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ABSTRACT - The manufacturing industry is currently experiencing a paradigm shift from traditional 
centralized systems to distributed, personalized, and cloud-based intelligent manufacturing 
ecosystems. The advent of 4-dimensional (4D) printing technology introduces dynamic 
characteristics to manufacturing design and functionality, necessitating the effective management 
of these emergent 4D printing services. This study aims to bridge the gap between the static nature 
of existing cloud manufacturing services and the dynamic requirements imposed by 4D printing 
technology. We propose a comprehensive multiobjective optimization model for cloud-based 4D 
printing service portfolios, incorporating the intricate complexities of 4D printing services and 
assessing the efficacy of the Non-Dominated Sorting Genetic Algorithm III (NSGA III) in optimizing 
these service portfolios to meet dynamic demands. In this research, the NSGA III algorithm is 
employed to develop a multiobjective optimization framework for 4D printing service portfolios, 
addressing critical issues such as service cost, time, quality, adaptability, and overall service 
optimization amidst fluctuating demand and service availability. The findings indicate that the NSGA 
III algorithm demonstrates superior performance in terms of generational distance and inverted 
generational distance, particularly excelling in convergence and diversity for high-dimensional 
optimization problems when compared to the comparison algorithms. The study concludes that the 
NSGA III algorithm exhibits significant potential in optimizing the orchestration of cloud-based 4D 
printing service portfolios, underscoring its effectiveness in managing the complexities associated 
with these services. This research provides valuable insights for the advancement of intelligent 
cloud-based 4D printing systems, paving the way for future developments in this field. 
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1. INTRODUCTION 

In recent decades, an evolution has unfolded within the manufacturing sector, transitioning from traditional mass 

production methodologies towards bespoke manufacturing approaches and evolving from centralized production 

frameworks to distributed, cloud-based manufacturing ecosystems [1]. This transformation has been catalyzed by the 

advent of Service-Oriented Cloud Manufacturing (CMfg), a model that epitomizes the convergence of flexibility, resource 

sharing, and the delivery of manufacturing capabilities as services via the industrial internet [2]. Simultaneously, the 

emergence of 4D printing [3] technology, which extends beyond the capabilities of 3D printing by integrating the temporal 

dimension into the fabrication process, represents a significant advancement. This innovation enables materials to be 

designed with the inherent capacity to alter their configuration, properties, or functionality upon exposure to 

predetermined stimuli over time, thus facilitating the creation of objects equipped to adapt, self-organize, or transmute in 

response to external environmental variables. 

The amalgamation of cloud manufacturing with 4D printing technologies marks a pivotal convergence within the 

realm of contemporary manufacturing, blending the digital with the tangible to foster the development of intelligent, 

versatile, and intricate products. This fusion harbors the potential to revolutionize our perceptions concerning product 

lifecycle management, supply chain dynamics, and the foundational principles of product design and functionality. This 

paper endeavors to scrutinize service portfolio optimization [4] within the domain of cloud manufacturing, with a 

particular focus on services allied to 4D printing. It presents a modeling approach that coordinates and optimizes the 

service composition of cloud-based 4D printing, achieving multiobjective optimization. It postulates that leveraging a 

multiobjective methodology facilitated by the Non-dominated Sorting Genetic Algorithm III (NSGA III)  [5]  could 

markedly augment the optimization of service portfolios associated with 4D printing. The objective transcends mere cost 

and quality considerations to include an assessment of the portfolio's adaptability and resilience in the face of demand 

volatility and resource availability fluctuations, thereby addressing the limitations inherent in extant procedural models. 
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The research objectives are as follows: 

a) To investigate the modeling approach for optimizing cloud-based 4D printing service composition:  

The primary goal of this study is to propose an optimization model based on the Nondominated Sorting Genetic 

Algorithm III (NSGA III) to address the multiobjective optimization problem in cloud-based 4D printing service 

composition. 

b) To employ the NSGA III algorithm to solve the high-dimensional multiobjective optimization problem in cloud-based 

4D printing service composition (C4DPS):  

This study compares the performance of the NSGA III algorithm with NSGA II, MOEA/D, and MOPSO algorithms 

in addressing the optimization of cloud-based 4D printing service composition, effectively handling the multiobjective 

optimization problem in C4DPS. 

Abbreviations and Nomenclature in this paper are shown in Table 1. 

Table 1. Abbreviations and nomenclature in this paper 

Notations Description 

CMfg Cloud Manufacturing 

C3DP Cloud 3D Printing 

C4DP Cloud 4D Printing  

C4DPS Cloud 4D Printing Services 

C4DPSP Cloud 4D Printing Services Platform 

NSGA Non-Dominated Sorting Genetic Algorithm 

MOEA/D Multiobjective Evolutionary Algorithm based on Decomposition 

MOPSO Multiobjective Particle Swarm Optimization 

2. METHODOLOGY 

2.1 C4DPS Metrics and Problem Description 

To facilitate the advancement of C4DPS in a manner conducive to its sustainable development, careful consideration 

must be given not only to the interests of C4DPS stakeholders but also to those of cloud 4D printing service platforms 

and C4DP services suppliers. Consequently, this study undertakes the task of identifying evaluation metrics [6] from the 

perspectives of C4DPS stakeholders, cloud 4D printing platforms, and C4DP service providers. Subsequently, a 

multiobjective optimization model for the C4DPS service composition was developed. 

