sinαn sinλ

cosΩ1 cosΩ1

) (58) 

 

 
Figure 11. Engagement of a crossed-axes helical gear 

5.1 Contact Ellipse 

The engagement of the gear tooth surfaces in a crossed helical gear drive can be represented by the contact between 

two equivalent cylinders skewed under an angle 𝜗. The geometrical contact between these two cylinders occurs at point 

𝐶. Due to the elastic boundary of gears, the point of contact changes into an instantaneous contact ellipse, wherein the 

contacting point is distributed over an elliptical area. Theoretical tangency is at the same location as the contact ellipse 
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center. A series of contact ellipses constitutes the bearing contact. This investigation aims to find the direction of the 

contact ellipse in the plane tangent to the contacting surfaces. The elastic deformation depends on the applied load. Figure 

12 illustrates the normal pressure exerted on the engaged gear tooth surfaces. The contact pressure is distributed over a 

small area, resulting in the formation of maximum contact stress. 

 

Figure 12. Distribution of stress 

Two cylinders, with radii denoted as 𝑟𝑝1
 and 𝑟𝑝2

, are in contact at point C. Both axes of rotation are skewed at a 

crossing angle 𝜆. During the engagement, the normal load 𝑊𝑛 is applied, producing a contact ellipse. The lengths of the 

major and minor axes for the contact ellipse are defined by 2a and 2b, respectively. Here, the angle between the two 

principal planes of radii 𝛿1 and 𝛿2 is denoted by 𝜗. Meanwhile, the angle between the major axis of the contact ellipse 

and the principal plane of the radius of curvature 𝛿1 is denoted by 𝜗′. This angle can be calculated as follows [38], [39]: 

𝜗′ =
1

2
𝑡𝑎𝑛−1 (

𝛿1

𝛿2
 𝑠𝑖𝑛2𝜗

1 +
𝛿1

𝛿2
 𝑐𝑜𝑠2𝜗

) (59) 

5.2 Contact Stress  

This work considers the high-intensity value of the stress in contact with other stresses induced in gear teeth as an 

indicator in the analysis. Gear teeth that are stronger than the material's surface endurance strength reduce the likelihood 

of surface fatigue failure. Hertz equation was derived and used to calculate the induced contact stress between elastic 

cylinders under a skewed axis angle. Two methods were used to obtain the complete elliptic integral of the second kind: 

the numerical approximation method and the arithmetic-geometric mean. These methods are considered precise for 

calculating complete elliptic integrals. The maximum contact stress was determined by utilizing the Hertzian auxiliary 

coefficients € and £, which are derived from the complete elliptic integral of the second kind, as referenced in [40], [41], 

and [42]:  

€ =  (
2

𝜋
 
𝐸(𝐾)

1 − 𝐾2
)

1
3

 (60) 

  

£ =  ((1 − 𝐾2)
3
2  

2

𝜋
 
𝐸(𝐾)

1 − 𝐾2
)

1
3

 (61) 

or  

£ =  (1 − 𝐾2)
1
2  €  (62) 

The auxiliary coefficients are used to find two constants, a and b: 

𝑎 =  (3 €3  
(1 − 𝑣2) 𝑊𝑛

𝐸 ∑
1
𝛿

)

1
3

 (63) 
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𝑏 =  (3 £3  
(1 − 𝑣2) 𝑊𝑛

𝐸 ∑
1
𝛿

)

1
3

 (64) 

The following formula calculates the maximum contact stress. 

𝑊𝑚𝑎𝑥 =
3

2
 

𝑊𝑛

𝜋 𝑎 𝑏
 (65) 

6. RESULTS AND DISCUSSION 

6.1 Estimation of Static Transmission Error 

MATLAB was used to estimate the static transmission error at each point of contact along the course of action. The 

mesh cycle was divided into 16 steps. Each step equals one sample of the base pitch or (𝑝𝑏/16). The face width was 

divided into 25 slices. The program is based on the following design parameters:  

i) Tangential load applied. 

ii) Base pitch and base helix angle are specified by the tooth geometry. 

iii) The number of misalignments and deflections. 

iv) Tooth stiffness.  

v) Start of linear relief. 

vi) Interference at the pitch area.  

