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RESEARCH ARTICLE 

Interactive Simulation Framework for Analysing Tracked Mobile Robots in Real-
Time 

Low Chow Yeh*, Vimal Rau Aparow, Hermawan Nugroho         

Electrical and Electronic Engineering Department, University of Nottingham Malaysia, Semenyih, Malaysia 

ABSTRACT – Tracked mobile robots play a crucial role in navigating complex terrains for urban 
search and rescue and military applications, yet verifying their performance in diverse environments 
remains a challenge. This study introduces an interactive simulation framework using a Hardware-
in-the-Loop (HIL) platform to analyse real-time performance, focusing on critical capabilities such 
as skid-steering, slope handling, and obstacle climbing. By integrating detailed kinematic models 
with a virtual environment powered by Unreal Engine, the framework delivers precise simulations 
that closely replicate real-world scenarios. Validation tests revealed a maximum position error of 
±8.5838 cm, with mean squared errors of 0.1854 m for the x-coordinate, 0.1486 m for the y-
coordinate, and 0.801 radians for the yaw angle in straight-line navigation. Despite higher errors in 
complex manoeuvers, the results demonstrate the framework's effectiveness in bridging simulation 
and real-world performance, providing a reliable tool for the design and testing of mobile robots in 
challenging environments. 
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1. INTRODUCTION 

Robot locomotion refers to various methods for the movement of a robot [1]. Compared to other types, wheeled robots 

are popular choices.  This is due to their control simplicity. Steering in real-world environments often requires overcoming 

obstacles and various types of terrains. Most wheeled robots, unfortunately, struggle with these irregular terrains [2]. This 

constraint emphasises the importance of developing "all-terrain robots" that can run and handle various hurdles. Such 

robots would improve the abilities and application of robots. Tracked mobile robots are recognised for their ability to 

steer through terrains.  As such, these types of robots can be applied and play an important role in urban search and rescue 

missions and military operations. Different from wheeled robots, tracked robots offer stability and adaptability. Their 

design and testing, however face difficulties in precisely replicating real-world conditions. 

In the development and design of a robot, simulation of the design and its testing is critical to confirm that the robotic 

software meets the specified requirements [3], [4], [5], [6].  The testing should enable the testing of the robot's subsystems, 

such as its control systems, localisation, and object detection, in a virtual environment before the subsystems are adopted 

in real-world applications. Generally, computer simulation is a favoured method in the early stages of robot development 

due to its time and cost efficiency.  This is especially important in the design of experimental robots for certain tasks/aims. 

For instance, here the authors develop an integrated route and path planning strategy for a skid steering robot, which will 

be used to harvest in agricultural environments with terrain constraints [7].  Liang et al. designed a model-based 

coordinated trajectory tracking control approach for a four-wheel.  The robot uses a skid-steer control system equipped 

with a timing-belt servo system [8].  Moreno et al. developed a linearisation-based trajectory tracking controller of input 

and output for skid steering robots [9]. Transitioning from virtual to real environments often necessitates the substitution 

of simulation models with actual robots and the adaptation of control logic, potentially leading to new software issues 

that emerge in physical settings. Hardware-in-the-Loop (HIL) simulation addresses this challenge by integrating real robot 

hardware with simulated environments, enhancing the reliability of the robot's performance to mirror the simulation, and 

reducing discrepancies between simulated and actual testing.   

Numerous robot simulators exist to study mobile robot behaviour. MATLAB Simulink, for instance, is popular for 

robot system development [10], [11], [12], [13], [14]. Tran D et al. use MATLAB Simulink simulation platform to test 

and evaluate the stability of a cable-driven hyper-redundant robot in a teleoperation system. The simulation is used to 

ensure the safety of the system before deployment [15].  Moreno et al. also use the MATLAB Simulink simulation 

platform to test the deployment of their developed, which presents a real-time control system for a two-degree-of-freedom 

(2DOF) robot.  The simulation is aimed for FPGA deployment and is applied to validate the system's robustness against 

noise and disturbances [16].  Tristano M et al. design a vehicle stability control system that uses individual wheel torque. 

MATLAB Simulink simulation platform is used to validate and progress the model to a hardware-in-the-loop (HIL) setup 

incorporating an Electronic Control Unit (ECU [17].   Dosoftei C et al. develop an omnidirectional mobile robot (OMR) 

in dynamic logistics environments. They combine MATLAB-Simulink with the Robot Operating System (ROS) to 

employ and test the algorithms [18].  For Hardware-in-the-Loop (HIL) simulations, MATLAB Simulink has challenges 
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in real-time execution due to hardware integration issues arising from compatibility constraints, requiring additional 

toolboxes. Scalability matters and high licensing costs make the framework less practical. Other simulations, such as the 

Virtual Robot Experimentation Platform (V-REP), offer a 3D environment with an integrated development environment 

(IDE) [19], [20], [21]. Gazebo excels at realistic sensor feedback and object interactions but is often used for drone 

research [22], [23], [24], [25]. Specific simulators like Truck Maker cater to specialised applications [26], [27], [28]. 