C4DPS stakeholders are typically comprised of enterprises or individuals seeking to enhance their market 

competitiveness by optimizing production costs, elevating product quality, and improving responsiveness to market 

demands. Therefore, this study selects service cost, service time, and service quality as key evaluation metrics. The 

profitability of C4DPSP operators hinges on the compensation received from both C4DPS stakeholders and service 

providers. Consequently, it is imperative to consider the flexibility of C4DPS and assess its adaptability and 

comprehensive service offerings. C4DP service providers leverage idle printing services and capabilities by listing them 

on C4DPSP, aiming to maximize resource utilization and minimize wastage. 

2.2 Description of the C4DP Service Composition Problem 

The core issue addressed in this research is the proposition of an effective solution for high-dimensional multiobjective 

optimization specific to cloud-based 4D printing service composition. Within the C4DPS framework, stakeholders submit 

service requests to C4DPSP, initiating a process of printing service composition involving three distinct stages: task 

decomposition, subtask search and matching, and service composition optimization [7]. Figure 1 displays the 

decomposition of cloud 4D printing services into granular sub-services, each encapsulated by the resources and 

capabilities specific to cloud 4D printing.  

During the task decomposition stage, service demands are uploaded to C4DPSP and systematically broken down 

according to predefined rules. Each resultant subtask is designed to be fulfillable by a single candidate resource set. 

Subsequently, in the subtask search and matching [8] stage, a specialized search matching tool is employed to pair each 

subtask with the corresponding candidate cloud 4D printing resource set, yielding a series of candidate resource sets. 

Figure 2 illustrates the schematic of C4DP service providers and task demanders globally engaging in C4DP service and 

task compositions on the C4DPSP. 

Finally, in the service composition optimization stage, the platform selects an optimal candidate resource from within 

each candidate resource set, considering multiple objectives and constraints. This selection process results in a preferred 

C4DP service combination  [9] tailored to execute the total task submitted by the service demander. Throughout this 

entire process, C4DPSP meticulously tracks and provides feedback on the service composition process. 
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Figure 1. Cloud 4D printing services, resources and capabilities 

 

Service 1

Service 2

Service 3

Service 4

Service ...

Service ...

Service ...

Service n-1

Service n

Task 1

Task 2

Task 3

Task 4

Task ...

Task ...

Task ...

Task ...

Task m-1

Task m

Service 1

Service 2

Service 3

Service 4

Service ...

Service ...

Service ...

Service n-1

Service n

Task 1

Task 2

Task 3

Task 4

Task ...

Task ...

Task ...

Task ...

Task m-1

Task m

Service 1

Service 2

Service 3

Service 4

Service ...

Service ...

Service ...

Service n-1

Service n

Task 1

Task 2

Task 3

Task 4

Task ...

Task ...

Task ...

Task ...

Task m-1

Task m

Service 1

Service 2

Service 3

Service 4

Service ...

Service ...

Service ...

Service n-1

Service n

Task 1Task 2Task 3

Task 4Task ...

Task ... Task ...

Task ...Task m-1Task m

Service ...

Service 1

Service 2

Service 3

Service 4

Service ...

Service ...

Service ...

Service n-1

Task 1

Task 2

Task 3

Task 4

Task ...

Task ...

Task ...

Task m-1

4D printing 

Services

Supplier

4D printing 

Services

 Demander

4D printing 

Services

Supplier

4D printing 

Services

 Demander

4D printing 

Services

Supplier

4D printing 

Services

 Demander

4D printing 

Services

Supplier

4D printing 

Services

 Demander
 

Figure 2. The Schematic diagram of the C4DP services and tasks compositions on the C4DPSP 
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Figure 3. The granular 4D printing services and task composition at C4DPSP 

The cloud-based manufacturing model for the C4DPS involves the demand side of printing services publishing C4DPS 

requirements to the C4DPSP. The C4DPSP allocates printing resources based on the characteristics of these requirements, 

ultimately leading to the provision of real 4D printing services by C4DP service providers to the service demanders. 

Figure 3 illustrates the schematic of service composition for multi-granular 4D printing services and required tasks within 

the C4DPSP. 

2.3 Optimization Model for Cloud 4D Printing Service Composition 

a) Optimization Objectives and Constraints for C4DP Service Cost [10] 

The total actual cost of C4DPS, C, is composed of the total production printing cost, Cp, and other costs of C4DPS, Co, 

with the optimization objective formulated as: 

𝑚𝑖𝑛𝐶 = 𝑚𝑖𝑛(𝐶𝑝 + 𝐶𝑜) (1) 

  

𝐶𝑝 =∑  

𝑚

𝑖=1

∑ 

𝑛

𝑗=1

𝐶(𝑖, 𝑗)𝑝 ∗ 𝛼(𝑖, 𝑗) (2) 

  

𝐶𝑜 =∑  

𝑚

𝑖=1

∑ 

𝑛

𝑗=1

𝐶(𝑖, 𝑗)𝑜 ∗ 𝛼(𝑖, 𝑗) (3) 

The total actual cost of C4DP must satisfy the following constraints: 

𝐶 ⩽ 𝐶𝑚𝑎𝑥 (4) 

In the equation, C(i,j)p denotes the production cost incurred by the C4DP sub-service i for completing sub-task j of the 

C4DP process; 𝐶𝑚𝑎𝑥 represents the maximum total cost acceptable to the demand side for C4DP services; n and m 
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respectively signify the number of C4DP sub-tasks and the corresponding candidate C4DP sub-services available; α
(i,j)=1 indicates that sub-task j is executed by sub-service i of the C4DP system. 

b) Optimization Objectives and Constraints for C4DP Service Time [11] 