The technique is based on the estimated value of transmission error to produce a new applied load value. The 

comparison between the original and new values was performed continuously until the error percentage converged to an 

acceptable level. The computation of the mesh cycle for static transmission error was established through the procedure 

that was repeated at each part of the mesh cycle. The procedure is illustrated in Figure 13. The results indicate that the 

optimal value of transmission error corresponds to an intermediate tip relief.  

 

Figure 13. The steps involved in the MATLAB program 

The results indicate that, for a contact load design of 20 kN, the average value of deflection resulting from elastic 

tooth deflection is disregarded, as only the vibrational variations are significant for noise considerations. Figures 14(a), 

14(b), 14(c), and 14(d) are similar; however, they differ in the quantity of misalignment values. The error in transmission 

from peak to peak is also analogous to similar instances of models. The waveform is expected to improve, leading to a 

reduction in harmonics. Figure 14(e) depicts the anticipated static transmission error for minimal misalignment, with 

relief commencing at a decreased distance of base pitch from the pitch point to the end. The initiation of the active profile 

has been advanced significantly along the flank, resulting in a decrease in peak-to-peak transmission error. Furthermore, 

the waveform exhibits higher harmonics. However, the dynamic characteristics of meshed teeth imply that the applied 

power not only influences the magnitude of the amplitudes of mesh deformation, as is commonly acknowledged, but also 

modifies the waveforms of mesh excitation, presenting significant challenges for conventional design to accommodate 

diverse operating conditions. Figure 15 shows the relationship between the error of transmission and the quantity of tip 
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relief. The variation in the slope of the relationship line signifies that the rectification of the standard manufacturing error, 

which induces transmission error, increases by removing appropriate quantities of tooth tip material in accordance with 

the elasticity of tooth deflection and misalignment. 

  
 (a)  𝑚𝑠𝑙 = 30 𝜇𝑚 , 𝑝𝑏 = 0.0177 𝑚𝑚       (b) 𝑚𝑠𝑙 = 40 𝜇𝑚 , 𝑝𝑏 = 0.0177 𝑚𝑚 

  

  
(c) 𝑚𝑠𝑙 = 50 𝜇𝑚, 𝑝𝑏 = 0.0177 𝑚𝑚 (d) 𝑚𝑠𝑙 = 60 𝜇𝑚 , 𝑝𝑏 = 0.0177 𝑚𝑚 

  

 
(e) 𝑚𝑠𝑙 = 60 𝜇𝑚, 𝑝𝑏 = 0.4 𝑚𝑚 

Figure 14. Results of the estimation of static transmission error 
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Figure 15. The relationship between the error of transmission and the quantity of tip relief 

5.3 Generation of Standard and Non-standard Gear Tooth Profiles  

The configuration of the gear tooth is determined according to the form of the cutting tool. Figure 16 depicts the 

methodologies used to obtain three-dimensional (3D) helical gear profiles. Three rack-cutters were used to fabricate three 

types of helical gears: a conventional standard cutter, cutter 1, which features tip relief modification, and cutter 2, which 

incorporates cycloidal modification, as depicted in Figure 17. The input parameters are the gear teeth, angles of pressure 

and helix, module, and face width, in addition to the length and amount of tip relief. These data can be used to simulate 

the generation of a fully modified gear. The process begins with the first point at the root fillet of the cutter and progresses 

sequentially through the points until reaching the relevant points on the gear tooth. The finishing condition is met when 

the final intersection point on a tooth is located beyond the circle of the addendum. 

 

Figure 16. The processes involved in the generation of helical gear teeth 
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(a) Classic standard cutter (b) Cutter 1 with tip relief modification 

  

 
(c) Cutter 2 with cycloidal modification 

Figure 17. Coordinate system of cutter tools 

Three two-dimensional (2D) gear tooth profiles were developed using the QBasic programming language. A computer 

application was designed to simulate rack-cutting tools. The creation process involves the rolling motion of the cutter's 

right and left sides. The starting position is at the origin (pitch point), followed by positive and negative incremental 

angles until the 2D gear teeth are fully formed, as shown in Figure 18. This study employs the SolidWorks interface as a 

platform to produce the 2D tooth shapes, as illustrated in Figure 19. This approach is effective for producing the 3D 

profiles of helical gear teeth. Figure 20 illustrates the 3D helical gear models used in this work to quantitatively examine 

the effect of contact stress at various locations on gear teeth. 

