
INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING (IJAME)
ISSN: 2229-8649 e-ISSN: 2180-1606
VOL. XX, ISSUE XX, XXX – XXX
DOI: https://doi.org/10.15282/ijame.v#i#.###

*CORRESPONDING AUTHOR | H. Nugroho |  hermawan.nugroho@nottingham.edu.my 1
© The Authors 2019. Published by Penerbit UMP. This is an open access article under the CC BY license.

ORIGINAL ARTICLE

Interactive Simulation Framework for Analysing Tracked Mobile Robots in Real-Time

Low Chow Yeh1*, Vimal Rau Aparow1, Hermawan Nugroho1*

1Electrical and Electronic Engineering Department, University of Nottingham Malaysia, 43500 Semenyih, Malaysia

ARTICLE HISTORY
Received: xxxx
Revised: xxxx
Accepted: xxxx
Published: xxxx

KEYWORDS
Hardware-in-the-loop
Skid-steering
Tracked mobile robot
Unreal engine
Real-time simulation

1.0 INTRODUCTION

Robot locomotion refers to various methods for the movement of a robot [1]. Compared to other types, wheeled robots

are popular choices. This is due to their control simplicity. Steering in real-world environments often requires overcoming

obstacles and various types of terrains. Most wheeled robots, unfortunately struggle with these irregular terrains [2]. This

constraint emphasises the importance of developing "all-terrain robots" that can run and handle various hurdles. Such

robots would improve the abilities and application of robots.

Tracked mobile robots are recognised for their ability to steer through terrains. As such, these types of robots can be

applied and play an important role in urban search and rescue missions and military operations. Different from wheeled

robots, tracked robots offer stability and adaptability. Their design and testing, however face difficulties in precisely

replicating real-world conditions.

In the development and design of a robot, simulation of the design and its testing are critical to confirm that the robotic

software meets the specified requirements [3], [4], [5], [6]. The testing should enable the testing of the robot's subsystems,

such as its control systems, localisation, and object detection, in a virtual environment before the subsystems are adopted

in real-world applications. Generally, computer simulation is a favoured method in the early stages of robot development

due to its time and cost efficiency. This is especially important in the design of experimental robots for certain tasks/aims.

For instance, here the authors develop an integrated route and path planning strategy for a skid steering robot, which will

be used to harvest in agricultural environments with terrain constraints [7]. Liang et al. designed a model-based

coordinated trajectory tracking control approach for a four-wheel. The robot uses a skid-steer control system equipped

with a timing-belt servo system [8]. Moreno et al. developed a linearisation-based trajectory tracking controller of input

and output for skid steering robots [9]. Transitioning from virtual to real environments often necessitates the substitution

of simulation models with actual robots and the adaptation of control logic, potentially leading to new software issues

that emerge in physical settings. Hardware-in-the-Loop (HIL) simulation addresses this challenge by integrating real

robot hardware with simulated environments, enhancing the reliability of the robot's performance to mirror the simulation,

and reducing discrepancies between simulated and actual testing.

Numerous robot simulators exist to study mobile robot behaviour. MATLAB Simulink, for instance, is popular for

robot system development [10], [11], [12], [13], [14]. Tran D et al. use MATLAB Simulink simulation platform to test

and evaluate the stability of a cable-driven hyper-redundant robot in a teleoperation system. The simulation is used to

ensure the safety of the system before deployment [15]. Moreno et al. also use the MATLAB Simulink simulation

platform to test the deployment of their developed, which presents a real-time control system for a two-degree-of-freedom

(2DOF) robot. The simulation is aimed for FPGA deployment and is applied to validate the system's robustness against

noise and disturbances [16]. Tristano M et al. design a vehicle stability control system that uses individual wheel torque.

MATLAB Simulink simulation platform is used to validate and progress the model to a hardware-in-the-loop (HIL) setup

incorporating an Electronic Control Unit (ECU [17]. Dosoftei C et al. develop an omnidirectional mobile robot (OMR)

ABSTRACT – Tracked mobile robots play a crucial role in navigating complex terrains for urban
search and rescue and military applications, yet verifying their performance in diverse
environments remains a challenge. This study introduces an interactive simulation framework using
a Hardware-in-the-Loop (HIL) platform to analyse real-time performance, focusing on critical
capabilities such as skid-steering, slope handling, and obstacle climbing. By integrating detailed
kinematic models with a virtual environment powered by Unreal Engine, the framework delivers
precise simulations that closely replicate real-world scenarios. Validation tests revealed a
maximum position error of ±8.5838 cm, with mean squared errors of 0.1854 m for the x-coordinate,
0.1486 m for the y-coordinate, and 0.801 radians for the yaw angle in straight-line navigation.
Despite higher errors in complex manoeuvers, the results demonstrate the framework's
effectiveness in bridging simulation and real-world performance, providing a reliable tool for the
design and testing of mobile robots in challenging environments.

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

2 journal.ump.edu.my/ijame ◄

in dynamic logistics environments. They combine MATLAB-Simulink with the Robot Operating System (ROS) to

employ and test the algorithms [18]. For Hardware-in-the-Loop (HIL) simulations, MATLAB Simulink has challenges

in real-time execution due to hardware integration issues arising from compatibility constraints, requiring additional

toolboxes. Scalability matters, and high licensing costs make the framework less practical. Other simulations, such as the

Virtual Robot Experimentation Platform (V-REP), offer a 3D environment with an integrated development environment

(IDE) [19], [20], [21]. Gazebo excels at realistic sensor feedback and object interactions but is often used for drone

research [22], [23], [24], [25]. Specific simulators like Truck Maker cater to specialised applications [26], [27], [28].

Many of these simulators rely on predefined kinematic models, which restrict customisation and adaptability to different

robot designs, especially for skid-steering tracked robots. This is where our approach diverges.