The total actual time T is comprised of the total C4DP production time Tp and other transportation times To, with the 

optimization objective expressed as: 

𝑚𝑖𝑛𝑇 = 𝑚𝑖𝑛(𝑇𝑝 + 𝑇𝑜) (5) 

  

𝑇𝑝 =∑  

𝑚

𝑖=1

∑ 

𝑛

𝑗=1

𝑇(𝑖, 𝑗)𝑝 ∗ 𝛼(𝑖, 𝑗) (6) 

  

𝑇𝑜 =∑  

𝑚

𝑖=1

∑ 

𝑛

𝑗=1

𝑇(𝑖, 𝑗)𝑜 ∗ 𝛼(𝑖, 𝑗) (7) 

The total actual C4DP time must satisfy the following constraints: 

𝑇 ⩽ 𝑇𝑚𝑎𝑥  (8) 

where T(i,j)p represents the production time of C4DP sub-service i for completing C4DP sub-task j; Tmax signifies the 

maximum total C4DP service time acceptable to the service demander. 

c) Optimization Objectives and Constraints for C4DP Service Quality [12] 

𝑚𝑎𝑥𝑄 = 𝑚𝑎𝑥

(

 
 
(∑  

𝑚

𝑖=1

∑ 

𝑛

𝑗=1

𝑄(𝑖, 𝑗)∗𝛼(𝑖, 𝑗)) /𝑛

)

 
 

 (9) 

The C4DP service quality must satisfy the following constraints: 

𝑄 ⩾ 𝑄𝑚𝑖𝑛 (10) 

where Q(i,j) denotes the service quality of C4DP sub-service i for completing C4DP sub-task j; Qmin represents the 

minimum service quality acceptable by the C4DP service demander. 

d) Optimization Objectives and Constraints for Adaptability to Changes [13] in C4DP Tasks 

The capability to adapt to changes in C4DP tasks is the average of the adaptability to changes in each sub-task, defined 

as: 

𝑚𝑎𝑥𝐹𝑇 = 𝑚𝑎𝑥

(

 
 
(∑  

𝑚

𝑖=1

∑ 

𝑛

𝑗=1

𝐹𝑇(𝑖, 𝑗) ∗ 𝛼(𝑖, 𝑗)) /𝑛

)

 
 

 (11) 

The ability to adapt to changes in C4DP manufacturing tasks must satisfy the following constraints: 

𝐹𝑇 ⩾ 𝐹𝑇𝑚𝑖𝑛 (12) 

where FT(i，j) indicates the adaptability of C4DP sub-service i to changes in C4DP sub-task j; FTmin represents the 

minimum adaptability required by the operators of the C4DPSP platform for C4DPS service providers. 

e) Optimization Objectives and Constraints for Comprehensive C4DP Service Evaluation [14] 

The comprehensive service evaluation for C4DP is the mean of the composite service evaluations for each C4DP sub-

task, represented as: 

𝑚𝑎𝑥𝐹𝑐 = 𝑚𝑎𝑥

(

 
 
(∑  

𝑚

𝑖=1

∑ 

𝑛

𝑗=1

𝐹𝑐(𝑖, 𝑗) ∗ 𝛼(𝑖, 𝑗)) /𝑛

)

 
 

 (13) 

The comprehensive service evaluation must meet the following conditions: 

𝐹𝑐 ⩾ 𝐹𝑐 𝑚𝑖𝑛 (14) 
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where 𝐹𝑐(𝑖, 𝑗) is the comprehensive service evaluation by the service demander for C4DP sub-service i completing C4DP 

sub-task j; 𝐹𝑐 𝑚𝑖𝑛 indicates the minimum service evaluation level required by the C4DPSP operators. 

In summary, the optimization model for cloud manufacturing service composition considers the overall interests of 

the C4DPS demanders, the C4DPSP, and the C4DPS providers. The multiobjective optimization model is as follows: 

𝑚𝑖𝑛(𝐶, 𝑇, 1 − 𝑄, 1 − 𝐹𝑇 , 1 − 𝐹𝑐) (15) 

  

𝑠. 𝑡.

{
 
 

 
 
𝐶 ⩽ 𝐶𝑚𝑎𝑥
𝑇 ⩽ 𝑇𝑚𝑎𝑥
𝑄 ⩾ 𝑄𝑚𝑖𝑛
FT ⩾ FTmin
𝐹𝐜 ⩾ 𝐹𝐜𝑚𝑖𝑛  

 (16) 

The five constraints within the model respectively indicate that the total service cost C must not exceed the maximum 

cost Cmax as stipulated by the service requester; the total service duration T must not surpass the longest allowable service 

time Tmax defined by the service requester; the quality of the printing service Q must meet or exceed the minimum service 

quality Qmin specified by the service requester; the capability to accommodate changes in the printing tasks must not be 

less than the minimum capacity FTmin set by the printing service provider; and the overall service evaluation for the printing 

service by the service requester must not be lower than the minimum service evaluation Fcmin designated by the service 

requester. 

2.4 The NSGA III Algorithm 

The NSGA III [15] algorithm employs a selection mechanism based on uniform reference points, which offers 

improved convergence and diversity in solutions for multiobjective optimization problems of three or more dimensions. 