   
Standard tooth shape Modified tooth shape with tip relief 

modification 

Modified tooth shape with 

epicycloidal modification 

Figure 18. Samples of the tooth shapes obtained using the QBASIC programming language 
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Standard tooth shape Modified tooth shape with tip relief 

modification 

Modified tooth shape with epicycloidal 

modification 

Figure 19. Samples of the tooth shapes obtained using SolidWorks 

 

   

Figure 20. Three types of helical gear tooth surfaces: standard, with tip relief, and with epicycloid profiles 

5.4 Sliding Velocity 

The results of the sliding velocity for the two cases are shown in Figure 21, which presents a comparative analysis of 

the impact of the modified tooth geometry on the velocity of sliding. The maximum sliding rapidity magnitude appears 

near the contact points at certain angular positions, typically occurring just before and after the pitch point. Precise 

modifications are expected to reduce the sliding distance, thus decreasing the velocity at the moment of contact by 

implementing compounded modification.  

 

Figure 21. Comparison of sliding velocities for two scenarios with varying degrees of rotation 

Table 1 presents the values of analytical sliding velocity for two crossed helical gears operating at different rotational 

angles. The results indicate the magnitude of peak velocity occurring at the contact position at a certain angular rotation. 

Naturally, maximum sliding occurs before and after the pitch point. The compound tooth modification reduces the sliding 

distance, thereby decreasing the velocity at the moment of contact. The enhancement percentage, in comparison to the 

standard case, is approximately 16%. This study demonstrates that the geometry of mated gears significantly influences 

the reduction of sliding velocity in the tooth contact regions, which can be affected by the shape and the contact area size. 

The increased contact area using the concave-convex flank option for the modified surface improves the contact ratio, 
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reduces the heat friction, and increases the tooth thickness. Modifying the involute surface contributes to a reduction in 

the friction area. All these modifications have a substantial impact on improving the thermal performance of crossed 

helical gears, as well as reducing the stress experienced by the helical gears. 

Table 1. The analytical results of sliding velocities in relation to rotation angles 

Rotation 

Angle 

Sliding Velocity of Standard 

Case (mm/sec) 

Sliding Velocity of Modified 

Involute Case (mm/sec) 

Enhancement 

Percentage (%) 

24 1,000.02960 833.67120 16 

12 500.01480 416.83560 16 

6 250.00740 208.41780 16 

3 125.00370 104.20890 16 

1.5 62.50185 52.10445 16 

-1.5 62.50185 52.10445 16 

-3 125.00370 104.20890 16 

-6 250.00740 208.41780 16 

-12 500.01480 416.83560 16 

-24 1,000.02960 833.67120 16 

5.5 Contact Ratios 

The results of the contact ratio, derived from Equation (45) for crossed helical gears, are presented in Tables 2 and 3. 

These tables present the relationship between the contact ratio with the pressure angle and the helix angle. 

Table 2. The results of contact ratios for the intersecting helical gear system under the effect of different normal 

pressure angles (helix angle = 22.5°, module = 7 mm, and number of teeth = 14) 

Pressure 

Angle 

Transverse 

Contact Ratio 

Axial Overlap 

Ratio 

Total Contact 

Ratio 

14.5° 1.308 0.208 1.516 

20.0° 1.333 0.198 1.531 

25.0° 1.225 0.168 1.393 

30.0° 1.155 0.143 1.298 

 

Table 3. The results of contact ratios for the intersecting helical gear system under the effect of different helix angles 

(pressure angle = 20°, module = 7 mm, and number of teeth = 14) 

Helix 

Angle 

Transverse 

Contact Ratio 

Axial Overlap 

Ratio 

Total Contact 

Ratio 

15.0° 1.405 0.088 1.493 

22.5° 1.333 0.198 1.531 

30.0° 1.233 0.349 1.582 

37.5° 1.108 0.539 1.647 

45.0° 0.961 0.760 1.720 

The relationships are depicted in Figures 22 and 23, which show that the contact ratio is enhanced by a reduced pressure 

angle and an increased helix angle. Therefore, it is beneficial to employ a low-pressure angle with a certain optimal helix 

angle. This configuration is considered one of the advantages of the characteristics of the helical gear system, as a higher 

contact ratio leads to the gradual engagement of crossed helical teeth, thereby contributing to a reduction in noise.  

