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RESEARCH ARTICLE 

Design of a Path-Following Controller for Autonomous Vehicles Using an 
Optimized Deep Deterministic Policy Gradient Method  
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Faculty of Mechanical Engineering, K.N.Toosi University of Technology, Tehran, Iran 

ABSTRACT - The need for a safe and reliable transportation system has made the advancement 
of autonomous vehicles (Avs) increasingly significant. To achieve Level 5 autonomy, as defined by 
the Society of Automotive Engineers, AVs must be capable of navigating complex and 
unconventional traffic environments. Path-following is a crucial task in autonomous driving, requiring 
precise and safe navigation along a defined path. Traditional path-tracking methods often rely on 
parameter tuning or rule-based approaches, which may not be suitable for dynamic and complex 
environments. Reinforcement learning has emerged as a powerful technique for developing 
effective control strategies through agent-environment interactions. This study investigates the 
efficiency of an optimized Deep Deterministic Policy Gradient (DDPG) method for controlling 
acceleration and steering in the path-following of autonomous vehicles. The algorithm demonstrates 
rapid convergence, enabling stable and efficient path tracking. Additionally, the trained agent 
achieves smooth control without extreme actions. The performance of the optimized DDPG is 
compared with the standard DDPG algorithm, with results confirming the improved efficiency of the 
optimized approach. This advancement could significantly contribute to the development of 
autonomous driving technology. 
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1. INTRODUCTION 

Several organizations, both in industry and research, are aggressively improving autonomous vehicles (AVs), which 

can potentially save thousands of lives annually and save time daily.  About 1.35 million road traffic accident deaths occur 

annually, and between 20 and 50 million individuals sustain non-fatal injuries, based on the World Health Organization 

(WHO) report [1]. In the USA, the National Highway Traffic Safety Administration (NHTSA) report states that 94% of 

driving accidents happened because of human driving mistakes, while 2% were because of car failure [2, 3]. Therefore, 

hopefully, enhancing AV adoption will decrease car accidents and thus reduce road traffic fatality statistics. If their 

extensive placement is fruitful, the annual social forecast profits of AVs, which contain decreasing traffic congestion and 

the incidence of road accidents, less energy-wasting, and increasing efficiency as a consequence of redistributing driving 

time, will achieve approximately 800,000 million dollars by 2050 [4]. Though in static environments, the vehicle’s 

moving technology is improved [5], the complex and dynamic conditions of real driving environments have made it sorely 

challenging for extensive AV acceptance [6]. To test AV technology in the real-world driving environment, the 

Department of Motor Vehicles (DMV) in the United States issued licenses to producers under the program of AV tester 

in 2014 [7]. DMV in California needs producers to experiment with AVs and report any crash resulting in property 

damage, injury, or fatalities [8]. 

Path-following has been extensively considered as another option for tracking routes in numerous types of automobiles 

because of its slack, which is subject to time constraints [9, 10]. In problems of tracking of trajectory, the designated 

trajectory expresses when the automobile is assumed to be within the state space involves maintaining the car as close as 

possible and navigating along a predetermined path without any time reallocation [10, 12, 13]. One of the first suggested 

approaches for path-following is pure pursuit [14, 15]. This approach's straightforwardness has caused it to be widely 

used in many applications where real-time control is vital. Supposing that at a constant predefined speed, the vehicle is 

in motion, and the reference geometry path is devoid of any curvature. The pure pursuit method is according to appropriate 

a circle through the structure of the vehicle’s current, which is the rear-wheel position in the case of a car, by what is 

commonly referred to as a lookahead distance (L) to a point along the path in front of the vehicle [9, 16]. However, if the 

current structure is further away from the reference geometry path than L, then the controller does not consider the case 

for evaluation. Among the classical control methods, a method in which, as a continuous function, the path of reference 

geometry is parameterized, and the position of the rear wheel is utilized as a variable with a set delay to minimize the 

error of cross path between the reference path and the rear wheel, while similarly guaranteeing the car heading stability, 

has been suggested in [17]. 