The model proposed in this article addresses a multiobjective combinatorial optimization problem for the C4DP. To 

resolve such issues, DEB et al. introduced the NSGA II [16] algorithm, which incorporates an elitist strategy to enhance 

population sampling and employs a crowding mechanism for the even distribution of solutions alongside a fast, non-

dominated sorting approach to reduce computational complexity. However, in the context of high-dimensional (more than 

three objectives) optimization problems, the proportion of non-dominated solutions in the population increases 

exponentially, resulting in insufficient space for new solutions and, consequently, a slowdown in algorithm convergence 

and an overly concentrated optimal solution set. Additionally, as the number of objective functions increases, the 

computational cost of the algorithm's crowding distance operation becomes significantly high. The NSGA III algorithm, 

which incorporates a reference point-based method, maintains population diversity while effectively reducing the 

computational cost associated with high-dimensional objective functions, providing an efficient solution approach for the 

model constructed in this paper. The specific steps for solving the cloud 4D printing service optimization combination 

model using the NSGA III algorithm are depicted in Figure 4.  

Start

Step 1: Initialize NSGA-III algorithm 

parameters including iteration 

number, mutation and crossover rates.

Step 2: Generate initial population, 

initialize iteration number to 0.

Step 3: Evenly divide objective space 

to generate a set of uniformly 

distributed reference points.

Step 4: Calculate the fitness for each 

individual in the population, and 

repair any individuals that violate 

constraints.

Step 5: Perform crossover and 

mutation on the current population to 

produce offspring, calculate the 

fitness of each offspring, and repair 

any that violate constraints.

Step 6: Combine the parent and 

offspring populations and perform 

non-dominated sorting to form 

multiple fronts.

Step 7: Select individuals from the 

sorted fronts to form the new 

generation until the population size is 

restored.

Check if the termination 

condition has been met 

End

t=t+1
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Figure 4. Flow chart of the NSGA III algorithm 

Step 1:  Initialize algorithm parameters, including the total number of iterations, mutation rate, and crossover rate. 

Step 2:  Determine the coding rules and initialize the population Pt, setting the initial iteration count to zero. 

Step 3:  Generate uniformly distributed reference points based on the equal division of each objective dimension and the 

number of objective functions. 

Step 4:  Calculate the fitness of each individual in the population and repair out-of-bounds individuals based on the 

model's constraint handling rules. 

Step 5:  Generate the offspring population Qt through crossover and mutation operations, calculate the fitness of each 

individual in the offspring population, and repair out-of-bounds individuals based on constraint rules. 

Step 6:  Merge population Pt with offspring population Qt, resulting in a combined population size of 2N. 

Step 7:  Perform fast non-dominated sorting on the combined population to identify several non-dominated fronts F1, F2, 

F3,…, FL. 

Step 8:  Add higher priority non-dominated fronts to the next generation population until all individuals from the Lth 

front are selected. If the next generation population size equals N, proceed to Step 11; if greater than N, go to 

Step 9. 

Step 9:  Normalize the individuals from the first L fronts to fall within [0,1]. 

Step 10: Calculate the perpendicular distance of all individuals in the first L fronts to the reference points, identify the 

reference point associated with each individual based on the shortest perpendicular distance, calculate the niche 

of the jth reference point, and select K individuals from the Lth front to enter the next generation population, 

ensuring the population size equals N, and increase the iteration count by one. 

Step 11: Check if the predefined number of iterations has been reached; if so, terminate the iteration; otherwise, repeat 

Steps 5 to 10. 

In the practical scenario of Cloud 4D Printing (C4DP) service composition, a C4DP task, denoted as C4DP_T, is 

decomposed into 'i' subtasks, each represented as C4DP_Ti. For each subtask, there are 'm' corresponding Cloud 4D 

Printing Services (C4DPS). The 'i'th chromosome's gene encoding as 'j' signifies that the subtask C4DP_Ti is to be 

executed by the sub-service C4DPSj. The integer encoding of the chromosome's genes is depicted in Figure 5, which 

visually represents the mapping relationship between the C4DP service portfolio and the chromosomal structure. This 

gene encoding scheme facilitates the genetic algorithm's process in identifying and orchestrating the optimal service 

composition, reflecting the multitiered architecture of C4DPS. 

 

Figure 5. Mapping relationship diagram between C4DP Service Composition and Chromosome 

Based on uniform reference points, the steps of the minimal niche selection mechanism are as follows: 

Step 1: Normalizing the Objective Function 

Define the Ideal Point: Let M represent the number of optimization objectives. Compute the minimum value 𝑧𝑗
𝑚𝑖𝑛  for 

each objective dimension j in the current population, j∈{1,2,…, M}, and designate these as the ideal points for the current 

population. 

Compute Adjusted Objective Values: For each individual, subtract the corresponding ideal point from the objective value 

𝑓𝑗(𝑥) in each dimension to obtain the adjusted value:  

𝑓𝑗
′(𝑥) = 𝑓𝑗(𝑥) − 𝑧𝑗

𝑚𝑖𝑛 (17) 

Calculate Additional Objective Vectors: Use the following formula to calculate the additional objective vector 𝑧𝑖,𝑚𝑎𝑥:  

𝐴𝑆𝐹(𝑥, 𝑤) = 𝑚𝑎𝑥𝑖=1
𝑀 𝑓𝑖

′(𝑥)/𝑤𝑖 (18) 
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𝑧𝑖,𝑚𝑎𝑥 = 𝑥: 𝑎𝑟𝑔𝑚𝑖𝑛𝐴𝑆𝐹(𝑥, 𝑤𝑖), 𝑤𝑖 = (𝜏,⋯ , 𝜏), 𝜏 = 10−6, 𝑤𝑖
𝑗
= 1 (19) 

Determine Hyperplane Intercepts: The hyperplane formed by these M additional objective vectors intersects each 

objective dimension at 𝑎𝑗, j=1,2,…,M. If the hyperplane cannot be formed or the intercepts cannot be determined, set 𝑎𝑗 

to the maximum value for each objective dimension. 