 
Figure 22. The correlation between the overall contact ratio and different pressure angles for crossed helical gears 
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Figure 23. The correlation between the overall contact ratio and various helix angles for the crossed helical gear 

5.5 Contact Stress Analysis 

The analytical results have been presented to evaluate the contact stress and to estimate the dimensions of deformation 

during the simulation of the crossed helical gear system. These dimensions are directly related to the base circle on the 

loaded side regardless of other parameters determined by the computer software. The results are derived from analytical 

techniques, as defined in previous sections. The estimation of the contact shape and stress magnitude was conducted by 

using the MATLAB software package.  

The maximum stress value, contact shape, and sliding velocity are influenced by the length of the action distance 

(H1H2) and the pressure tooth angle. Table 4 presents the contact stress values, half of the major and minor axes for the 

contact shape and the equivalent crossing angle that is closely aligned with the lines of action for a crossed helical teeth 

pair with an angle of 20° and corresponding lines of action. It is clear that the maximum stress values remain consistent 

across all cases, as they share the same length of action distance. An increase in the pressure angle decreases the curvature 

radius, as indicated in Equations (46 and 47), which in turn reduces the concentrated load on the area of contact between 

the two surfaces. Conversely, modification to the Hertz equation yields inverse results, where these changes affect the 

shape of the contact ellipse, resulting in a reduction of contact stress as both the pressure and helix angles increase. 

Table 4. The analytical results of the effect of pressure angle and curvature radius on the contact stress values 

𝛼𝑛 

(°) 

𝛿𝑝 

(mm) 

𝑎 

(mm) 

𝑏 

(mm) 

𝛌 

(°) 

𝜗 

(°) 

ϻ 

(mm) 

𝜎𝑐 

(MPa) 

20 20.834 0.2897 0.00081 45 16.1268 41.6679 303.718 

5.6 Finite Element Method 

One numerical technique that might help provide a rough answer is finite element analysis. The analytical solution of 

various stress values in mechanical models is very complicated. Numerical results facilitate the measurement of the 

strength within the domain of the crossed helical gear teeth with appropriate boundary conditions [43]. The model is 

divided into elements under the procedure called discretization. The recommendations indicate the necessity of defining 

the governing equations for each element. Determining material properties, including thermal conductivity and material 

strength, is essential. Each element corresponds to a particular equation, which is combined to formulate the global 

equation for the mesh. 

The behavior of the body is described as a whole. The global governing equation is expressed as follows: 

 [𝐾]{𝐴} = {𝐵} (66) 

where [𝐾] is a singular matrix called the matrix of stiffness, {𝐴} is the freedom nodal degree, and {𝐵} is the nodal force 

of external. In this analysis, the contact field is considered to be non-linear, which requires a sophisticated software 

package to solve it. The models were developed using SolidWorks and subsequently exported to the ANSYS software 

package [44]. The design parameters for the three cases are shown in Table 5, which details the specific parameters 

associated with the crossed helical gear cases. The ANSYS software package was used to examine the contact problem. 

Figure 24 shows three types of meshing for crossed helical gears. To validate the final mesh density, a mesh convergence 

study was performed for three crossed helical gear teeth models as mesh convergence is required. Mesh sensitivity was 

also investigated using ANSYS. Figure 25 depicts the results of the mesh convergence test. The nodes of the mesh were 

determined according to the tooth surface equations, as previously mentioned. 

The structural material employed in this study is steel, characterized by Young's modulus of 207 GPa and a Poisson's 

ratio of 0.299. A power input of 20 kW at 1,440 rpm was applied for all crossed helical gear units. During the rotational 

operation of the helical gears, each tooth will share the load. Both double-tooth and single-tooth contacts are considered. 

Therefore, the contact ratio is a crucial component in this study. The angle of rotation was divided into any desired angular 

periods. One pair of helical teeth is in contact at a crossing angle of 45°. Various contact scenarios were analyzed based 

on the previous formulation. This study examined three contact positions for the crossed helical gear models: at a pitch 
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point and rotation angles of 5° and 10°. The contact stress values for the three cases were compared. Different contact 

positions influence the modifications on the standard tooth surface. 