While the control law guarantees rapid local convergence, the curvature of the reference geometry path remains 

crucial, necessitating the function to be twice continuously differentiable. The alternative strategy of control, explored in 

[18], focuses on minimizing the error in the front wheel's cross-track position is a reference geometric path. In this method, 
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to guarantee local exponential convergence towards the reference geometric path, the cross-track error is utilized with a 

nonlinear feedback mechanism, but to be utilized for reverse driving, it requires some variations. The automobile robot 

utilizing this control method for steering won the DARPA Challenge in 2005. The above methods [14, 17, 18] are 

appropriate as standards for comparison and reference because they accomplish acceptable performance with a minimal 

set of parameter uncertainty requirements and a moderate level of accuracy of the model. 

In the last decade, the Reinforcement Learning (RL) method has accomplished meaningful achievements in various 

fields, like gaming, robotics, and autonomous vehicles, which has brought it widespread recognition and excellent 

attention [19, 20]. A machine learning method called RL enables an agent to learn to make optimal decisions through its 

interactions with the environment. While RL methods enable an agent to learn to achieve a goal in a manner similar to 

humans based on predefined reward functions, they may struggle to adapt to new environments. Safety becomes a critical 

issue during the training process when RL methods are utilized in real-world situations, as they involve exploration of the 

action space during training, potentially resulting in unsafe RL actions. The use of deep neural networks (DNNs) to 

estimate the value function (Q-function) has made it possible to address high-dimensional state space problems in 

reinforcement learning, a field known as Deep Reinforcement Learning (DRL). More recent examples of DRL algorithms 

contain deep Q-network (DQN) [21], proximal policy optimization (PPO), and deep deterministic policy gradient (DDPG) 

[22]. 

The DDPG method [23], which incorporates the two deep Q-network (DQN) and deterministic policy gradient (DPG) 

approaches, has thus established extensive uses in fields like control of robotics and control of autonomous vehicles. In 

recent years, abundant researchers have tried to apply DRL techniques to resolve the path-following problem. Rubi et al. 

[13] investigated three consecutively developed techniques according to the DDPG algorithm, which realized the adaptive 

velocity control and path tracking of a quadrotor. Cheng et al. [24] achieved collision avoidance and path following for a 

non-holonomic wheeled mobile robot in simulation, but leading to a high jerk in robot velocity, the trained agent applied 

extreme control effort. Also, Zheng et al. [25], for powered parafoils, present a 3D path-following control technique to 

efficiently control the flight trajectory of the parafoils and disturbances against the wind, using the composition of linear 

active disturbance rejection control and DDPG algorithm. Ma et al. [26], based on soft actor criticism (SAC), investigate 

a path-following control system for a submarine, representing effective path tracking. This study presents the DDPG-

optimized algorithm application to the path-following system for submarines that travel at a moderate speed, with the 

main purpose of minimizing lateral deviation and creating a smooth steering angle.  

In the current work, we introduce the novel integration of the DDPG algorithm with an optimized approach tailored 

specifically for autonomous vehicle control. By incorporating advanced optimization techniques into the DDPG 

framework, we have enhanced the algorithm's ability to effectively learn and execute complex control tasks, such as path 

following and trajectory tracking. This optimized DDPG framework demonstrates superior performance in terms of both 

computational efficiency and control precision compared to standard implementations. Through meticulous 

experimentation and analysis, we have showcased the effectiveness of our approach in reducing lateral deviation, 

improving steering control, and ensuring smoother acceleration profiles, ultimately enhancing the safety and comfort of 

autonomous vehicle navigation. By pushing the boundaries of reinforcement learning in autonomous driving applications, 

our work represents a significant advancement in the field, with implications for the development of more reliable and 

robust autonomous systems in real-world scenarios. 

Our contribution lies in the innovative hybridization of optimization strategies within the DDPG algorithm framework. 