Normalize the Objective Function Values: Normalize the objective function values as follows: 𝑓𝑗
𝑛(𝑥) =

𝑓𝑗
′(𝑥)/(𝑎𝑗 − 𝑧𝑗

𝑚𝑖𝑛) 

Step 2: Associating Individuals with Reference Points 

Calculate Distances: For each individual, compute the distance to all reference lines (lines connecting the origin in the M-

dimensional space to the reference points). The reference point associated with the closest reference line to an individual 

is identified as the reference point for that individual. 

Step 3: Individual Selection Based on Reference Points 

Initialize Selection Parameters: Let K denote the number of individuals to be selected from the current layer l to form the 

next generation population. Set k=1. 

Define Association Counts: Define 𝜌𝑗 as the number of individuals associated with the jth reference point in the first l−1 

layers. The set of reference points with the minimum association count is  

𝐽𝑚𝑖𝑛 = {𝑗: 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈𝑍𝑟𝜌𝑗} (20) 

Choose any reference point J from the minimal niche set Jmin, and define 𝐼𝑗 as the set of individuals in layer l associated 

with reference point j. 

Select Individuals: If 𝐼𝑗 = ∅ , exclude this reference point. Otherwise, consider two scenarios: 

If 𝜌𝑗 = 0, select the individual from 𝐼𝑗 that is closest to reference point j to enter the next generation and increment 𝜌𝑗 by 

1. 

If 𝜌𝑗 ≠ 0, select any individual from 𝐼𝑗 to enter the next generation and increment 𝜌𝑗 by 1. 

Repeat Selection Process: Increment k by 1, and repeat steps 2-4 until k=K. 

The inception of the optimization process is marked by the establishment of an initial population. The subsequent 

phase involves the critical generation of reference points. A priori stratified reference points act as beacons for the 

assurance of diversity within the solution space. The layered generation of these points is meticulously executed, ensuring 

a holistic exploration of the Pareto frontier. Furthermore, the normalization of objective functions is an imperative process 

for harmonizing the scales of objectives, allowing for an equitable evaluation and comparison. This normalization fosters 

uniformity across objectives, thereby facilitating a coherent selection mechanism. The quintessence of the NSGA III 

algorithm is the selection methodology based on the proximity of individuals to the pre-established reference points. This 

technique not only ensures the diversity of the resultant solutions but also propels the evolutionary trajectory towards an 

optimally diversified Pareto-optimal frontier. Such a comprehensive approach is critically consequential for the NSGA 

III algorithm's proficiency in navigating the high-dimensional objective space intrinsic to cloud 4D printing service 

compositions. 

2.5 Evaluation Metrics for Multiobjective Algorithms 

 Two metrics are utilized to evaluate the performance of multiobjective optimization algorithms: Generational 

Distance (GD) [17] and Inverted Generational Distance (IGD) [18]. These metrics serve to assess algorithm performance 

comprehensively. Generational Distance (GD) is a metric used to quantify the distance between the set of non-dominated 

solutions generated by an evolutionary algorithm and the true Pareto front. Specifically, GD calculates the square root of 

the sum of the squared minimum Euclidean distances from each solution in the set to the true Pareto front. Generational 

Distance (GD) is a unary metric that measures the average minimum Euclidean distance from the non-dominated solution 

set obtained by the algorithm to the true Pareto front [19]. This metric evaluates the convergence of the solution set. A 

lower GD value indicates better convergence [20]. The calculation formula is as follows: 

𝐺𝐷(𝑃, 𝑃∗) =
√∑  𝑋∈𝑃 𝑑(𝑥

∗, 𝑋)2

∣ 𝑃 ∣
 (21) 

where d(x∗, X) denotes the minimum Euclidean distance from solution x∗ in P∗ to X, and ∣P∣ represents the number of 

solutions in P. GD is primarily used to evaluate the proximity of the solution set within the objective space, with smaller 

GD values indicating a closer approximation to the true Pareto front, thus reflecting the algorithm's superior 

approximation capabilities. 
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Inverted Generational Distance (IGD) is another metric used to assess the relationship between the set of non-

dominated solutions generated by an evolutionary algorithm and the true Pareto front. Unlike GD, IGD calculates the 

average distance from points on the true Pareto front to the nearest points in the solution set. Inverted Generational 

Distance (IGD) is a binary metric [21] that calculates the average Euclidean distance from all solutions in the true Pareto 

front to the non-dominated solutions obtained by the algorithm. This metric assesses both the convergence and diversity 

of the solution set. A smaller IGD value indicates that the solution set is closer to the true Pareto front and more uniformly 

distributed [22], signifying better convergence and diversity. The formula is as follows: 

𝐼𝐺𝐷(𝑋, 𝑃∗) =
∑  𝑥∗∈𝑃∗ 𝑑(𝑥

∗, 𝑋)

∣ 𝑃∗ ∣
 (22) 

where d(x∗, X) signifies the minimum Euclidean distance from solution x∗ in P∗ to X, and ∣P∗∣ denotes the number of 

solutions in P∗. IGD is primarily used to evaluate the coverage of the solution set within the objective space, with smaller 

IGD values indicating that the solution set more accurately represents the true Pareto front, thus demonstrating the 

algorithm's stronger coverage capabilities. 