Table 5. The parameters of the crossed helical gear and pinion cases 

Cases 

Crossing    

Angle,  𝜆 

(°) 

Module, 

𝑚𝑛 (mm) 

Pressure 

Angle, 𝛼𝑛 

(°) 

Helix 

Angle, 

𝛽𝑝 (°) 

Face 

Width, 

𝐹 (mm) 

No. of 

Teeth, 

𝑍 

Radius of Circle 

Generations, 

𝑅 (mm) 

Amount of 

Tip Relief, 

𝑚𝑠𝑙 (𝜇𝑚𝑚) 

Length of 

Tip Relief, 

ℓ (mm) 

1 45 7 20 22.5 40 14 - - - 

2 45 7 20 22.5 40 14 - 60 3.56 

3 45 7 20 22.5 40 14 9 - - 

 

   
Figure 24. The standard design, the tip relief modification, and the epicycloidal modification of crossed helical  

gears at a crossing shaft angle of 45° 

 

 

Figure 25. Three-dimensional model of a crossed helical gear tooth mesh 

In this section, various results are presented to evaluate the performance of crossed-standard and non-standard helical 

gear systems. These results are based on the numerical method (i.e., FEM) from the analysis conducted using ANSYS 

Simulation Mechanical to estimate contact stress. The maximum stress of contact and the cumulated stress of the tooth 

root region of the crossed helical gear teeth were calculated using ANSYS. Three models, each featuring three teeth, were 

prepared for this study. Table 6 displays the stress results for three positions across the three gear models at a specified 

coefficient of friction. The friction coefficient varies from approximately 0.05 to 0.25, depending on the ambient 

conditions. This research used a coefficient value of 0.05 to evaluate gear performance. Two images depicting the three 

sets of intersecting models at three locations illustrate the peak contact and root stresses, along with their contact ellipses, 

locations, and intensities. The comparison reveals that the contact stress exhibits a point contact that transforms into an 

ellipse, with the stress concentrated in the tooth root region. The contact stress is represented by the equivalent von Mises 

stress at three positions: once at the pitch point, near the tip point, and in the region between them. The maximum contact 

stress occurs at the pitch point due to the high instantaneous contact between teeth meshing, which subsequently decreases 

near the tip position. The effect of modification on the performance of crossed helical gear teeth includes an enhancement 

of contact stress and a reduction in root stress due to the helix angle.  
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Table 6. The maximum contact stress and fillet tooth root stress at three positions for three gear models 

Contact Location Standard Case 

Pitch Point 

  
5° 

  
10° 

  

Contact Location Modified Involute Case 

Pitch point 

  
5° 

  
10° 
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Table 7 presents the results of von Mises stress values, while Table 8 provides the results of the stress inside the root 

area for all gear models across the three contact positions. Figures 26 and 27 illustrate the relationship between the contact 

stress and the tooth root stress region with three contact positions, respectively. 

Table 7. The numerical results of von Mises stress values 

Position 

Contact Stress, 𝜎𝑐 (MPa) 
Enhancement 

Percentage 

Contact Stress, 𝜎𝑐 (MPa) 
Enhancement 

Percentage Standard 

Gears 

With Tip Relief 

Modification 

With Epicycloidal 

Modification 

Pitch Point 307.390 298.770 2% 288.340 6% 

At 5° Angle of 

Rotation 

82.623 77.618 6% 77.330 6% 

Near Tip Point 56.287 59.690 -6% 55.097 2% 

 

Table 8. The numerical results of the stress inside the tooth root region 

Position 

Stress Inside the Tooth Root Region, 

𝜎𝑏 (MPa) Enhancement 

Percentage 

Stress Inside the Tooth 

Root Region, 𝜎𝑏 (MPa) Enhancement 

Percentage 
Standard Gears 

With Tip Relief 

Modification 

With Epicycloidal 

Modification 

Pitch Point 40.574 39.716 2% 37.800 6% 

At 5° Angle of 

Rotation 

40.943 38.065 7% 37.605 8% 

Near Tip Point 34.287 34.809 -1% 30.025 12% 

 

 

Figure 26. The relationship between contact stress and three contact positions 

 

 

Figure 27. The relationship between the tooth root stress and three contact positions 

Tables 7 and 8 indicate a notable enhancement in the performance of the crossed helical gear unit featuring teeth with tip 

relief modification in comparison to the standard crossed helical gear. The contact points are identified at the pitch point, 

near the tip point, and between them. The percentage enhancement in maximum contact stress is 2%, 6%, and -6%, 
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respectively, while the percentage enhancement in the tooth root stress area is 2%, 7%, and -1%, respectively. In the final 

position, there is no significant difference between both stress cases. Furthermore, the crossed helical gear unit featuring 

teeth subjected to epicycloidal modification demonstrates enhancements when compared to the standard gear unit. The 

contact points are identified at the pitch point, near the tip point, and between them. The percentage enhancement in 

maximum contact stress is 6%, 6%, and 2%, respectively, while the percentage enhancement in the tooth root stress area 

is 6%, 8%, and 12%, respectively.  