By employing the Adam optimizer for the critic network and the RMSprop optimizer for the actor network during training, 

we present a novel approach to balancing exploration and exploitation in DRL methods. This dual-optimizer scheme 

leverages the strengths of each optimizer, harnessing Adam's adaptive learning rates and momentum for efficient critic 

network updates while simultaneously utilizing RMSprop's stability and convergence properties for actor-network 

parameter updates. Through extensive experimentation and analysis, we have demonstrated the effectiveness of this 

hybrid optimization strategy in enhancing the learning dynamics, accelerating convergence, and improving the overall 

performance of the DDPG algorithm for autonomous vehicle control tasks. This novel optimization scheme represents a 

significant advancement in reinforcement learning methodologies, with potential applications across various domains 

requiring adaptive and efficient learning algorithms. 

Also, to accomplish smooth steering and comfortable driving when accelerating during vehicle operation, we utilize 

a suitable reward function. Compared to standard methods, this approach demonstrates superior performance on the 

learned trajectory. The control strategy of the trained agent has shown quick responsiveness to lateral deviations from the 

desired path, with a satisfactory amount of overshoot. Due to these advantages, this technique holds significant promise 

for practical applications. Finally, the results of the DDPG-optimized algorithm are compared to those of the DDPG 

algorithm, and the advantages of that are evaluated. 

2. VEHICLE DYNAMIC MODEL 

In the present study, the bicycle model (2 DOF  model) is used to simulate vehicle dynamics. Figure 1 demonstrates 

the dynamic model of the car.  
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Figure 1. Dynamic model of the car [27] 

 The state space equations of the vehicle dynamic model are as follows: 
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Now, the lateral deviation (e1) and the relative deviation angle (e2) are represented. To redefine the dynamic model, 

longitudinal velocity (Vx) and radius (R) are considered constant. Radius (R) can be defined as the curvature reverse of 

the path, as well as the deviation rate of the vehicle as a function of the curvature as follows: 

dΨ

dt 𝑑𝑒𝑠
= k𝑉𝑥 (2) 

Therefore, the desired acceleration of the car is described as: 
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Eventually, the equations of the state-space are redefined by the error variables as follows: 
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Figure 2 also depicts the lateral deviation (e1) and relative yaw angle (e2) for the vehicle. 

 

Figure 2. Error variables of the vehicle model 

Table 1 presents the parameters and symbols used in the vehicle dynamic model. 

Table 1. Parameters of the vehicle 

Description Symbol Value 

The total mass of the vehicle m 1650 kg 

Yaw moment of inertia Iz 2875 kg.m2 

FrontAxle-C.G.distance lf 1.40 m 

Rear Axle-C.G. distance lr 1.60 m 

Front tire cornering stiffness Cf 19000 N/rad 

Rear tire cornering stiffness Cr 33000 N/rad 

3. DEEP REINFORCEMENT LEARNING (DRL) METHOD 

Artificial intelligence (AI) encompasses machine learning (ML), a field focused on enhancing computational 

algorithm performance through data [28]. Machine Learning (ML) consists of three primary types: RL, supervised 

learning, and unsupervised learning. RL involves an autonomous agent learning to accomplish tasks in an environment 

by maximizing a predetermined reward function. Agents receive rewards for favorable actions and penalties for 

unfavorable ones during interactions with their environment. Learning from labeled examples by experts is the essence 

of supervised learning. Due to the complexity of finding an exact label that represents an interaction, this approach is not 

suitable for solving interactive problems [29]. 

Unsupervised learning involves learning to identify a concealed arrangement within data that has not been labeled. 

While uncovering patterns in gathered data can be beneficial, this method cannot optimize a reward, which is a key goal 

of reinforcement learning (RL) [29]. RL problems with extensive state and action spaces can utilize an Artificial Neural 

Network (ANN) to approximate functions. The application of an ANN as a function approximator in RL is known as the 

DRL method. Issues in reinforcement learning are commonly represented as Markov Decision Processes (MDPs). MDPs 

are used to model decision-making problems in which outcomes are affected by random elements and the actions taken 

by an agent. This framework is widely utilized in areas like reinforcement learning and operations research. 