Many of these simulators rely on predefined kinematic models, which restrict customisation and adaptability to different 

robot designs, especially for skid-steering tracked robots. This is where our approach diverges.  

A common limitation among existing robot simulators is their inability to accommodate arbitrary robot designs, 

particularly those with diverse and specialised locomotion types. Many traditional simulators come with predefined 

kinematic models that are fixed and not easily customisable, which restricts their flexibility in simulating different types 

of robots, especially tracked mobile robots. This rigidity hinders the accurate modelling and testing of robots with unique 

or unconventional locomotion mechanisms, ultimately limiting the usefulness of these simulators for researchers and 

engineers working on innovative robotics applications. Moreover, much of the existing research and development has 

focused on simulating wheeled or legged robots, with significantly less attention given to tracked mobile robots. These 

robots, essential for environments requiring stability and traction over rough terrain, present unique challenges that are 

not adequately addressed by simulators designed for other locomotion types. The lack of simulation tools for the 

development of tracked robots makes the engineers to compromise. As a result, the developed robots may have 

discrepancies between their simulated result and real-world performance. 

To address such challenge, in this project, we develop a Hardware-in-the-Loop (HIL) simulation platform, which is 

specifically adapted for tracked mobile robots using Unreal Engine. Different from traditional simulators, which are 

limited by fixed kinematic models, Unreal Engine enables custom robot models to be integrated with its highly flexible 

environment. The flexibility of the framework will allow us to customise the robot's kinematics and 3D physical 

modelling.  This customisation will enable precise simulation of the distinctive movement of tracked robots. Unreal 

Engine’s broad set of tools includes an effective graphics engine, a flexible programming language, and a vigorous physics 

engine.  Such tools will allow the simulation of real-world physics, such as gravity, collisions, and friction, with high 

fidelity. This makes it exceptionally well-suited for simulating robots in complicated settings where traditional physical 

testing might be impractical. By leveraging the technology of this game engine, this project not only overcomes the limits 

of existing simulators but can also offer a strong platform for the design, testing, and validation of tracked mobile robots 

in situations that carefully reproduce real-world challenges. 

There are various simulators for mobile robot testing, such as MATLAB Simulink, Gazebo, and V-REP. These 

programs, however, come with limitations, especially when simulating complicated and complex situations or customised 

robots such as robots with unconventional locomotion mechanisms.  Many of these simulators use predefined kinematic 

models.  Such settings limit the customisation and adaptability of robot designs, especially for skid-steering tracked 

robots. This is where our approach varies. The uniqueness of our approach is that our approach offers complete flexibility.  

It enables to model of unconventional locomotion, as well as the integration of real-time Hardware-in-the-Loop (HIL) 

simulations. The HIIL enables immediate feedback between virtual environments and physical hardware. This approach 

shows that our simulations not only encapsulate the design of tracked robots in varied situations but also lessen 

discrepancies between simulated and real-world performance. This indicates that the approach is versatile and can be used 

to test tracked mobile robots accurately.  

2. METHODS AND MATERIAL 

The Hardware-in-the-Loop (HIL) system lets users examine the real-time integration of virtual environments and 

physical systems and/or the subsystems of the robot.  It allows users to evaluate the system and/or the subsystem's 

performance under real-world conditions without the demand of a full physical setup.  

In this project, we develop a novel adaptation of the kinematic approach to be adopted for tracked mobile robots to 

improve motion control and pose estimation. The approach is expected to be able to calculate the motion of tracked mobile 

robots using only track velocities. Such calculation is tricky due to complex dynamics, including slippage and track-

ground interactions. In the first subsection, we explore the kinematics of skid-steering and obstacle-climbing, laying the 

groundwork for the simulation model. Next, we discuss the development of the simulation environment using Unreal 

Engine. 

2.1 Kinematics Model as Robot Simulation Model 

Tracked mobile robots use skid-steering for movement, which means each side of the robot can move independently, 

allowing it to turn by adjusting the speed difference between the left and right tracks. However, skid-steering can cause 

slippage, particularly during turns or on uneven surfaces. To address this, we implemented a kinematic model that includes 

slip compensation. The kinematic model utilises the speed of the robot and its track conditions to predict the position and 

orientation of the robot during movement, with a focus on controlling the robot in real-world environments. 

Skid-steering locomotion is a locomotion setting of tracked vehicles such as tanks and bulldozers.  The locomotion 

lets the vehicle independently control the speed and direction of the tracks that control the vehicle by adjusting the speed 

difference between the tracks [29].  Skid-steering, however, can be slipped during turns. To address this challenge and 
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improve the prediction of its motion, a slip-compensated odometry model is usually adopted in the kinematic models. In 

this project, we utilise the kinematics of a tracked car with skid-steering movement defined by Rigatos [30], [31], [32].  