A common limitation among existing robot simulators is their inability to accommodate arbitrary robot designs,

particularly those with diverse and specialised locomotion types. Many traditional simulators come with predefined

kinematic models that are fixed and not easily customisable, which restricts their flexibility in simulating different types

of robots, especially tracked mobile robots. This rigidity hinders the accurate modelling and testing of robots with unique

or unconventional locomotion mechanisms, ultimately limiting the usefulness of these simulators for researchers and

engineers working on innovative robotics applications. Moreover, much of the existing research and development has

focused on simulating wheeled or legged robots, with significantly less attention given to tracked mobile robots. These

robots, essential for environments requiring stability and traction over rough terrain, present unique challenges that are

not adequately addressed by simulators designed for other locomotion types. The lack of simulation tools for the

development of tracked robots makes the engineers to compromise. As a result, the developed robots may have

discrepancies between their simulated result and real-world performance.

To address such challenge, in this project, we develop a Hardware-in-the-Loop (HIL) simulation platform, which is

specifically adapted for tracked mobile robots using Unreal Engine. Different from traditional simulators, which are

limited by fixed kinematic models, Unreal Engine enables custom robot models to be integrated with its highly flexible

environment. The flexibility of the framework will allow us to customise the robot's kinematics and 3D physical

modelling. This customisation will enable precise simulation of the distinctive movement of tracked robots. Unreal

Engine’s broad set of tools includes an effective graphics engine, a flexible programming language, and a vigorous

physics engine. Such tools will allow the simulation of real-world physics, such as gravity, collisions, and friction, with

high fidelity. This makes it exceptionally well-suited for simulating robots in complicated settings where traditional

physical testing might be impractical. By leveraging the technology of this game engine, this project not only overcomes

the limits of existing simulators but can also offer a strong platform for the design, testing, and validation of tracked

mobile robots in situations that carefully reproduce real-world challenges.

There are various simulators for mobile robot testing, such as MATLAB Simulink, Gazebo, and V-REP. These

programs, however, come with limitations, especially when simulating complicated and complex situations or customised

robots such as robots with unconventional locomotion mechanisms. Many of these simulators use predefined kinematic

models. Such settings limit the customisation and adaptability of robot designs, especially for skid-steering tracked

robots. This is where our approach varies. The uniqueness of our approach is that our approach offers complete flexibility.

It enables to model unconventional locomotion, as well as the integration of real-time Hardware-in-the-Loop (HIL)

simulations. The HIIL enables immediate feedback between virtual environments and physical hardware. This approach

shows that our simulations not only encapsulate the design of tracked robots in varied situations but also lessen

discrepancies between simulated and real-world performance. This indicates that the approach is versatile and can be

used to test tracked mobile robots accurately.

2.0 METHODS AND MATERIAL

The Hardware-in-the-Loop (HIL) system lets users examine the real-time integration of virtual environments and

physical systems and/or the subsystems of the robot. It allows users to evaluate the system and/or the subsystem's

performance under real-world conditions without the demand of a full physical setup.

In this project, we develop a novel adaptation of the kinematic approach to be adopted for tracked mobile robots to

improve motion control and pose estimation. The approach is expected to be able to calculate the motion of tracked

mobile robots using only track velocities. Such calculation is tricky due to complex dynamics, including slippage and

track-ground interactions. In the first subsection, we explore the kinematics of skid-steering and obstacle-climbing, laying

the groundwork for the simulation model. Next, we discuss the development of the simulation environment using Unreal

Engine.

2.1 Kinematics Model as Robot Simulation Model

Tracked mobile robots use skid-steering for movement, which means each side of the robot can move independently,

allowing it to turn by adjusting the speed difference between the left and right tracks. However, skid-steering can cause

slippage, particularly during turns or on uneven surfaces. To address this, we implemented a kinematic model that includes

slip compensation. The kinematic model utilises the speed of the robot and its track conditions to predict the position and

orientation of the robot during movement, with a focus on controlling the robot in real-world environments.

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

3 journal.ump.edu.my/ijame ◄

Skid-steering locomotion is a locomotion setting of tracked vehicles such as tanks and bulldozers. The locomotion

lets the vehicle independently control the speed and direction of the tracks that control the vehicle by adjusting the speed

difference between the tracks [29]. Skid-steering, however, can be slipped during turns. To address this challenge and

improve the prediction of its motion, a slip-compensated odometry model is usually adopted in the kinematic models. In

this project, we utilise the kinematics of a tracked car with skid-steering movement defined by Rigatos [30], [31], [32].

In skid-steering, each track operates independently to control the movement of the tracked mobile robots. This

mechanism, however, instigates slippage, notably during turns or on uneven surfaces. To handle this issue, a slip

compensation is implemented and incorporated into the kinematic model. The developed kinematic model approximates

the position and orientation of the tracked robot based on the velocity and surface conditions, which is then used for

motion prediction. In the kinematic model, we adopt formulations to express forward velocity, lateral movement, and

yaw angle changes, factoring in slip ratios and track geometry. These formulations facilitate effective simulation of the

robot and its exchanges with obstacles, such as climbing steps or navigating slopes. These formulations oversee the

forward motion, turning, and interaction with obstacles for skid-steering locomotion, as follows:

𝑉𝑥 =
𝑣𝑟(1 − 𝛼𝑟) + 𝑣𝑙(1 − 𝛼𝑙)

2
 (1)

The formula determines the forward velocity of the robot (𝑉𝑥) calculated based on the velocities of the left and right

tracks (𝑣𝑟 and 𝑣𝑙), modified by their respective slip ratios (𝛼𝑟 and 𝛼𝑙).

𝑉𝑦 = 𝑉𝑥 ∙ tan 𝛽 (2)

The lateral velocity (𝑉𝑦) is calculated and determined based on the forward velocity (𝑉𝑥) and the slip angle (𝛽). This

accounts for any sideways movement caused by track slippage.

𝑥̇ = 𝑉𝑥 cos 𝜃 − 𝑉𝑦 sin 𝜃 (3)

𝑦̇ = 𝑉𝑥 sin 𝜃 + 𝑉𝑦 cos 𝜃 (4)

𝜃̇ =
𝑣𝑟(1 − 𝛼𝑟) − 𝑣𝑙(1 − 𝛼𝑙)

𝐿
 (5)

The change in yaw angle (𝜃̇) is determined by the difference in track velocities and their slip ratios, divided by the

equivalent wheelbase (𝐿). This equation describes how the robot turns based on the difference in speeds between the two

tracks. If the car runs without experiencing longitudinal slippage, it indicates that its ground velocity matches the input

velocity and a slip ratio of zero [33]. The equivalent wheelbase of the robot is represented by the parameter L. The

illustration of the kinematics model of the tracked car can be seen in Fig. 1.