The fundamental elements of a Markov Decision Process include the following: 

• States (S): MDPs are made up of a collection of states that encompass all potential scenarios or configurations of the 

environment. The states can vary between discrete or continuous, based on the specific problem domain. 

• Actions (A): In the MDP, every state has a range of possible actions from which the decision-maker can choose. These 

actions symbolize the options or decisions that are accessible to the decision-maker at every state. 

• Transition Probabilities (P): The probability of transitioning from one state to another after taking a specific action is 

determined by the transition probabilities. Put simply, they define the likelihood of moving to the next state based on 

the current state and action. 

• Rewards (R): Each state-action pair is linked to a reward that signifies the immediate gain or loss associated with taking 

that action in that state. The rewards can be either positive (rewards) or negative (penalties), and they could be either 

deterministic or stochastic. 

• Policy (π): A policy determines the decision maker's actions in different situations. In reinforcement learning, the goal 

is to find the best policy that maximizes the total expected reward. 
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• Value Function (Q): The value function represents the expected overall reward that can be obtained by following a 

certain policy or taking a specific action in a particular state. It assists in assessing the effectiveness of various policies 

or actions. 

MDPs adhere to the Markov property, which means that the subsequent state depends only on the current state and 

action and is unaffected by the sequence of preceding states and actions. This characteristic simplifies the modeling and 

examination of decision-making problems and enables the use of different solution methods like dynamic programming, 

Monte Carlo methods, and temporal difference learning. In general, Markov Decision Processes offer a formal structure 

for studying decision-making in uncertain situations and are widely utilized in fields such as robotics, autonomous 

systems, game theory, economics, and more. The value of the discounted reward at time step t is denoted as Rt. 

Rt = ∑ γt. rt 

∞

t
 (7) 

In the range [0, 1], γ represents a discount factor. Depending on the problem, T can be either an infinite (∞) or a finite 

value. π (a|s) is a policy that maps states to action probabilities. vπ (s) represents the expected return of a policy π from a 

state s and is a value function. 

Vπ(st) = Eπ[Rt|St, π] (8) 

A Qπ(s, a) is action-value function as follow: 

Qπ(st, at) = Eπ[Rt|St, at, π] (9) 

which also the iterative Bellman equation is satisfied: 

Qπ(st, at) = Eπ[rt + γ maxQπ(st+1, at+1)] (10) 

However, some RL problems cannot be expressed as MDPs. In certain cases, if the state S is only partially observable 

from the environment or cannot be observed directly from the defined environment, then our problems can be modeled 

as Partially Observable Markov Decision Processes (POMDPs). One approach to addressing this issue is to incorporate 

past knowledge into observations by combining previous observations or prior information with current observations, 

thereby solving the problem as an MDP [29]. The main goal of the RL algorithm is to learn a policy that maximizes the 

expected reward. The DDPG algorithm combines elements of value-based and policy-based methods in reinforcement 

learning. It is especially effective for tackling issues related to continuous action spaces in RL. 

The actor-critic framework employed by DDPG consists of two primary networks: 

•  Actor-Network: The policy function is learned by this network, mapping states to actions with the goal of maximizing 

the expected return through the direct selection of actions based on the current state. 

• Critic Network: The Q-value function is learned by this network, estimating the anticipated return (total reward) from 

adhering to a particular policy. This aids in assessing the decisions made by the actor-network. 