In skid-steering, each track operates independently to control the movement of the tracked mobile robots.  This 

mechanism, however, instigates slippage, notably during turns or on uneven surfaces. To handle this issue, a slip 

compensation is implemented and incorporated into the kinematic model. The developed kinematic model approximates 

the position and orientation of the tracked robot based on the velocity and surface conditions, which is then used for 

motion prediction.  In the kinematic model, we adopt formulations to express forward velocity, lateral movement, and 

yaw angle changes, factoring in slip ratios and track geometry. These formulations facilitate effective simulation of the 

robot and its exchanges with obstacles, such as climbing steps or navigating slopes. These formulations oversee the 

forward motion, turning, and interaction with obstacles for skid-steering locomotion, as follows: 

𝑉𝑥 =  
𝑣𝑟(1 −  𝛼𝑟) + 𝑣𝑙(1 − 𝛼𝑙)

2
 (1) 

The formula determines the forward velocity of the robot (𝑉𝑥) calculated based on the velocities of the left and right tracks 

(𝑣𝑟  and 𝑣𝑙), modified by their respective slip ratios (𝛼𝑟 and 𝛼𝑙). 

𝑉𝑦 =  𝑉𝑥 ∙ tan 𝛽 (2) 

The lateral velocity (𝑉𝑦) is calculated and determined based on the forward velocity (𝑉𝑥) and the slip angle (𝛽). This 

accounts for any sideways movement caused by track slippage. 

�̇�  =  𝑉𝑥  cos 𝜃 − 𝑉𝑦 sin 𝜃 (3) 

  

�̇� =  𝑉𝑥  sin 𝜃 + 𝑉𝑦 cos 𝜃 (4) 

  

�̇� =  
𝑣𝑟(1 − 𝛼𝑟 ) − 𝑣𝑙(1 − 𝛼𝑙)

𝐿
 (5) 

The change in yaw angle (�̇� ) is determined by the difference in track velocities and their slip ratios, divided by the 

equivalent wheelbase (𝐿). This equation describes how the robot turns based on the difference in speeds between the two 

tracks.  If the car runs without experiencing longitudinal slippage, it indicates that its ground velocity matches the input 

velocity and a slip ratio of zero [33]. The equivalent wheelbase of the robot is represented by the parameter L.  The 

illustration of the kinematics model of the tracked car can be seen in Figure 1. 

 

Figure 1. Kinematics model of tracked car  

Obstacle climbing is a critical capability for tracked locomotion robots. It allows these robots to navigate diverse 

urban structures, including stairs, small steps, and road bumps. When tackling an obstacle—such as a step—the process 

involves two primary stages: 1) Step Climbing: The robot ascends the obstacle, and 2) Step Crossing: The robot traverses 

the obstacle horizontally [34]. 

Step climbing refers to the ability of a tracked mobile robot to ascend vertical obstacles with distinct steps. During 

this manoeuvre, the robot utilises the adhesive force of its tracks to counteract gravity and propel itself upwards. Figure 

2 illustrates the tracked car leverages its tracks for step climbing. When the robot reaches the vertical step (riser), the 

tracks generate a driving force that causes the body to rotate counterclockwise, lifting the front section in preparation for 

climbing the step. 
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Figure 2. Kinematics of step climbing 

For the model formulation, the origin of the right-handed Cartesian coordinate system (xG,yG) is aligned and defined 

at the centre of the tracked car [35]. The design of the track model prioritises minimising slippage during the climbing 

motion. To achieve this, the model assumes no track sliding or slippage occurs at points A and D (refer to Figure 2 for 

reference). With this assumption, the robot's displacement from point D can be estimated using the following equation : 

∆𝑦 =  ∫ 𝑣𝑤ℎ𝑒𝑒𝑙  𝑑𝑡 (6) 

If the displacement ∆y is less than the obstacle's height minus the wheel radius (h-r), we define the robot's rotation 

angle and speed. Should ∆y exceed this value, it indicates the wheel has reached the step's edge. The angle α, initially 0 

degrees, measures the tilt against the horizontal, increasing to 90 degrees as the wheel ascends the step. The climb 

completes when α surpasses 90 degrees, transitioning to step crossing as shown in Figure 3. The robot's rotation, speed, 

and mass centre are determined by specific formulas. After climbing, the robot crosses the step, as shown in Figure 4. 

 

Figure 3. Different value of α; (a) α = 0° (b) α = 90° 

The length LD signifies the distance from point A to the step's edge, which decreases gradually. When LD becomes 

less than zero, the step-crossing process concludes. The equations below are used to derive the robot’s body rotation 

angle, angular velocity, centre of mass position, and velocity. 