3. RESULTS AND DISCUSSION 

To verify the feasibility and effectiveness of the proposed model and methodology, both algorithmic tests and 

application examples have been designed and conducted. The experiments were executed using MATLAB R2023a 

software on a Windows 10 system with 8 GB of RAM. In this study, DTLZ [23] functions, namely DTLZ1, DTLZ2, 

DTLZ3, DTLZ4, DTLZ5, and DTLZ6, were selected as benchmark test functions for algorithm evaluation. The Non-

dominated Sorting Genetic Algorithm II (NSGA II) was employed as the benchmark algorithm. The optimization problem 

involves a target dimensionality (M) of 5 and a decision variable dimensionality (D) of 8. The population size is set to 

1000 individuals, evolving over 10,000 generations. The crossover probability is fixed at 0.9, while the mutation 

probability is set to 1/D. Additionally, the algorithm employs 200 reference points. This rigorous approach ensures a 

robust assessment of the algorithm's performance against established multiobjective optimization benchmarks. 

In multiobjective optimization, the mean and standard deviation are the two primary statistical metrics used to evaluate 

algorithm performance. The mean reflects the average level of the objective function values achieved by the algorithm, 

while the standard deviation indicates the stability and consistency of the results. Ideally, a proficient optimization 

algorithm should excel in both metrics, achieving low objective function values (low mean) and high consistency (low 

standard deviation) across multiple runs. 

Table 2. The mean value and the standard deviation of GD 

 M D NSGAIII NSGAII 

DTLZ1 5 8 2.2966e+0 (3.99e-1) - 1.2556e+0 (3.50e-1) 

DTLZ2 5 8 3.2205e-3 (1.35e-4) + 6.9837e-3 (5.95e-4) 

DTLZ3 5 8 8.0367e-+0 (7.66e-1) - 6.0715e+0 (1.10e+0) 

DTLZ4 5 8 2.9700e-3 (2.35e-4) + 5.0853e-3 (6.23e-4) 

DTLZ5 5 8 1.9604e-2 (1.39e-3) + 2.1947e-2 (8.42e-4) 

DTLZ6 5 8 1.1241e-1 (2.89e-3) + 1.2936e-1 (3.87e-3) 

 

Table 3. The mean value and the standard deviation of IGD  

 M D NSGAIII NSGAII 

DTLZ1 5 8 2.9911e+0 (1.00e+0) - 2.2473e+0 (7.53e-1) 

DTLZ2 5 8 1.3203e-1 (1.80e-3) + 1.7500e-1 (4.61e-3) 

DTLZ3 5 8 9.4268e+0 (3.06e+0) = 9.5787e+0 (2.81e+0) 

DTLZ4 5 8 1.8606e-1 (1.01e-2) - 1.6724e-1 (5.84e-3) 

DTLZ5 5 8 3.7003e-2 (6.97e-3) - 2.1752e-2 (3.53e-3) 

DTLZ6 5 8 1.0611e+0 (2.13e-1) + 1.6590e+0 (2.28e-1) 

To evaluate the relative performance of NSGA II and NSGA III based on the mean and standard deviation of GD 

(Generational Distance) and IGD (Inverted Generational Distance) metrics, the following considerations are made: 

Priority to Mean: The mean is considered first. A lower mean suggests that the algorithm achieves better average 

performance across multiple runs. Thus, we compare the mean values of the two algorithms. If one algorithm significantly 

outperforms the other in terms of the mean, it is deemed superior, even if its standard deviation is slightly higher. 

Standard Deviation as a Secondary Metric: When the mean difference is minimal, the standard deviation serves as an 

auxiliary criterion. If the mean values of the two algorithms differ by a small margin (e.g., within a 5% relative difference), 
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the algorithm with the lower standard deviation is preferred. A lower standard deviation implies higher robustness and 

stability in the algorithm’s performance across different runs. 

In most DTLZ test functions based on GD and IGD metrics, NSGA III demonstrates superior performance compared to 

NSGA II, especially in terms of the mean. Table 2 presents the mean value and the standard deviation of GD, while  Table 

3 illustrates the mean value and the standard deviation of IGD, which indicates that NSGA III is more effective in finding 

solutions closer to the Pareto front with higher consistency. However, in certain cases (e.g., DTLZ1), NSGA II may still 

outperform NSGA III. The data presented in both tables illustrate that the NSGA III algorithm yields lower values for 

Generational Distance (GD) and Inverted Generational Distance (IGD) metrics compared to NSGA II. This indicates that 

NSGA III is more effective in generating solutions that are both closer to the true Pareto front and more diverse [24, 25]. 

Such performance demonstrates the superiority of NSGA III in handling multiobjective optimization problems in cloud 

4D printing services with higher dimensions, outperforming NSGA II in this regard [26]. 

3.1 Case study 

Drawing upon real-world scenarios and empirical evidence in Cloud 4D Printing Services (C4DPS), this study designs 

a plausible range and constraints for each evaluative index. Utilizing functions provided by MATLAB, the data for each 

metric is randomly generated to circumvent biases inherent in manually curated datasets. The parameters set for this 

research include a maximum total cost (𝐶𝑚𝑎𝑥) of 15,000 RMB, a total time (Tmax) of 30 hours, and a minimum overall 

quality (Qmin) of 0.6, as detailed in Table 4. The optimization objectives and constraints for adaptability to changes in 4D 

printing tasks (FT) and for comprehensive C4DP service evaluation ( 𝐹𝑐) are both set at 0.6. The NSGA III and NSGA II 

algorithms are employed to resolve the service composition optimization model for C4DPS, with a population size of 

1,000 and a maximum number of function evaluations set at 10,000. 