Moreover, DDPG operates as an off-policy algorithm, which implies that it gains knowledge from data obtained from 

an experience replay buffer without directly adhering to a specific policy. Additionally, it is model-free, indicating that it 

does not necessitate understanding the underlying dynamics of the environment. In contrast to certain other algorithms 

that are more suitable for discrete action spaces, DDPG is specifically crafted to manage continuous action spaces, 

allowing it to be used in a wide range of scenarios, such as robotics and control tasks. A mean squared Bellman error 

(MSBE) be able to be regarded as: 

L(∅, θ) = ED [(Q∅(s, a) − (r + γ (1 − d)maxQ∅(ś, á)))
2] (11) 

The DDPG algorithm merges aspects of policy gradient techniques and Q-learning. Policy gradient methods are utilized 

to train the actor-network directly in order to maximize the anticipated return, while Q-learning is used to train the critic 

network to assess the value of state-action pairs. Furthermore, DDPG incorporates target networks in order to stabilize 

training, consisting of duplicates of the actor and critic networks that are updated less often than the primary networks. 

In addition, DDPG utilizes an experience replay buffer to store and select experiences during training with the aim of 

diversifying the data and enhancing sample efficiency. 

4. DDPG METHOD IMPLEMENTATION FOR PATH-FOLLOWING CONTROL 

4.1 State Space 

A state in RL problems is a demonstration of the agent's current environment. This state can be observed by the agent, 

and it contains all pertinent details regarding the environment that the agent requires to know to make a decision. Figure 

3 demonstrates the basic components of the RL model for autonomous vehicles. The DDPG algorithm uses two neural 

networks, viz. critic and actor networks, which utilize the state as input data. Consequently, all states should be observable. 
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Figure 3. RL model for autonomous vehicle 

In the current study, the observations from the environment include longitudinal measurements and lateral 

measurements. The longitudinal parameters consist of the velocity error, its integral, and the longitudinal speed of the 

self-driving car. Also, the lateral measurements include the lateral deviation, relative yaw angle, their integrals, and their 

derivatives as follows: 

Longitudinal measurements:  

SLo = [V,  𝒆𝒗,  ∫ 𝒆𝒗] (12) 

  

Lateral measurements:  

SLa = [𝒆𝟏, 𝒆𝟐, 𝒆�̇�, 𝒆�̇�, ∫ 𝒆𝟏 , ∫ 𝒆𝟐]   (13) 

4.2 Action Space 

In this research, the action space (based on Figure 3) includes steering angle and acceleration actions. The acceleration 

action signal ranges from [-3, 2] m/s2 and the steering angle action signal varies between [-15, 15] deg or [-0.262, 0.262] 

radian.  

4.3 Reward Function 

In RL problems, a numerical signal known as the reward is optimized by the agent, which is presented by the 

environment as a reaction to the actions of the agent. The reward for the agent operates as a mechanism of feedback, 

notifying it of its efficiency in a specific state and holding its future actions towards its aim. In the DRL algorithm, the 

agent is a neural network (NN) that obtains the observations of the environment as input and also creates actions as output. 

According to the rewards it receives from the environment, the network parameters are adjusted by a DRL algorithm. In 

the DRL method, rewards play a crucial role in the process of agent learning. The agent decision-making process is 

reinforced by positive rewards, while negative rewards disappoint it from reciting definite actions. As the experience 

agent gains, it recognizes which actions cause the highest reward value and, to maximize future rewards updates its policy. 

Hence, to learn and boost its decision-making abilities, rewards suggest a critical feedback signal for the DRL agent.  

In the present study, the reward function is described as follows: 

Rt = −(0.1 ∗ e1
2) − (0.01 ∗ eV

2 ) − (0.5 ∗ ut−1
2 ) − (0.1 ∗ at−1

2 ) (14) 

where e1 is the lateral deviation, ev is velocity error, and ut−1 and at−1 are the steering input from the previous time step and 

the acceleration input from the previous time step, respectively. 

4.4 Training Process 

The neural networks of actor-critic both contain two hidden layers, as demonstrated in Figure 4. Each layer consists 

of a ReLU activation function with 100 neurons. Remarkably, in the network of critics, the vector of state  

Interfaces with the first hidden layer, while the action is concatenated before the second hidden layer, following the 

configuration of the primary algorithm. To bypass the first layer, this mechanism allows the action to develop the 

performance and stability of the networks [30]. The actor-network final layer is a hyperbolic tangent layer utilized to map 

the action. 