 

Figure 4. Kinematics model of step crossing 



Low Chow Yeh et al. │ International Journal of Automotive and Mechanical Engineering │ Volume 22, Issue 1 (2025) 

journal.ump.edu.my/ijame   12150 

2.2 Developing a Virtual Testing Ground for Tracked Mobile Robots with Unreal Engine  

This section explores the implementation of a skid-steering model in Unreal Engine. It includes the following 

approaches: 1) Defining the Car Character (Pawn Character), which sets the foundation for the robot's in-simulation 

existence, and 2) Blueprint Design, where we utilise Unreal Engine's visual scripting system to program the robot's 

movement and behaviour.  

The TP100 Crawler Caterpillar was chosen as the experimental model. It is 185mm long, 200mm wide, and weighs 

0.65 kg, with top and side views shown in Figure 5. The system uses an Arduino Mega for its main electronics, connected 

to MPU6050 and encoder sensors for essential rotation and distance data. Motor functions are controlled by the L293D 

driver, with power from two 18650 lithium 3.7 V batteries. Table 1 presents the specifications of the tracked car. 

  
(a) (b) 

Figure 5. Platform of TP100 crawler: (a) view from the top (b) view from the side 

 

Table 1. Specifications of the tracked car  

Item Value and unit 

Initial Mass 0.650 kg 

Total Mass with Electrical 

Components 

0.922 kg 

Size (LxWxH) 200 mm x 185 mm x 60 mm 

Wheel Size 24 mm 

Track Width 45 mm 

Track Length 185 mm 

During the stage of defining the pawn character, the initial design phase involved creating a 3D model of the tracked 

mobile robot platform using SolidWorks®, a computer-aided design (CAD) software. Each component of the robot was 

modelled with precise real-world dimensions and subsequently assembled within a master assembly in SolidWorks® 

(refer to Figure 6 for the visualisation). 

 

Figure 6. The SolidWorks® CAD model of the TP100 crawler caterpillar  

In Unreal Engine, functionality is mainly developed using the Blueprint Class, often called a Blueprint, during the 

Blueprint Design phase. Blueprints, either created via Blueprint Visual Scripting (a visual coding language) or C++ code, 

are objects or classes that operate by connecting nodes in a graph to perform actions and processes. These nodes can 

handle tasks such as creating objects, defining functions, and responding to events. Each Blueprint instance is 

customisable through its nodes, and when configured, it can be integrated into the virtual environment as an object 

instance. Any changes made to the original Blueprint automatically apply to all its instances within the environment [36]. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 7. Blueprint visual scripting with (a) “Save Data File” (writing text) (b) “Read Wheel Value” (read text) (c) skid 

steering model (d) obstacle climbing model 
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For communication between Unreal Engine, the simulation space, and the Python-controlled robot, a method utilising 

text files for data exchange was used. This process involves inter-process communication (IPC), allowing for data sharing 

between programs. Two crucial text files facilitate this communication: (1) Encoder.txt, which records wheel speed data 

from the Arduino Mega shown in the Windows command prompt, and (2) Orientation.txt, which captures the simulated 

robot's position and orientation in Unreal Engine. The communication starts with reading the wheel speed from 

Encoder.txt and then feeding this into the Unreal Engine simulation. The simulation then processes this data using its 

kinematic model blueprint, detailed in Figure 7(a) and (b), which manages the reading and writing of these text files. The 

kinematic model comprises two main functions, as previously derived in Figure 7(c) and (d): 1) Skid Steering Function, 

which manages the steering of the tracked mobile robot in the simulation, and 2) Obstacle Climbing Function, allowing 

the simulated robot to navigate walls or steps. 

3. RESULTS AND DISCUSSION 

3.1 Skid Steering Data Collection for Tracked Mobile Robot Model 

As Dogru [37], [38] indicates, the equivalent wheelbase equation is derived from the schematic diagram of the tracked 

mobile robot presented in Figure 8.  

 

Figure 8. Schematic of skid-steered tracked car 

The method suggests that the robot rotates around its centre of mass, with closer wheels to this centre providing better 

traction. The equivalent wheelbase is calculated using the distances from the wheels to the centre of rotation, denoted as 

RLF, RLB, RRF and RRB, and the angles αLF, αLB, αRF and αRB between the y-axis and each distance vector. This leads to the 

wheelbase formula, which is stated as: 

𝐿 =  

2 ((
𝑏
2

− 𝛾𝛿𝑦)
2

+ (
𝑎
2

− 𝛿𝑥)
2

)

(
𝑏
2

− 𝛾𝛿𝑦)
 (7) 

Here, a and b are the robot’s length and width, while δx and δy are the offsets in the x and y directions from the robot’s 

centre of mass to its geometric centre. The factor γ adjusts δy, determined experimentally. These offsets are inferred from 

the robot’s weight distribution, with Table 2 presenting the wheelbase findings. 