Figures 27 and 28 depict a reduction in contact stress as the contact point moves away from the pitch point toward the 

tip of the tooth. Moreover, the stress inside the root region decreases when the contact point is far from the pitch point. 

These improvements in tooth contact and tooth root stress area, resulting from the implementation of the first and second 

proposed tooth modifications, are attributed to the improved ability of the helical tooth profile. This enhancement leads 

to increased resistance against higher loads, improved gear durability, reduced impact forces during engagement, and the 

mitigation or elimination of interference. The stress concentration factor 𝐾𝑡 is crucial in gear design, as it represents the 

ratio of the numerical value to the analytical value. The determination of the stress concentration factor for both the 

standard and the current crossed helical gear systems depends on the results of the contact stress analysis. The following 

formula is used to evaluate the value of the stress concentration factor: 

𝐾𝑡 =
𝜎𝑐𝑚𝑎𝑥

𝜎𝑐𝑚𝑜𝑛

 (66) 

The results for the stress concentration factor 𝐾𝑡 are presented in Table 9. These data pertain to the standard crossed 

helical gear case. The findings suggest that the implementation of modified helical teeth reduces the stress concentration 

factor, hence mitigating abrupt changes in the cross-sectional tooth area subjected to stress, which results in reduced stress 

concentration. 

Table 9. The stress concentration factor and the enhancement percentage in relation to the standard crossed  

helical gear case 

Cases 𝐾𝑡 
Enhancement 

Percentage 

Standard Teeth 1.01 --- 

Modified Helical Teeth with Tip 

Relief 
0.98 2% 

Modified Helical Teeth with 

Epicycloid 
0.94 6% 

According to this research, the shape of the coupled gears is more important in reducing friction at the tooth contact 

areas. It is sensitive to the dimensions and the form of the contact area. By evaluating the scuffing surface, the contact 

and root stresses can be assessed to determine the level of friction experienced. Regarding surface scuffing, the novel 

conjugated crossed helical tooth profiles have demonstrated superior effectiveness. The compounded curves of the tip 

relief-involute or epicycloid-involute modifications serve to decrease the sliding distance. The friction generated between 

these surfaces over this distance is influenced by the nature of the contact. Tip relief modification is designed to reduce 

the impact shock of the contact at the moment of initial engagement. Furthermore, an involute surface has been modified 

to be shorter than that of a standard surface. The epicycloid region is characterized by a high contact ratio, attributable to 

its conformal geometry. 

6. CONCLUSION 

The shaping process is a suitable simulation for the modification of helical gear teeth. In this study, a new technical 

method was used to draw traditional involute and non-involute helical teeth, utilizing the SolidWorks interface as a 

platform for generating 3D profiles of helical gear teeth. The involute-epicycloid profile designed for a crossed helical 

gear reduces the sliding distance, thus lowering the velocity at the moment of contact when compared to a standard 

crossed helical gear. The enhancement percentage is approximately 16%. The contact ratio improved through a reduction 

in the pressure angle and an increase in the helix angle. The total contact ratios are 1.5 and 1.7, respectively. A higher 

contact ratio leads to the gradual engagement of crossed helical teeth, which helps to reduce the noise. The transmission 

error decreases by increasing the amount of misalignment, resulting in a smaller harmonic waveform. The most significant 

improvement in the crossed helical gear is the epicycloidal modification of the gear teeth along the loaded side, in 

comparison to a standard gear case. For epicycloidal modification, the enhancement percentage in maximum contact 

stress is 6%, 6%, and 2%, while the enhancement percentage in the tooth root stress area is 6%, 8%, and 12%. On the 

other hand, for tip relief modification, the enhancement percentage in maximum contact stress is 2%, 6%, and -6%, while 

the enhancement percentage in the tooth root stress area is 2%, 7%, and -1%. The stress concentration factor decreased 

through the application of modified helical teeth, with enhancement percentages reaching 2% and 6% when utilizing tip 

relief and non-involute modification, respectively. The results indicate that a modified crossed helical gear drive exhibits 

superior performance compared to a standard gear drive for a given helix angle. 
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