In the present study, the Adam optimizer is used to optimize neural networks with a mini-batch size of 128. Also, the 

initial acceleration of the car is sampled from a consistent acceleration, with a range of [-3, 2] m/s2 and a steering angle 

range of [-0.262, 0.262] rad. Through the initial process of training, the agent selects actions randomly from its action 

space. Following this, the actor network generates actions based on the observed state, the agent transitions to the next 

state, computes the reward, and saves this experience as a tuple in the experience replay buffer until the total number of 

experiences reaches the specified mini-batch size. Once this threshold is reached, the networks are then updated and 

optimized. 
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Figure 4. DDPG algorithm structure 

The loss function to update the parameters of the actor and critic networks can be determined using equations (15) and 

(17). 

𝐿(𝜃) = 𝐸𝑠 ,𝑎[(𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡|𝜃))
2
] (15) 

The variable yt represents the Temporal Difference (TD) target, which serves as the goal for updating and optimizing the 

Q-function. 

𝑦𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1)|𝜃) (16) 

Equation (17) illustrates the method for updating the actor parameters 𝜃, by employing the chain rule concerning 𝜃 This 

update utilizes the expected return from the start, denoted as J.  

𝛻𝜃𝐽 = 𝐸𝑆[𝛻𝜃𝑄(𝑠, 𝑎|𝜃)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡|𝜃)] (17) 

Following the fine-tuning of the original networks, the parameters of the target network undergo adjustment utilizing a 

soft update technique, as outlined in equation (18). The process includes mixing some of the revised network parameters 

with the target network's parameters, which improves the consistency of the learning process and avoids oscillations.   

�́� = 𝜏𝜃 + (1 − 𝜏)�́� (18) 

where τ shows how rapidly the update is conducted, and after training the online network, the target network parameter 

gets updated after each step. 

Through the training process, for each episode, a haphazard path is created, and its actions are influenced by 

exploration noise. The agent's selection is derived from its effectiveness in navigating the environment. In contrast, during 

evaluation, the agent makes decisions only according to the existing learned policy, with no random exploration noise. 

Assessment takes place periodically, and the agent with the highest reward performance during these evaluations is 

chosen. Table 2 outlines the hyperparameters utilized in the training process. 

Table 2. Hyperparameters of DDPG-optimized agent 

Hyperparameters Value 

Discount factor 0.99 

Period 0.1 s 

Learning rate actor-network 1e-4 

Learning rate critic-network 1e-3 

Actor hidden layers 100 

Critic hidden layers 100 

Training epochs 10 

Target soft update rate 0.01 

Mini batch size 128 

Experience replays buffer size 100,000 

4.5 Tools and Simulation Environment 

Our simulation was done using the MATLAB R2022a software, which provides a complete framework of 

reinforcement learning to train agents in the predefined environment using a reinforcement learning toolbox and a wide-

ranging deep learning framework for training and constructing neural networks using a deep learning toolbox. In the 

present study, we implement a designed deep neural network in the RL toolbox and generate a DDPG agent in the RL 
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toolbox to generate our actor-critic networks and for training problems. To update the weights of the networks, we also 

utilized optimization algorithms, like the Adam optimizer, through training. Also, within a tailored path-following 

environment constructed utilizing Simulink, the agent was trained, which allowed us to evaluate the performance of the 

agent under diverse scenarios and simulate a range of conditions. Figure 5 denotes the training process of the DDPG agent 

for 1000 episodes for the path-following task in MATLAB software. 

  
(a) (b) 

Figure 5. DDPG-optimized agent training process: (a) for 1000 episodes; (b) for 30 episodes 

Also, Figure 6 represents the DRL-based controller framework for path-following tasks in the Simulink environment.  