Fig. 1 Kinematics model of tracked car

Obstacle climbing is a critical capability for tracked locomotion robots. It allows these robots to navigate diverse

urban structures, including stairs, small steps, and road bumps. When tackling an obstacle—such as a step—the process

involves two primary stages: 1) Step Climbing: The robot ascends the obstacle, and 2) Step Crossing: The robot

traverses the obstacle horizontally [34].

Step climbing refers to the ability of a tracked mobile robot to ascend vertical obstacles with distinct steps. During

this manoeuvre, the robot utilises the adhesive force of its tracks to counteract gravity and propel itself upwards. Fig. 2

illustrates the tracked car leverages its tracks for step climbing. When the robot reaches the vertical step (riser), the tracks

generate a driving force that causes the body to rotate counterclockwise, lifting the front section in preparation for

climbing the step.

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

4 journal.ump.edu.my/ijame ◄

Fig. 2 Kinematics of Step Climbing

For the model formulation, the origin of the right-handed Cartesian coordinate system (xG,yG) is aligned and defined at

the centre of the tracked car [35]. The design of the track model prioritises minimising slippage during the climbing

motion. To achieve this, the model assumes no track sliding or slippage occurs at points A and D (refer to Figure 2 for

reference). With this assumption, the robot's displacement from point D can be estimated using the following equation :

∆𝑦 = ∫ 𝑣𝑤ℎ𝑒𝑒𝑙 𝑑𝑡 (6)

If the displacement ∆y is less than the obstacle's height minus the wheel radius (h-r), we define the robot's rotation

angle and speed. Should ∆y exceed this value, it indicates the wheel has reached the step's edge. The angle α, initially 0

degrees, measures the tilt against the horizontal, increasing to 90 degrees as the wheel ascends the step. The climb

completes when α surpasses 90 degrees, transitioning to step crossing as shown in Fig. 3. The robot's rotation, speed, and

mass centre are determined by specific formulas. After climbing, the robot crosses the step, as shown in Figure 4.

Fig. 3 Different value of α; (a) α = 0° (b) α = 90°

. The length LD signifies the distance from point A to the step's edge, which decreases gradually. When LD becomes

less than zero, the step-crossing process concludes. The equations below are used to derive the robot’s body rotation

angle, angular velocity, centre of mass position, and velocity.

Fig. 4 Kinematics model of step crossing

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

5 journal.ump.edu.my/ijame ◄

2.2 Developing a Virtual Testing Ground for Tracked Mobile Robots with Unreal Engine

This section explores the implementation of a skid-steering model in Unreal Engine. It includes the following

approaches: 1) Defining the Car Character (Pawn Character), which sets the foundation for the robot's in-simulation

existence, and 2) Blueprint Design, where we utilise Unreal Engine's visual scripting system to program the robot's

movement and behaviour.

The TP100 Crawler Caterpillar was chosen as the experimental model. It is 185mm long, 200mm wide, and weighs

0.65 kg, with top and side views shown in Fig. 5. The system uses an Arduino Mega for its main electronics, connected

to MPU6050 and encoder sensors for essential rotation and distance data. Motor functions are controlled by the L293D

driver, with power from two 18650 lithium 3.7 V batteries.

(a)

(b)

Fig. 5 Platform of TP100 Crawler: (a) View from the Top (b) View from the Side

Table 2 presents the specifications of the tracked car.

Table 1: Specifications of the tracked car
Item Value and unit

Initial Mass 0.650 kg

Total Mass with Electrical Components 0.922 kg

Size (LxWxH) 200 mm x 185 mm x 60 mm

Wheel Size 24 mm

Track Width 45 mm

Track Length 185 mm

During the stage of defining the pawn character, the initial design phase involved creating a 3D model of the tracked

mobile robot platform using SolidWorks®, a computer-aided design (CAD) software. Each component of the robot was

modelled with precise real-world dimensions and subsequently assembled within a master assembly in SolidWorks®

(refer to Fig. 6 for the visualisation).

Fig. 6 The SolidWorks® CAD model of the TP100 Crawler Caterpillar

In Unreal Engine, functionality is mainly developed using the Blueprint Class, often called a Blueprint, during the

Blueprint Design phase. Blueprints, either created via Blueprint Visual Scripting (a visual coding language) or C++ code,

are objects or classes that operate by connecting nodes in a graph to perform actions and processes. These nodes can

handle tasks such as creating objects, defining functions, and responding to events. Each Blueprint instance is

customisable through its nodes, and when configured, it can be integrated into the virtual environment as an object

instance. Any changes made to the original Blueprint automatically apply to all its instances within the environment [36].

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

6 journal.ump.edu.my/ijame ◄

For communication between Unreal Engine, the simulation space, and the Python-controlled robot, a method utilising

text files for data exchange was used. This process involves inter-process communication (IPC), allowing for data sharing

between programs. Two crucial text files facilitate this communication: 1) Encoder.txt, which records wheel speed data

from the Arduino Mega shown in the Windows command prompt, and 2) Orientation.txt, which captures the simulated

robot's position and orientation in Unreal Engine. The communication starts with reading the wheel speed from

Encoder.txt and then feeding this into the Unreal Engine simulation. The simulation then processes this data using its

kinematic model blueprint, detailed in Figure 7(a) and (b), which manages the reading and writing of these text files.

The kinematic model comprises two main functions, as previously derived in Figure 7(c) and (d): 1) Skid Steering

Function, which manages the steering of the tracked mobile robot in the simulation, and 2) Obstacle Climbing Function,

allowing the simulated robot to navigate walls or steps.