Table 4. Value range of related evaluation indicators 

Parameters Unit Range of Values 

𝐶(𝑖, 𝑗)𝑝 Ten Thousand YUAN(RMB) [0.3,1.2] 

𝐶(𝑖, 𝑗)𝑜 Ten Thousand YUAN(RMB) [0.1,0.3] 

𝑇(𝑖, 𝑗)𝑝 Hour [14,20] 

T(i,j)_o Hour [7，10] 

Q(i,j) - [0,1] 

𝐹𝑇(𝑖, 𝑗) - [0,1] 

𝐹𝑐(𝑖, 𝑗) - [0,1] 

Figure 6 and Figure 7 illustrate that NSGA III maintains extremely low GD values across all evaluation functions, 

demonstrating excellent convergence. In terms of stability, the GD curve for NSGA III remains remarkably steady 

throughout the process, indicating high stability. Compared to MOEA/D, MOPSO, and NSGA II, NSGA III consistently 

shows better performance in GD metrics. Therefore, NSGA III exhibits superior convergence and stability in 

multiobjective optimization problems, particularly in terms of the GD metric, highlighting its advantages in solving 

multiobjective optimization issues in cloud 4D printing services. 

 

Figure 6. The curves of the GD value of NSGA III and other algorithms on the number of function evaluations  
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Figure 7. The curves of the GD value of NSGA III and NSGA II on the number of function evaluations 

From Figure 8 and Figure 9, although NSGA III initially shows a slightly higher IGD than NSGA II, their performance 

converges over more extended evaluation periods, with NSGA III ultimately exhibiting significantly better performance. 

NSGA III achieves notably lower IGD values across all evaluation counts compared to MOEA/D and MOPSO, indicating 

a clear advantage in solution quality and convergence. In terms of stability, both NSGA III and NSGA II maintain very 

stable IGD values near zero throughout the evaluation. Conversely, MOEA/D and MOPSO exhibit IGD values around 

400 and 100, respectively, indicating poor stability. Regarding convergence speed, despite NSGA III's slightly higher 

initial IGD, it converges rapidly, reaching levels similar to NSGA II, whereas MOEA/D and MOPSO converge more 

slowly. Overall, NSGA III excels in solution quality, convergence, and stability according to the IGD metric, 

demonstrating significant superiority in multiobjective optimization for cloud 4D printing services. 

 

Figure 8. The curves of the IGD value of NSGA III and other algorithms on the number of function evaluations 

 

 

Figure 9. The curves of the IGD value of NSGA III and NSGA II on the number of function evaluations 
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Figure 10. The value of the population(objectives)  

As illustrated in Figure 10, the diversity of solutions generated by NSGA III is evidenced by the broad distribution 

along the f3 dimension, indicating its capability to explore a wider range of trade-offs among objectives. While NSGA II 

and MOPSO also exhibit some diversity, they are not as pronounced as NSGA III. MOEA/D, on the other hand, shows 

very limited diversity, indicating poor exploration capability. In terms of convergence, NSGA III exhibits a dense 

population within the lower bounds of f1 and f2, suggesting good convergence to the Pareto front. MOPSO also 

demonstrates good convergence but lacks diversity in the higher f3 range. NSGA II shows reasonable convergence but is 

less dense compared to NSGA III. MOEA/D struggles with both convergence and diversity. In exploring the objective 

space, NSGA III outperforms by extensively exploring higher ranges of f3. NSGA II shows greater extensibility than 

MOPSO, but MOEA/D performs the worst in exploration. In conclusion, NSGA III outperforms MOEA/D, MOPSO, and 

NSGA II in terms of diversity, convergence, and overall exploration of the objective space. The dense population and 

wide distribution along the f3 dimension in the scatter plot indicate that NSGA III provides a more comprehensive set of 

solutions, making it advantageous in multiobjective optimization problems. 

 

Figure 11. The value of the population(variables)  

Based on the analysis of the figures as depicted in Figure 11, the value of the population(variables), NSGA III 

demonstrates a stable distribution across all dimensions, indicating a controlled and balanced approach to population 

value allocation. NSGA II and MOEA/D also exhibit stability, albeit with minor deviations in specific dimensions. In 

contrast, MOPSO displays a lack of control, with significant surges in population values, particularly in the final 

dimension. Regarding cross-dimensional consistency, NSGA III maintains uniformity, ensuring that no single dimension 

dominates or distorts the overall population value. NSGA II and MOEA/D similarly exhibit consistency, though perhaps 

not as robust as NSGA III. MOPSO, however, fails to maintain this consistency, indicating potential issues in convergence 

and diversity control. In terms of controlling population values, NSGA III effectively maintains low and stable values 

across all dimensions, suggesting superior control mechanisms. While NSGA II and MOEA/D show reasonable control, 

they may not be as precise as NSGA III. MOPSO exhibits poor control with significant variability, especially in higher 

dimensions. 
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In summary, NSGA III outperforms MOEA/D, MOPSO, and NSGA II in maintaining stable, consistent, and 

controllable population value distributions across all dimensions. The absence of significant peaks and the adoption of a 

balanced approach indicate that NSGA III possesses superior population management mechanisms, resulting in better 

overall performance in multiobjective optimization scenarios. 