 

Figure 6. DRL-based control framework for AVs 

5. RESULTS AND EVALUATION 

In the current section, the DDPG method results for the path-following task are presented, and then the performance 

of the DDPG-optimized algorithm is compared and evaluated with the DDPG algorithm. Also, Figure 7 demonstrates the 

path-following and traffic environment in this work. According to Figure 8, the steering angle of the ego vehicle in the 

DDPG-optimized algorithm is smoother than the DDPG algorithm for the path-following task. The DDPG-optimized 

algorithm provides more stable control of the autonomous vehicle's steering angle. The optimization techniques employed 

in the DDPG-optimized agent enhance the learning process, leading to smoother steering angles. These techniques include 

changes to the network architecture and hyperparameter tuning, all of which contribute to improved convergence and 

stability during training. Moreover, the optimization process in the DDPG-optimized agent strikes a better balance 

between exploration and exploitation. By fine-tuning the learning rate, momentum, or other optimization parameters, the 

agent can effectively explore the action space while exploiting learned policies, resulting in smoother and more refined 

steering commands. The optimization process involves fine-tuning the policy parameters of the DDPG-optimized agent 

to prioritize smoother steering behavior. By adjusting the reward function to penalize sharp steering maneuvers, the agent 

can learn to generate smoother trajectories while still achieving the desired control objectives. 

Consequently, the DDPG-optimized algorithm is more reliable than the DDPG algorithm for driving. Also, for lateral 

maneuvers, the DDPG-optimized agent is more familiar with the driving traffic environment than the DDPG agent.  

 

 

a) 

 

b) 

Fig. 5 DDPG-optimized agent training process: a) for 1000 episodes, b) for 30 episodes

 

a) 

 

b) 

Fig. 5 DDPG-optimized agent training process: a) for 1000 episodes, b) for 30 episodes
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Figure 7. Path-following and traffic environment 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Steering angle- DDPG-optimized and DDPG algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Acceleration- DDPG-optimized and DDPG algorithms 

 

 

Fig. 7 Path-following and traffic environment

 

 

Fig. 7 Path-following and traffic environment
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According to Figure 9, based on the acceleration scheme, the DDPG-optimized algorithm is more comfortable and 

safer than the DDPG algorithm for longitudinal maneuvers. The optimization techniques applied to the DDPG-optimized 

agent refine the learned control policies to prioritize smoother acceleration profiles. By fine-tuning the neural network 

architecture and adjusting hyperparameters, the agent can learn to produce more gradual and consistent acceleration 

commands, resulting in smoother vehicle motion. Furthermore, the optimization process enhances the robustness of the 

DDPG-optimized agent to environmental disturbances and uncertainties, resulting in smoother acceleration behavior. 

Through techniques such as regularization or robust optimization, the agent can learn control policies that are more 

resilient to external factors, leading to smoother vehicle dynamics. Also, smoother acceleration profiles observed in the 

DDPG-optimized agent contribute to enhanced safety and passenger comfort. By reducing abrupt changes in vehicle 

velocity, the agent can provide a more comfortable ride experience while minimizing the risk of sudden accelerations that 

could compromise safety. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Distance- DDPG-optimized and DDPG algorithms 

According to Figure 10, the ego vehicle in the DDPG-optimized algorithm follows the safe distance in the best way, 

while the DDPG algorithm does not follow the safe distance ideally. Consequently, the DDPG-optimized algorithm 

controls the ego vehicle in a safe path like an intelligent human driver. Since the optimization techniques enhance the 

agent's ability to adapt to uncertain or dynamic environments by minimizing the effects of noise or variability in sensor 

inputs, the agent can learn to adjust its control actions more accurately to maintain a safe distance under varying 

conditions. Moreover, the optimization techniques used in the DDPG-optimized agent accelerate learning and improve 

convergence toward safer driving behavior. By addressing issues such as slow convergence, the agent can learn more 

efficiently and consistently maintain a safe distance from obstacles. 