(a)

(b) Pre

-P
ro

of
 C

op
y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

7 journal.ump.edu.my/ijame ◄

(c)

(d)

Fig. 7 Blueprint Visual Scripting with (a) “Save Data File” (Writing Text) (b) “Read Wheel Value” (Read Text) (c)

Skid Steering Model (d) Obstacle Climbing Model

3.0 RESULTS AND DISCUSSION

3.1 Skid Steering Data Collection for Tracked Mobile Robot Model

As Dogru [37], [38] indicates, the equivalent wheelbase equation is derived from the schematic diagram of the tracked

mobile robot presented in Fig. 8.

Fig. 8. Schematic of Skid-Steered Tracked Car

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

8 journal.ump.edu.my/ijame ◄

The method suggests that the robot rotates around its centre of mass, with closer wheels to this centre providing better

traction. The equivalent wheelbase is calculated using the distances from the wheels to the centre of rotation, denoted as

RLF, RLB, RRF and RRB, and the angles αLF, αLB, αRF and αRB between the y-axis and each distance vector. This leads to the

wheelbase formula, which is stated as:

𝐿 =

2 ((
𝑏
2

− 𝛾𝛿𝑦)
2

+ (
𝑎
2

− 𝛿𝑥)
2

)

(
𝑏
2

− 𝛾𝛿𝑦)

(7)

Here, a and b are the robot’s length and width, while δx and δy are the offsets in the x and y directions from the robot’s

centre of mass to its geometric centre. The factor γ adjusts δy, determined experimentally. These offsets are inferred from

the robot’s weight distribution, with Table 3 presenting the wheelbase findings.

Table 2 Result of the equivalent wheelbase
Parameters Values

Robot Geometry Length, a 13.3 cm

Robot Geometry Width, a 16 cm

X axis Offset Distance, δx 0.174 cm

Y axis Offset Distance, δy -0.137 cm

Equivalent Wheel Base, L 27.42 cm

Slip parameters were evaluated using a tarpaulin surface to replicate slippage. Angular velocity and wheel speed were

measured using an MPU6050 gyroscope and encoders, while an overhead camera system tracked the robot's trajectory.

Tests revealed consistent slip ratios across straight and turning manoeuvers, with minor variations in slip angles. These

parameters were integrated into the simulation model to refine its accuracy. An overhead camera system was used to trace

the vehicle's speed and movement, improving the robot's indoor positioning [39]. The pose estimation utilised ArUco

markers. The markers were selected because of its simplicity and fast processing, as each mark was represented by a unique

binary pattern [40], [41]. For the experiment, the developed robot was equipped with ArUco markers. It is shaped as square

fiducial markers that are easily detectable. In the experiment, these markers were placed into specific areas on the robot,

which can be used to facilitate accurate pose estimation. As the patterns were unique, they allowed the system to

differentiate different markers, and as a result, we used them to track multiple points on the robot simultaneously. This

multi-point tracking is essential to determine precisely the position and orientation of the robot.

The developed robot was assessed in an 8ft by 4ft area, marked in 10cm squares, providing a reference for its position.

A GoPro camera positioned 2.5 meters high in the area's centre captured the movement of the robot. The overhead camera

system was deliberately placed to obtain the entire test area, which was marked in a grid pattern that can be applied to

provide reference points for the position of the robot. Together with the ArUco markers, the overhead camera allowed

the robot to be monitored in real-time. This enabled us to record both linear and angular displacements accurately.

The movement involved straight and turning actions, as illustrated in Fig. 9. The efficiency of the robot's motion was

determined by analysing the slip ratio and angle from the recorded data. To ensure that the result is reliable, each

manoeuvre type is repeated three times under the same conditions. Slip occurs when there is a difference between the

commanded wheel velocity and the actual velocity because of surface friction and incline. By investigating the slip angle

(the angle between the robot’s trajectory and the direction of its wheels) and the slip ratio (the difference between the

commanded and actual wheel speeds), the study was able to improve the kinematic model, which was applied in the

simulation. The system's ability to provide real-time feedback on the robot's performance played a pivotal role in

validating the simulation model, ensuring that the virtual environment closely mirrored the robot's behaviour in the

physical world.

(a)

(b)

Fig. 9 Manoeuver ; (a) Straight (b) Turning

The results of the slip parameters are shown in Table 4.

Table 3 Obtained slip parameters from the experiment
Slip Parameters Straight Manoeuver Turning Manoeuver

Slip Angle, β 0.404o 0o

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

9 journal.ump.edu.my/ijame ◄

Left wheel Slip Ratio, αl 0.1 0.1
Right wheel Slip Ratio, αr 0.1188 0.1188

The experiments found that the slip ratios for both straight and turning manoeuvres were consistent for the left and

right wheels, though the slip angles differed. These parameters (slip ratio and slip angle) are essential for the Hardware-

in-the-Loop (HIL) simulations and will be applied in subsequent stages of the process. This section is dedicated to

analysing skid-steering parameters for ramp climbing. Experiments on straight manoeuvres at various slope angles,

depicted in Figure 10, were conducted. In these tests, the robot moved straight while inclined upwards (mimicking

climbing), enabling the estimation of the slip ratio.

(a)

(b)

Fig. 10 (a) Kinematics model of ramp climbing (b) Experiment of ramp climbing

In the experiment, the pitch angle and wheel velocity of the robot were measured with an MPU6050 gyroscope and

encoders, respectively. A motion capture camera and an ArUco marker (ID = 72) were employed to determine the robot’s

position, with the marker placed at the centre of the left side wheel, as shown in Figure 12(b). The experiment involved

setting the track velocity to 10 cm/s and assessing the tilt angle of the slope at increments of 4º, specifically at 8º, 12º,

16º, 20º, 24º, and 28º. Figure 11 displays the slip ratio results under climbing conditions at each slope angle, with the x-

axis indicating the slope angle and the y-axis denoting the slip ratio.

Table 4 Result of experiment - slip ratio with respect to slope angle
Angle slip Left slip Right

0 0.16 0.162

8 0.17 0.176

12 0.18 0.197

16 0.19 0.204

20 0.2 0.218

24 0.21 0.247

28 0.22 0.260

(a)

(b)

Fig. 11 Slip ratio vs slope angle ,(a) Left wheel (b) Right wheel

Fig. 11 demonstrates that the slip ratio during straight manoeuvring has a relatively linear relationship with the slope

angle. The data collected from this experiment will be integrated into the Unreal Engine skid-steering model.