Table 2. Result of the equivalent wheelbase 

Parameters Values 

Robot Geometry Length, a 13.30 cm 

Robot Geometry Width, a 16.00 cm 

X axis Offset Distance, δx 0.174 cm 

Y axis Offset Distance, δy -0.137 cm 

Equivalent Wheel Base, L 27.42 cm 

Slip parameters were evaluated using a tarpaulin surface to replicate slippage. Angular velocity and wheel speed were 

measured using an MPU6050 gyroscope and encoders, while an overhead camera system tracked the robot's trajectory. 

Tests revealed consistent slip ratios across straight and turning manoeuvers, with minor variations in slip angles. These 

parameters were integrated into the simulation model to refine its accuracy.  An overhead camera system was used to 

trace the vehicle's speed and movement, improving the robot's indoor positioning [39].  The pose estimation utilised 

ArUco markers. The markers were selected because of its simplicity and fast processing, as each mark was represented 

by a unique binary pattern [40], [41].  For the experiment, the developed robot was equipped with ArUco markers. It is 
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shaped as square fiducial markers that are easily detectable. In the experiment, these markers were placed into specific 

areas on the robot, which can be used to facilitate accurate pose estimation.  As the patterns were unique, they allowed 

the system to differentiate different markers, and as a result, we used them to track multiple points on the robot 

simultaneously. This multi-point tracking is essential to determine precisely the position and orientation of the robot.   

The developed robot was assessed in an 8ft by 4ft area, marked in 10cm squares, providing a reference for its position.  

A GoPro camera positioned 2.5 meters high in the area's centre captured the movement of the robot.  The overhead camera 

system was deliberately placed to obtain the entire test area, which was marked in a grid pattern that can be applied to 

provide reference points for the position of the robot. Together with the ArUco markers, the overhead camera allowed 

the robot to be monitored in real-time. This enabled us to record both linear and angular displacements accurately. 

The movement involved straight and turning actions, as illustrated in Figure 9. The efficiency of the robot's motion 

was determined by analysing the slip ratio and angle from the recorded data.  To ensure that the result is reliable, each 

manoeuvre type is repeated three times under the same conditions. Slip occurs when there is a difference between the 

commanded wheel velocity and the actual velocity because of surface friction and incline.  By investigating the slip angle 

(the angle between the robot’s trajectory and the direction of its wheels) and the slip ratio (the difference between the 

commanded and actual wheel speeds), the study was able to improve the kinematic model, which was applied in the 

simulation. The system's ability to provide real-time feedback on the robot's performance played a pivotal role in 

validating the simulation model, ensuring that the virtual environment closely mirrored the robot's behaviour in the 

physical world. 

  
(a) (b) 

Figure 9. Manoeuver; (a) straight (b) turning 

The results of the slip parameters are shown in Table 3. 

Table 3. Obtained slip parameters from the experiment 

Slip Parameters Straight Manoeuver Turning Manoeuver 

Slip Angle, β 0.404o 0o 

Left wheel Slip Ratio, αl 0.1 0.1 

Right wheel Slip Ratio, αr 0.1188 0.1188 

The experiments found that the slip ratios for both straight and turning manoeuvres were consistent for the left and 

right wheels, though the slip angles differed. These parameters (slip ratio and slip angle) are essential for the Hardware-

in-the-Loop (HIL) simulations and will be applied in subsequent stages of the process. This section is dedicated to 

analysing skid-steering parameters for ramp climbing. Experiments on straight manoeuvres at various slope angles, 

depicted in Figure 10, were conducted. In these tests, the robot moved straight while inclined upwards (mimicking 

climbing), enabling the estimation of the slip ratio.  

  
(a) (b) 

Figure 10. (a) Kinematics model of ramp climbing (b) Experiment of ramp climbing 

In the experiment, the pitch angle and wheel velocity of the robot were measured with an MPU6050 gyroscope and 

encoders, respectively. A motion capture camera and an ArUco marker (ID = 72) were employed to determine the robot’s 
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position, with the marker placed at the centre of the left side wheel, as shown in Figure 12(b). The experiment involved 

setting the track velocity to 10 cm/s and assessing the tilt angle of the slope at increments of 4º, specifically at 8º, 12º, 

16º, 20º, 24º, and 28º as in Table 4.  Figure 11 displays the slip ratio results under climbing conditions at each slope angle, 

with the x-axis indicating the slope angle and the y-axis denoting the slip ratio. 

Table 4. Result of experiment - slip ratio with respect to slope angle 

Angle Slip Left Slip Right 

0 0.16 0.162 

8 0.17 0.176 

12 0.18 0.197 

16 0.19 0.204 

20 0.2 0.218 

24 0.21 0.247 

28 0.22 0.260 

 

  
(a) (b) 

Figure 11. Slip ratio vs slope angle; (a) left wheel (b) right wheel 

Figure 11 demonstrates that the slip ratio during straight manoeuvring has a relatively linear relationship with the 

slope angle. The data collected from this experiment will be integrated into the Unreal Engine skid-steering model. 