 

Figure 12. The curves of the Spacing value of NSGA III and other algorithms on the number of function evaluations  

 

 

Figure 13. The curves of the DeltaP value of NSGA III and other algorithms on the number of function evaluations 

In the multiobjective optimization domain of Cloud 4D Printing Services, the effectiveness of algorithms is intricately 

assessed through a spectrum of metrics, each elucidating distinct facets of the solution set. Central to these metrics is 

Generational Distance (GD), where a trend toward diminishing GD values underscores an algorithm's refined capacity to 

generate solutions that closely align with the true Pareto front. It is observed that NSGA III manifests a downward 

trajectory in GD values when juxtaposed with NSGA II, signifying enhanced performance. Complementing GD, the 

Inverted Generational Distance (IGD) grants a dual perspective of proximity and diversity of solutions. NSGA III stands 

out with its robustness, evidenced by lower IGD values, which signifies not only a closer approximation to the Pareto 

front but also a more diverse representation of solutions. 

In parallel, the Spacing and Spread metrics evaluate the uniformity and extent of coverage across the Pareto front [27]. 

A smaller Spacing value for NSGA III indicates a more homogeneous distribution of solutions with minimal variance, 

implying a methodical spanning of the Pareto front, as illustrated in Figure 12. This uniform distribution is also mirrored 

in the DeltaP metric, as presented in Figure 13, where NSGA III's lower values typically reflect a more uniform dispersal 

of solutions along the Pareto front—a hallmark of optimization superiority. These insights collectively point towards 

NSGA III’s capability in exploring and exploiting the solution space efficiently, making it a preferred choice for solving 

C4DPS multiobjective problems. Figure 14 illustrates the curves of the CPF value of NSGA III and other algorithms on 

the number of function evaluations [28]. In the meantime, Figure 15 depicts the curves of the Spread value of NSGA III 

and other algorithms on the number of function evaluations [29]. 
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However, the NSGA III algorithm encounters several limitations and challenges during its implementation. Primarily, 

NSGA III exhibits considerable computational complexity, particularly when confronted with high-dimensional 

optimization tasks, necessitating substantial computational resources. Furthermore, the algorithm's efficacy is heavily 

contingent upon the judicious selection of reference points; erroneous choices can lead to suboptimal convergence and 

diminished diversity. Moreover, while NSGA III proves adept at addressing multiobjective optimization challenges, its 

performance notably deteriorates beyond ten objectives, highlighting issues related to scalability. The sensitivity of 

algorithmic parameters also necessitates careful consideration, demanding extensive experimental validation and 

specialized knowledge in the domain of cloud 4D printing. Additionally, NSGA III demonstrates deficiencies in 

effectively managing constraint optimization problems; current constraint handling mechanisms may not offer adequate 

efficiency, thereby impacting solution quality. Finally, the practical deployment of NSGA III introduces inherent 

complexities, requiring substantial computational resources, domain-specific expertise, and sensitivity to initial 

conditions and parameter configurations. To address these challenges, future research endeavors will concentrate on 

hybrid algorithm development, enhancing algorithm scalability, and advancing sophisticated constraint handling 

mechanisms, thereby augmenting the performance and applicability of NSGA III. 

 

Figure 14. The curves of the CPF value of NSGA III and other algorithms on the number of function evaluations 

 

 

Figure 15. The curves of the Spread value of NSGA III and other algorithms on the number of function evaluations 

 4. CONCLUSIONS 

This paper addresses the optimization of composite services in cloud 4D printing, which involves conflicting 

objectives such as cost minimization, time reduction, quality maximization, and adaptability enhancement. A 

multiobjective optimization framework employing the Non-dominated Sorting Genetic Algorithm III (NSGA III) is 

proposed for this purpose. NSGA III is specifically designed to tackle the high-dimensional and multiobjective nature of 

cloud-enabled 4D printing service composition. Comparative analyses against NSGA II, MOEA/D, and MOPSO 

algorithms demonstrate that NSGA III excels in achieving superior convergence and solution diversity. Results indicate 

that NSGA III significantly outperforms other algorithms in terms of Generational Distance (GD) and Inverted 
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Generational Distance (IGD) metrics, indicating closer approximation to the true Pareto frontier and better solution 

diversity. The algorithm also exhibits higher stability and faster convergence rates, rendering it highly effective in 

optimizing cloud 4D printing services. The study confirms NSGA III's capability to enhance the adaptability and 

resilience of service compositions amidst demand fluctuations and resource variability. In summary, this paper presents 

a robust and efficient multiobjective optimization model utilizing NSGA III for cloud-based 4D printing services. The 

algorithm effectively balances multiple objectives and addresses challenges posed by high-dimensional optimization 

problems, thereby validating its efficacy in manufacturing optimization. The application of NSGA III in cloud 4D printing 

services signifies advancements in manufacturing optimization, ensuring resilient and adaptable manufacturing systems 

conducive to smarter and more efficient production processes. 

4.1 Future Research 

Future research endeavors should explore hybrid optimization methodologies integrating NSGA III with 

complementary algorithms to further enhance performance and scalability. Additionally, developing advanced constraint-

handling techniques is pivotal for addressing complex optimization scenarios. Extending the application of NSGA III to 

diverse domains and real-world industrial applications will yield valuable insights and broaden the validation of its 

effectiveness. This research holds significance for advancing smart cloud manufacturing, particularly in optimizing the 

efficiency, adaptability, and sustainability of composite cloud manufacturing services, including 4D printing. 

Optimization of 4D printing services can yield substantial cost reductions, enhanced product quality, and improved 

responsiveness to market demands, thereby fostering more sustainable and competitive practices in smart manufacturing 

and Industry 4.0. Future investigations will focus on integrating machine learning techniques to refine the NSGA III 

algorithm by dynamically forecasting demand patterns and optimizing resource allocation. Moreover, efforts will be 

directed toward enhancing algorithmic scalability and performance in practical industrial settings to ensure broader 

applicability. 
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