3.2 Performance Evaluation with Behaviour Test Course 1

To assess the effectiveness of the proposed model, we employed a dedicated test course focusing on basic robot

locomotion (Behaviour Test Course 1). This course aims to evaluate the robot's autonomous navigation capabilities and

its ability to handle turns with varying radii. The course layout, as shown in Fig. 12, comprises three sections: (a) Straight

Line: This section assesses the robot's capability to traverse a straight path. (b) Radius Curved Turns: This section tests

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

10 journal.ump.edu.my/ijame ◄

the robot's performance in making turns with specific, curved radii. (c) Sharp Turns: This section assesses the robot's

handling accuracy during sharp turns [42].

Fig. 12 Course Layout (a) Straight-line (b) Radius Curve (c) Sharp Turns

Fig. 13 presents the results of the simulation compared to the robot's actual performance. The green lines represent

the ground truth, which refers to the robot's actual path (during locomotion) and actual yaw angle (during turns). The red

lines represent the corresponding values obtained from the Unreal Engine kinematic model derivation, namely the model

path and model yaw angle. This comparison allows us to evaluate how closely the simulation reflects the robot's real-

world behaviour.

(a)

(b)

(c)

(d)

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

11 journal.ump.edu.my/ijame ◄

(e)

(f)

Fig. 13 Straight-Line Course (a & b), Radius Curve Course (c & d) and Sharp Curve Course (e & f) Yaw Angle and

Position Result

The results show that the direction angle is in close agreement with the ground truth. Nevertheless, variances exist

between the estimated positions and the actual ground truth. The model demonstrates superior performance in radius

curves and straight-line trajectories over sharp curve routes. The average position error for each trajectory is quantified

using the following equation, where the positions of the actual path and model path are substituted:

𝑎𝑣𝑎𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = √(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 [8]

The coordinates(x,y) and (xc, yc) represent the ground truth and estimated positions, respectively. A comparison of

the maximum position errors across three test courses—straight line, radius curve, and sharp curve—was conducted. The

straight-line course had an error of 1.5625 cm, the radius curve 1.2028 cm, and the sharp curve the largest at 8.5838 cm.

Despite these errors, they are considered acceptable for our application. The errors observed in the straight-line, radius

curve and sharp curve courses are considered acceptable for several reasons. The maximum position errors, such as 1.5625

cm in the straight-line course and 1.2028 cm in the radius curve course, are relatively minor and do not significantly

impact the robot’s ability to navigate and perform its tasks effectively. Given the nature of the test environment and the

physical constraints of the tracked robot, these errors remain within a manageable range for real-world applications, such

as search and rescue operations or military tasks, where slight deviations are tolerable and do not critically affect the

overall mission.

3.3 Interactive Simulation Framework with Hardware-in-the-Loop Simulation

This section presents the hardware setup for a hardware-in-the-loop interactive simulation, illustrated in Figure 14's

block diagram. The setup includes the actual tracked mobile robot, consisting of two primary elements: (a) the Arduino

Mega Microcontroller, serving as the robot's central processing unit, executing the input commands, and (b) the Wheel

Motors, tasked with the robot's locomotion.

In contrast, the simulation plant embodies the computer-generated virtual environment. It is constructed using two

key software components: (a) the Python Command Prompt, utilised for issuing control commands to the robot and

processing its sensor data, and (b) the Unreal Engine Software, a game engine used to replicate the robot's actions and its

interactive virtual surroundings.

Communication between the Arduino Mega and the computer is established through a serial connection using a USB

cable. The robot transmits its wheel speed data to the computer, and in return, the Unreal Engine simulation provides

feedback on the robot’s virtual position and orientation. This reciprocal communication facilitates the interaction between

the physical robot and its virtual representation in the simulation.

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

12 journal.ump.edu.my/ijame ◄

Fig 14 Interactive simulation with Hardware-In-The-Loop

The simulation serves a crucial purpose: testing and validating the effectiveness of a basic trajectory-tracking

controller for the robot. This is achieved by creating a simulated environment that interacts with the real robot. A Python

script plays a key role in initiating the HIL process. Fig.15 illustrates that the script executes the following step: 1) Data

Acquisition: It collects the robot's position and orientation data from the Unreal Engine simulation. 2) Trajectory Control

Integration: The script extracts the X and Y coordinates from the position data. These values are then fed into the trajectory

tracking controller. 3) Desired Yaw Angle Calculation: Based on the robot's position within the simulated environment,

the controller calculates the desired yaw angle (turning angle) required to follow the planned trajectory. This process

essentially allows the controller to utilise the information from the virtual world to determine the necessary adjustments

for the robot's movement in the real world.

Fig. 15 The Flow Diagram

Two behaviour test courses were used in the interactive simulation to evaluate the robot's capabilities: 1) Behaviour

Test Course 2, which tested the robot's reaction to minor disturbances and its error recovery ability during movement

[42], and 2) Behaviour Test Course 3, aimed at examining the robot's performance in various locomotion modes, including

skid steering, ramp climbing, and obstacle climbing. Both test courses were constructed within a virtual world mirroring

the real-world testing environment, with an area of 1.9 meters x 1 meter (Fig. 16). This allowed us to validate the

effectiveness of the robot's trajectory tracking control in a simulated setting. For Behaviour Test Course 3, a specific

obstacle scenario was implemented within the simulation. A 3.7 cm tall obstacle was positioned at coordinates (120 cm,

-80 cm), while a ramp with a 28-degree incline was placed at coordinates (70 cm, -80 cm). By introducing these elements,

we could evaluate the robot's ability to navigate around obstacles and climb inclines.