3.2 Performance Evaluation with Behaviour Test Course 1 

To assess the effectiveness of the proposed model, we employed a dedicated test course focusing on basic robot 

locomotion (Behaviour Test Course 1). This course aims to evaluate the robot's autonomous navigation capabilities and 

its ability to handle turns with varying radii. The course layout, as shown in Figure 12, comprises three sections: (a) 

Straight Line: This section assesses the robot's capability to traverse a straight path. (b) Radius Curved Turns: This section 

tests the robot's performance in making turns with specific, curved radii. (c) Sharp Turns: This section assesses the robot's 

handling accuracy during sharp turns [42].  

   
(a) (b) (c) 

Figure 12. Course layout (a) straight-line (b) radius curve (c) sharp turns 

Figure 13 presents the results of the simulation compared to the robot's actual performance. The green lines represent 

the ground truth, which refers to the robot's actual path (during locomotion) and actual yaw angle (during turns). The red 

lines represent the corresponding values obtained from the Unreal Engine kinematic model derivation, namely the model 

path and model yaw angle.  This comparison allows us to evaluate how closely the simulation reflects the robot's real-

world behaviour. 



Low Chow Yeh et al. │ International Journal of Automotive and Mechanical Engineering │ Volume 22, Issue 1 (2025) 

journal.ump.edu.my/ijame  12155 

  
(a) (b) 
  

  
(c) (d) 

  

  
(e) (f) 

Figure 13. Yaw angle and position result (a)(b) Straight-line course, (c)(d) radius curve course and (e)(f) sharp curve 

course  

The results show that the direction angle is in close agreement with the ground truth. Nevertheless, variances exist 

between the estimated positions and the actual ground truth. The model demonstrates superior performance in radius 

curves and straight-line trajectories over sharp curve routes. The average position error for each trajectory is quantified 

using the following equation, where the positions of the actual path and model path are substituted: 

𝑎𝑣𝑎𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =  √(𝑥 −  𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 (8) 

The coordinates(x,y) and (xc, yc) represent the ground truth and estimated positions, respectively. A comparison of 

the maximum position errors across three test courses—straight line, radius curve, and sharp curve—was conducted. The 

straight-line course had an error of 1.5625 cm, the radius curve 1.2028 cm, and the sharp curve the largest at 8.5838 cm. 

Despite these errors, they are considered acceptable for our application. The errors observed in the straight-line, radius 

curve and sharp curve courses are considered acceptable for several reasons. The maximum position errors, such as 1.5625 

cm in the straight-line course and 1.2028 cm in the radius curve course, are relatively minor and do not significantly 

impact the robot’s ability to navigate and perform its tasks effectively.  Given the nature of the test environment and the 
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physical constraints of the tracked robot, these errors remain within a manageable range for real-world applications, such 

as search and rescue operations or military tasks, where slight deviations are tolerable and do not critically affect the 

overall mission.  

3.3 Interactive Simulation Framework with Hardware-in-the-Loop Simulation 

This section presents the hardware setup for a hardware-in-the-loop interactive simulation, illustrated in Figure 14's 

block diagram. The setup includes the actual tracked mobile robot, consisting of two primary elements: (a) the Arduino 

Mega Microcontroller, serving as the robot's central processing unit, executing the input commands, and (b) the Wheel 

Motors, tasked with the robot's locomotion. 

In contrast, the simulation plant embodies the computer-generated virtual environment. It is constructed using two 

key software components: (a) the Python Command Prompt, utilised for issuing control commands to the robot and 

processing its sensor data, and (b) the Unreal Engine Software, a game engine used to replicate the robot's actions and its 

interactive virtual surroundings. 

Communication between the Arduino Mega and the computer is established through a serial connection using a USB 

cable. The robot transmits its wheel speed data to the computer, and in return, the Unreal Engine simulation provides 

feedback on the robot’s virtual position and orientation. This reciprocal communication facilitates the interaction between 

the physical robot and its virtual representation in the simulation.   

 

Figure 14. Interactive simulation with Hardware-In-The-Loop  

The simulation serves a crucial purpose: testing and validating the effectiveness of a basic trajectory-tracking 

controller for the robot. This is achieved by creating a simulated environment that interacts with the real robot. A Python 

script plays a key role in initiating the HIL process. Figure 15 illustrates that the script executes the following step: 1) 

Data Acquisition: It collects the robot's position and orientation data from the Unreal Engine simulation. 2) Trajectory 

Control Integration: The script extracts the X and Y coordinates from the position data. These values are then fed into the 

trajectory tracking controller. 3) Desired Yaw Angle Calculation: Based on the robot's position within the simulated 

environment, the controller calculates the desired yaw angle (turning angle) required to follow the planned trajectory. 