In the present study, for the ego car, the target speed is definite as follows: the ego vehicle follows the lower value 

between the lead car's velocity and the velocity set by the driver, provided that the relative distance is within the safe 

threshold. Consequently, the ego car ensures a certain separation from the lead vehicle. The ego car matches the velocity 

set by the driver when the relative distance exceeds the safe distance. Based on Figure 11, the ego vehicle in the DDPG-

optimized algorithm tracks the lead vehicle velocity better than the DDPG algorithm by considering the set-point velocity 

(30 m/s). According to Figure 2, the lateral deviation is defined as the deviation between the C.G. of the autonomous 

vehicle and the lane centerline. Therefore, the lateral deviation for the DDPG-optimized and DDPG algorithms is 

demonstrated in Figure 12. 

 

 

 

 

 

 

 

 

 

Figure 11. Velocity- DDPG-optimized and DDPG algorithms 

According to Figure 12, the lateral deviation in the DDPG-optimized algorithm is less than the DDPG algorithm, 

hence, the DDPG-optimized agent does the path-following task better than the DDPG agent, and the DDPG-optimized 

algorithm can control and handle autonomous vehicles for both longitudinal and lateral maneuvers. The optimization 

process explicitly incorporates safety constraints into the learning objectives of the DDPG-optimized agent. By penalizing 
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deviations from the desired path or rewarding behaviors that prioritize trajectory tracking, the agent can learn to prioritize 

safety while accomplishing its control objectives, resulting in reduced lateral deviation. Also, the DDPG-optimized agent 

exhibits improved adaptation to changes in the environment or road conditions. Through continuous learning and policy 

refinement, the agent can dynamically adjust its steering behavior to compensate for variations in road geometry, surface 

conditions, and traffic patterns, resulting in reduced lateral deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Lateral deviation- DDPG-optimized and DDPG algorithms 

The DDPG-optimized agent exhibits smoother steering angles and acceleration profiles, maintains a safer distance, 

and demonstrates reduced lateral deviation compared to the standard DDPG agent, suggesting a significant improvement 

in the performance and robustness of the autonomous driving system. The optimization techniques applied to the DDPG 

algorithm have effectively enhanced various aspects of the agent's behavior, leading to smoother and more precise control 

actions, better adaptation to environmental uncertainties, and prioritization of safety considerations. By fine-tuning the 

neural network architecture, adjusting optimization parameters, and integrating safety constraints into the learning 

objectives, the DDPG-optimized agent demonstrates superior performance in navigating complex and dynamic 

environments while ensuring safe and comfortable driving experiences. The results highlight the importance of 

optimization techniques in enhancing the effectiveness and reliability of reinforcement learning-based autonomous 

driving systems. The DDPG-optimized agent's improved control behavior underscores the potential for optimization 

strategies to address key challenges in autonomous vehicle control, ultimately contributing to the development of safer, 

more efficient, and more trustworthy autonomous driving technologies. 

6. CONCLUSIONS 

In this study, the DRL-based controller has been used to target the path following an autonomous ground vehicle. To 

accomplish this task, the DDPG-optimized agent was trained and given rewards that were associated with the lateral 

deviation, the velocity error, the steering angle, and the acceleration. Our agent emphasizes steering angle and acceleration 

control together to achieve the goal of path-following. While this reduces the action dimension, it also decreases the 

exploration space. The DDPG-optimized agent successfully confirmed its ability to follow a distance and lead vehicle 

velocity. Also, the DDPG-optimized agent effectively demonstrated its ability to decrease lateral deviation, and the 

DDPG-optimized algorithm had a smooth steering angle through driving. Further, it is found to be as effective for tracking 

trajectory as a classical controller.  

Moving forward, the current DRL-based control framework will be improved to include collision and obstacle 

avoidance, allowing for the optimization of multiple objectives. This will cause the creation of a policy that is both 

computationally effective and allows implementation in real-time. Multi-objective control configurations will be 

experimentally tested to gain a better understanding of classical and modern controller’s subtleties. Future works will also 

explore the efficiency of the controllers under other environmental disturbances like complex traffic environments. 
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