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

13 journal.ump.edu.my/ijame ◄

(a)

(b)

Fig. 16 (a) Behaviour Test Course 2 (b) Behaviour Test Course 3

Figures 17 and 18 display the robot's yaw angle and trajectory tracking during the HIL simulation, with green lines

indicating actual behaviour and red lines showing Unreal Engine model predictions. In Behaviour Test Course 2, both

real and virtual robots started at the trajectory's origin point (0,0). Initially, during straight-line and curved-radius

movements, the robot accurately followed the real-world trajectory. After the sharp turn, it underestimated the travelled

distance, with the yaw angle remaining close to the ground truth but with a significant position deviation, likely due to

velocity estimation errors. In Behaviour Test Course 3, similar to Course 2, initial adherence to the trajectory was

observed. However, during curved movements, slight rotational estimation errors led to divergence from the planned

path. Despite these errors, the Unreal Engine model’s yaw angle closely matched the ground truth, indicating effective

rotational estimation from wheel encoder data.

(a)

(b)

Fig. 17 Trajectory Tracking Control - Yaw Angle (a) Behaviour Test Course 2 and (b) Behaviour Test Course 3

(a)

(b)

Fig. 18 Trajectory Tracking Control – Spatial displacement (a) Behaviour Test Course 2 (b) Behaviour Test Course 3

In the validation path, Table 7 summarises the mean squared performance metrics. The data show that the overall

position error for both the x and y Cartesian coordinates is maintained within 1.7 meters, and the yaw angle error is limited

to 0.83 radians.

Table 5 Mean Squared Error for Position and Yaw Angle (Behaviour Test Courses 2 and 3)

Mean Squared Error Δx (m) Δy (m) Δθyaw (rad)

Behaviour Test Course 2 0.1854 0.1486 0.801

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

14 journal.ump.edu.my/ijame ◄

Behaviour Test Course 3 1.6607 0.4948 0.821

Comparative analysis of two test courses revealed superior robot performance in Test Course 2, with more accurate

position estimation than in Test Course 3. This is supported by the mean squared error values listed in Table 7, which are

markedly lower for Course 2. The increased positional error in Test Course 3 is likely due to an underestimation of the

robot's longitudinal velocity, especially during obstacle navigation and ramp climbing, resulting in a maximum position

deviation of 0.341 meters at the course's conclusion.

Despite the positional estimation challenges in Course 3, the overall outcomes were favourable. The implemented

model and its trajectory tracking controller effectively piloted a U-shaped route across varied terrains, demonstrating the

ability of the system to retain a predefined path with sensory feedback from the Unreal Engine simulation. The results

show the importance and efficacy of interactive simulations for evaluating path-following controllers in an engineering

context. Screenshots of video representation of the simulation process are provided below for further visualisation.

(a)

(b)

Fig. 19 (a) Robot's Position (b) Unreal Engine Robot's Position (Behaviour Test Course 3)

Results show that the proposed system has accurate trajectory tracking for a tracked mobile robot. The yaw angle

estimation aligns with the ground truth, indicating the effectiveness of the slip-compensated kinematic model and the

developed sensor fusion techniques. Compared to existing studies, the mean squared errors for the position (0.1854 m,

0.1486 m) and yaw angle (0.801 rad, 0.821 rad) close with or outperform MATLAB Simulink-based simulations by

leveraging real-time physics modelling in Unreal Engine. Studies utilising MATLAB Simulink for HIL simulations

repeatedly report higher uncertainty in real-world deployments due to solver approximations and hardware timing issues

[16], [18], [43]. In contrast, Unreal Engine uses real-time physics modelling. This will allow significant adaptability in

dynamic environments.

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

15 journal.ump.edu.my/ijame ◄

The proposed framework has good potential as it presents a scalable and cost-effective testing environment, bridging

the gap between simulation and real-world deployment. This is important, especially for specific applications such as

search and rescue, military, and autonomous exploration. The framework will enable rapid prototyping and evaluation of

navigation algorithms before deploying the developed robot in challenging situations. Despite these advantages, the

simulation has several constraints. For example, while the slip-compensated kinematic model improves the trajectory

estimation, improvements in terrain-adaptive control strategies are required to handle complex situations. Since the

framework was developed with a relatively small robot (185 mm length, 0.922 kg mass), further validation with larger

autonomous tracked systems is required to confirm the scalability of the proposed framework.

To conclude, the study shows the potential of Unreal Engine for real-time simulation, which enables a high level

of pragmatism in robot-environment interactions in comparison to traditional kinematic simulators. Furthermore, the

integration of hardware and software under the HIL framework ensures that the system can adapt to real-world constraints.

This shows that the proposed approach can be a practical tool for engineers in designing robots for complex environments

4.0 CONCLUSION

In the study, we develop an innovative Hardware-in-the-Loop (HIL) simulation framework that is fitted for tracked

mobile robots. By improving and incorporating customised and detailed kinematic models with Unreal Engine, the

framework is able to address the gap between virtual simulations and real-world adoption. In the project, the kinematic

models for skid-steering and obstacle climbing were implemented and validated through comprehensive testing. The

developed approach was adopted for a tracked robot and tested in several test courses. Two behaviour test courses were

run to evaluate the model: 1) Behaviour Test Course 2, which tested the robot's reaction to minor disturbances and its

error recovery ability during movement and 2) Behaviour Test Course 3, aimed at examining the robot's performance in

various locomotion modes, including skid steering, ramp climbing, and obstacle climbing. Experiment results showed a

maximum position error of ±8.5838 cm and mean squared errors of 0.1854 m (x-coordinate), 0.1486 m (y-coordinate),

and 0.801 radians (yaw angle) in Behaviour Test Course 2. Behaviour Test Course 3 demonstrated slightly higher errors

with mean squared values of 1.6607 m (x-coordinate), 0.4948 m (y-coordinate), and 0.821 radians (yaw angle). These

findings emphasise the simulation framework's ability to closely replicate real-world robot performance, particularly in

flat and curved terrain scenarios.

The framework successfully reflected the physical behaviour of the tracked robot throughout various circumstances,

exhibiting the utility of its kinematic models and Hardware-in-the-Loop (HIL) integration. The approach improves the

difference between virtual simulations and real-world testing, offering a valuable tool for engineers and researchers. The

ability to calculate and predict the behaviour of the robot in customised environments has significant implications for

applications such as urban search and rescue, military operations, and autonomous vehicles, where reliable navigation is

vital.