This process essentially allows the controller to utilise the information from the virtual world to determine the necessary 

adjustments for the robot's movement in the real world. 

 

Figure 15. The flow diagram 

Two behaviour test courses were used in the interactive simulation to evaluate the robot's capabilities: 1) Behaviour 

Test Course 2, which tested the robot's reaction to minor disturbances and its error recovery ability during movement 

[42], and 2) Behaviour Test Course 3, aimed at examining the robot's performance in various locomotion modes, including 



Low Chow Yeh et al. │ International Journal of Automotive and Mechanical Engineering │ Volume 22, Issue 1 (2025) 

journal.ump.edu.my/ijame  12157 

skid steering, ramp climbing, and obstacle climbing. Both test courses were constructed within a virtual world mirroring 

the real-world testing environment, with an area of 1.9 meters x 1 meter (Figure 16). This allowed us to validate the 

effectiveness of the robot's trajectory tracking control in a simulated setting. For Behaviour Test Course 3, a specific 

obstacle scenario was implemented within the simulation. A 3.7 cm tall obstacle was positioned at coordinates (120 cm, 

-80 cm), while a ramp with a 28-degree incline was placed at coordinates (70 cm, -80 cm). By introducing these elements, 

we could evaluate the robot's ability to navigate around obstacles and climb inclines.  

  
(a) (b) 

Figure 16. (a) Behaviour test course 2; (b) behaviour test course 3 

Figures 17 and 18 display the robot's yaw angle and trajectory tracking during the HIL simulation, with green lines 

indicating actual behaviour and red lines showing Unreal Engine model predictions. In Behaviour Test Course 2, both 

real and virtual robots started at the trajectory's origin point (0,0). Initially, during straight-line and curved-radius 

movements, the robot accurately followed the real-world trajectory. After the sharp turn, it underestimated the travelled 

distance, with the yaw angle remaining close to the ground truth but with a significant position deviation, likely due to 

velocity estimation errors. In Behaviour Test Course 3, similar to Course 2, initial adherence to the trajectory was 

observed. However, during curved movements, slight rotational estimation errors led to divergence from the planned path. 

Despite these errors, the Unreal Engine model’s yaw angle closely matched the ground truth, indicating effective 

rotational estimation from wheel encoder data. 

  
(a) (b) 

Figure 17. Trajectory tracking control - yaw angle (a) behaviour test course 2 and (b) behaviour test course 3 

 

  
(a) (b) 

Figure 18. Trajectory tracking control – spatial displacement (a) behaviour test course 2 (b) behaviour test course 3 
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In the validation path, Table 5 summarises the mean squared performance metrics. The data show that the overall 

position error for both the x and y Cartesian coordinates is maintained within 1.7 meters, and the yaw angle error is limited 

to 0.83 radians. 

Table 5. Mean squared error for position and yaw angle (behaviour test courses 2 and 3) 

Mean Squared Error Δx (m) Δy (m) Δθyaw (rad) 

Behaviour Test Course 2 0.1854 0.1486 0.801 

Behaviour Test Course 3 1.6607 0.4948 0.821 

Comparative analysis of two test courses revealed superior robot performance in Test Course 2, with more accurate 

position estimation than in Test Course 3. This is supported by the mean squared error values listed in Table 5, which are 

markedly lower for Course 2. The increased positional error in Test Course 3 is likely due to an underestimation of the 

robot's longitudinal velocity, especially during obstacle navigation and ramp climbing, resulting in a maximum position 

deviation of 0.341 meters at the course's conclusion. 

Despite the positional estimation challenges in Course 3, the overall outcomes were favourable. The implemented 

model and its trajectory tracking controller effectively piloted a U-shaped route across varied terrains, demonstrating the 

ability of the system to retain a predefined path with sensory feedback from the Unreal Engine simulation.  The results 

show the importance and efficacy of interactive simulations for evaluating path-following controllers in an engineering 

context.  Screenshots of video representation of the simulation process are provided in Figure 19 for further visualisation. 

 
(a) 

 

 
(b) 

Figure 19. (a) Robot's position (b) unreal engine robot's position (behaviour test course 3) 

Results show that the proposed system has accurate trajectory tracking for a tracked mobile robot. The yaw angle 

estimation aligns with the ground truth, indicating the effectiveness of the slip-compensated kinematic model and the 
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developed sensor fusion techniques. Compared to existing studies, the mean squared errors for the position (0.1854 m, 

0.1486 m) and yaw angle (0.801 rad, 0.821 rad) close with or outperform MATLAB Simulink-based simulations by 

leveraging real-time physics modelling in Unreal Engine. Studies utilising MATLAB Simulink for HIL simulations 

repeatedly report higher uncertainty in real-world deployments due to solver approximations and hardware timing issues 

[16], [18], [43]. In contrast, Unreal Engine uses real-time physics modelling.  This will allow significant adaptability in 

dynamic environments.  

The proposed framework has good potential as it presents a scalable and cost-effective testing environment, bridging 

the gap between simulation and real-world deployment. This is important, especially for specific applications such as 

search and rescue, military, and autonomous exploration. The framework will enable rapid prototyping and evaluation of 

navigation algorithms before deploying the developed robot in challenging situations. Despite these advantages, the 

simulation has several constraints. For example, while the slip-compensated kinematic model improves the trajectory 

estimation, improvements in terrain-adaptive control strategies are required to handle complex situations.  Since the 

framework was developed with a relatively small robot (185 mm length, 0.922 kg mass), further validation with larger 

autonomous tracked systems is required to confirm the scalability of the proposed framework. 

To conclude,  the study shows the potential of  Unreal Engine for real-time simulation, which enables a high level of 

pragmatism in robot-environment interactions in comparison to traditional kinematic simulators. Furthermore, the 

integration of hardware and software under the HIL framework ensures that the system can adapt to real-world constraints.  

This shows that the proposed approach can be a practical tool for engineers in designing robots  for complex environments 

4. CONCLUSION 

In the study, we develop an innovative Hardware-in-the-Loop (HIL) simulation framework that is fitted for tracked 

mobile robots. By improving and incorporating customised and detailed kinematic models with Unreal Engine, the 

framework is able to address the gap between virtual simulations and real-world adoption.  In the project, the kinematic 

models for skid-steering and obstacle climbing were implemented and validated through comprehensive testing. The 

developed approach was adopted for a tracked robot and tested in several test courses.  Two behaviour test courses were 

run to evaluate the model: 1) Behaviour Test Course 2, which tested the robot's reaction to minor disturbances and its 

error recovery ability during movement and 2) Behaviour Test Course 3, aimed at examining the robot's performance in 

various locomotion modes, including skid steering, ramp climbing, and obstacle climbing.   Experiment results showed a 

maximum position error of ±8.5838 cm and mean squared errors of 0.1854 m (x-coordinate), 0.1486 m (y-coordinate), 

and 0.801 radians (yaw angle) in Behaviour Test Course 2. Behaviour Test Course 3 demonstrated slightly higher errors 

with mean squared values of 1.6607 m (x-coordinate), 0.4948 m (y-coordinate), and 0.821 radians (yaw angle). These 

findings emphasise the simulation framework's ability to closely replicate real-world robot performance, particularly in 

flat and curved terrain scenarios. 

The framework successfully reflected the physical behaviour of the tracked robot throughout various circumstances, 

exhibiting the utility of its kinematic models and Hardware-in-the-Loop (HIL) integration.  The approach improves the 

difference between virtual simulations and real-world testing, offering a valuable tool for engineers and researchers. The 

ability to calculate and predict the behaviour of the robot in customised environments has significant implications for 

applications such as urban search and rescue, military operations, and autonomous vehicles, where reliable navigation is 

vital. Despite its effectiveness, the study discovered some constraints of the developed approach, such as dependence on 

a specific robot model and controlled test conditions. Future work will address these by incorporating various robot 

designs, extensive terrain types, and additional environmental factors to improve the framework's robustness and 

versatility. The developed framework supports the full customisation of kinematic models and real-time HIL integration.  

This approach will enable precise simulation of unconventional locomotion systems, such as skid-steering tracked robots. 

Unlike traditional platforms, the framework provides real-time feedback between physical hardware and virtual 

environments, minimising discrepancies between simulated and real-world performance. 

This research can provide a substantial contribution to mobile robotics, offering a flexible and precise platform for 

real-time robot simulation and testing. It has a good potential for broader applications and can be used to address the need 

for further investigation and development to fully realise its capabilities in real-world scenarios.  In future work, we aim 

to reduce the current maximum position error of ±8.5838 cm by improving sensor calibration to minimise drift and noise 

in positional data. Advanced localisation techniques, such as sensor fusion from IMUs and overhead camera systems, will 

be implemented to enhance real-time pose estimation. Refinements to the kinematic model, including improved slip 

compensation and dynamic modelling, will better account for wheel slippage and terrain friction. Optimising trajectory 

tracking algorithms is another key focus to ensure minimal path deviations. 

Additionally, we plan to compare our framework with other simulators to benchmark its effectiveness. Expanding 

tests to include diverse terrains, such as loose gravel, sand, and slopes, as well as a variety of obstacle types, will validate 

the framework’s adaptability and robustness under real-world conditions. In conclusion, expanding the simulation fidelity 

in Unreal Engine by combining more detailed environmental physics will further reduce the discrepancies between 

simulated and real-world performance. These enhancements are supposed to considerably amend the framework’s 

accuracy and utility for robotics applications. 
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