Despite its effectiveness, the study discovered some constraints of the developed approach, such as dependence on a

specific robot model and controlled test conditions. Future work will address these by incorporating various robot designs,

extensive terrain types, and additional environmental factors to improve the framework's robustness and versatility.

The developed framework supports the full customisation of kinematic models and real-time HIL integration. This

approach will enable precise simulation of unconventional locomotion systems, such as skid-steering tracked robots.

Unlike traditional platforms, the framework provides real-time feedback between physical hardware and virtual

environments, minimising discrepancies between simulated and real-world performance.

This research can provide a substantial contribution to mobile robotics, offering a flexible and precise platform for

real-time robot simulation and testing. It has a good potential for broader applications and can be used to address the need

for further investigation and development to fully realise its capabilities in real-world scenarios. In future work, we aim

to reduce the current maximum position error of ±8.5838 cm by improving sensor calibration to minimise drift and noise

in positional data. Advanced localisation techniques, such as sensor fusion from IMUs and overhead camera systems,

will be implemented to enhance real-time pose estimation. Refinements to the kinematic model, including improved slip

compensation and dynamic modelling, will better account for wheel slippage and terrain friction. Optimising trajectory

tracking algorithms is another key focus to ensure minimal path deviations.

Additionally, we plan to compare our framework with other simulators to benchmark its effectiveness. Expanding

tests to include diverse terrains, such as loose gravel, sand, and slopes, as well as a variety of obstacle types, will validate

the framework’s adaptability and robustness under real-world conditions.

In conclusion, expanding the simulation fidelity in Unreal Engine by combining more detailed environmental physics

will further reduce the discrepancies between simulated and real-world performance. These enhancements are supposed

to considerably amend the framework’s accuracy and utility for robotics applications.

5.0 CONFLICT OF INTEREST

The authors declare no conflicts of interest.

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

16 journal.ump.edu.my/ijame ◄

6.0 AUTHORS CONTRIBUTION

All authors contribute to the manuscript. Loh Chow Yeh (Investigation; Software; Resources). Vimal Rau Aparow

(Validation; Writing -editing). Hermawan Nugroho (Writing -original draft and editing).

7.0 ACKNOWLEDGEMENTS

The authors would like to thank the University of Nottingham Malaysia for financial support of this project.

Funding

This study was not supported by any grants from funding bodies in the public, private, or not-for-profit sectors.

8.0 REFERENCES

[1] L. Bruzzone, S. E. Nodehi, and P. Fanghella, “Tracked Locomotion Systems for Ground Mobile Robots: A

Review,” Machines, vol 10(8), 6482022, pp. 648, 2022
[2] R. Bsc, U. Pal, S. P. Ojha, V. Srinivasan, and A. Chakrabarti, “Exploring serially connected multi-tracked all-

terrain vehicles for improved obstacle climbing performance,” in 14th National Conference on Machines and

Mechanisms, NaCoMM 2009, 2020, pp. 279-286.

[3] G. Dimitrakopoulos, A. Tsakanikas, and E. Panagiotopoulos. Autonomous Vehicles Technologies, Regulations,

and Societal Impacts, 1st ed. Elsevier Science, 2021.

[4] Z. Szalay, “Next generation X-in-the-loop validation methodology for automated vehicle systems,” IEEE Access,

vol. 9, pp. 35616-35632, 2021.

[5] Y. Chen, S. Chen, T. Zhang, S. Zhang, and N. Zheng, “Autonomous Vehicle Testing and Validation Platform:

Integrated Simulation System with Hardware in the Loop∗,” in 2018 IEEE Intelligent Vehicles Symposium (IV),

Changshu, China, 2018, pp. 949-956.

[6] X. Hu, “Applying robot-in-the-loop-simulation to mobile robot systems,” in 2005 International Conference on

Advanced Robotics, ICAR ’05, Proceedings, Seattle, WA, USA, 2005, pp. 506-513.

[7] R. P. Urvina, C. L. Guevara, J. P. Vásconez, and A. J. Prado, “An Integrated Route and Path Planning Strategy for

Skid–Steer Mobile Robots in Assisted Harvesting Tasks with Terrain Traversability Constraints,” Agriculture

(Switzerland), vol. 14, no. 8, pp. 1206, 2024.

[8] L. Liang et al., “Model-Based Coordinated Trajectory Tracking Control of Skid-Steer Mobile Robot with Timing-

Belt Servo System,” Electronics, vol. 12, no. 3, pp. 122, 2023.

[9] J. Moreno, E. Slawiñski, F. A. Chicaiza, F. G. Rossomando, V. Mut, and M. A. Morán, “Design and Analysis of

an Input–Output Linearization-Based Trajectory Tracking Controller for Skid-Steering Mobile Robots,”

Machines, vol. 11, no. 11, pp. 988, 2023.

[10] M. Akçakoca et al., “A simulation-based development and verification architecture for micro uav teams and

swarms,” in AIAA Scitech 2019 Forum, San Diego, 2019, pp. 1917-2305.

[11] M. Nithya and M. R. Rashmi, “Gazebo - ROS - Simulink Framework for Hover Control and Trajectory Tracking

of Crazyflie 2.0,” in IEEE Region 10 Annual International Conference, Proceedings/TENCON, Kochi, India,

2019, pp. 649-653.

[12] Z. B. Rivera, M. C. De Simone, and D. Guida, “Unmanned ground vehicle modelling in Gazebo/ROS-based

environments,” Machines, vol. 7, no. 2, pp. 42, 2019.

[13] H. Huang, H. Xu, F. Chen, C. Zhang, and A. Mohammadzadeh, “An Applied Type-3 Fuzzy Logic System:

Practical Matlab Simulink and M-Files for Robotic, Control, and Modeling Applications,” Symmetry, vol. 15, no.

2, pp.475, 2023.

[14] A. O. Prasad et al., “Design and development of software stack of an autonomous vehicle using robot operating

system,” Rob Auton Syst, vol. 161, pp. 104340, 2023.

[15] D. T. Tran, T. D. Nguyen, M. K. Tran, and K. K. Ahn, “Development of a Hardware-in-the-Loop Platform for a

Teleoperation Flexibility Robotic System,” Applied Sciences, vol. 14, no. 5, pp. 2207, 2024.

[16] U. Davalos-Guzman, C. E. Castañeda, L. M. Aguilar-Lobo, and G. Ochoa-Ruiz, “Design and implementation of

a real time control system for a 2dof robot based on recurrent high order neural network using a hardware in the

loop architecture,” Applied Sciences , vol. 11, no. 3, pp. 1–16, 2021.

[17] M. Tristano et al., “Hardware-in-the-Loop Real-Time Implementation of a Vehicle Stability Control Through

Individual Wheel Torques,” IEEE Trans Veh Technol, vol. 73, no. 4, pp. 4683–4693, 2024.

[18] C. C. Dosoftei, A. T. Popovici, P. R. Sacaleanu, P. M. Gherghel, and C. Budaciu, “Hardware in the loop topology

for an omnidirectional mobile robot using Matlab in a robot operating system environment,” Symmetry, vol. 13,

no. 6, pp. 969, 2021.

[19] B. Sebastian and P. Ben-Tzvi, “Physics Based Path Planning for Autonomous Tracked Vehicle in Challenging

Terrain,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 95, no. 2, pp. 511–526, 2019.

[20] M. Abbas and S. K. Dwivedy, “Adaptive control for networked uncertain cooperative dual-arm manipulators: an

event-triggered approach,” Robotica, vol. 40, no. 6, pp. 1951-1978, 2022.

[21] C. Liu, Y. Yang, C. Zhang, and S. Yang, “Project-Based Teaching in Control Theory Education Based on V-REP:

A Cart Inverted Pendulum Case,” Journal of Contemporary Educational Research, vol. 7, no. 4, pp. 18-24, 2023.

Pre
-P

ro
of

 C
op

y

Author et al. │ International Journal of Automotive and Mechanical Engineering │ Vol. XX, Issue X (2025)

17 journal.ump.edu.my/ijame ◄

[22] K. Shabalina, A. Sagitov, K.-L. Su, K.-H. Hsia, and E. Magid, “Avrora Unior Car-like Robot in Gazebo

Environment,” in Proceedings of International Conference on Artificial Life and Robotics, Oita, Japan, 2019, pp.

116-120.

[23] J. Platt and K. Ricks, “Comparative Analysis of ROS-Unity3D and ROS-Gazebo for Mobile Ground Robot

Simulation,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 106, no. 4, pp. 80, 2022.

[24] J. L. Silva Cotta, J. Rakoczy, and H. Gutierrez, “Precision landing comparison between smartphone video guidance

sensor and IRLock by hardware-in-the-loop emulation,” CEAS Space Journal, vol. 16, no. 4, pp. 475–489 , 2024.

[25] S. Sahu and A. K. Deb, “Swarm of Quadcopters Position control in ROS Gazebo Simulator,” in 3rd International

Conference on Range Technology, ICORT 2023, Chandipur, Balasore, India, 2023, pp. 1-6.

[26] O. U. Acar, L. Güvenç, and E. Altuğ, “Hardware-in-the-Loop Testing of Automatic Lift Dropping System for

Heavy Trucks,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 98, no. 3–4, pp. 693–

703, 2020.

[27] R. Raveendran, K. B. Devika, and S. C. Subramanian, “Brake fault identification and fault-tolerant directional

stability control of heavy road vehicles,” IEEE Access, vol. 8, pp. 169229-169246, 2020.

[28] V. Kumar, S. C. Subramanian, and R. Rajamani, “Autonomous Emergency Braking of a Heavy Road Vehicle

Using a Low-Density Flash Lidar,” IEEE Trans Veh Technol, vol. 73, no. 2, pp. 1879-1889, 2024.

[29] R. Khan, F. M. Malik, A. Raza, and N. Mazhar, “Comprehensive study of skid-steer wheeled mobile robots:

development and challenges,” Industrial Robot, vol. 48, pp. 142-156 , 2021.

[30] G. Rigatos, “A Nonlinear Optimal Control Approach for Tracked Mobile Robots,” J Syst Sci Complex, vol. 34,

pp. 1279–1300, 2021.

[31] H. Li, H. Liu, J. Gai, and X. Li, “Steering Control of Dual-motor Coupling Drive Tracked Vehicle Based on PSO

PID Parameter Optimization,” Binggong Xuebao/Acta Armamentarii, vol. 45, no. 3, pp. 916-924, 2024.

[32] J. Gai, C. Liu, C. Ma, and H. Shen, “Steering Control of Electric Drive Tracked Vehicle Considering Tracks’ Skid

and Slip,” Binggong Xuebao/Acta Armamentarii, vol. 42, no. 10, pp. 2092-2101, 2021.

[33] G. Yamauchi, K. Nagatani, T. Hashimoto, and K. Fujino, “Slip-compensated odometry for tracked vehicle on

loose and weak slope,” ROBOMECH Journal, vol. 4, no. 1, pp. 27, 2017.

[34] J. Liu, Y. Wang, S. Ma, and B. Li, “Analysis of stairs-climbing ability for a tracked reconfigurable modular robot,”

in Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, Kobe, Japan,

2005, pp. 36-41.

[35] A. H. Rajabi, A. H. Soltanzadeh, A. Alizadeh, and G. Eftekhari, “Prediction of obstacle climbing capability for

tracked vehicles,” in 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR

2011, Kyoto, Japan, 2011, pp. 128-133.

[36] A. R. G. Harwood, P. Wenisch, and A. J. Revell, “A real-time modelling and simulation platform for virtual

engineering design and analysis,” in Proceedings of the 6th European Conference on Computational Mechanics:

Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid

Dynamics, , Glasgow, UK, 2018, pp. 1-8.

[37] S. Dogru and L. Marques, “An improved kinematic model for skid-steered wheeled platforms,” Auton Robots, vol.

45, no. 2, pp. 229–243, 2021.

[38] M. F. Jaramillo-Morales, S. Dogru, and L. Marques, “Generation of Energy Optimal Speed Profiles for a

Differential Drive Mobile Robot with Payload on Straight Trajectories,” in 2020 IEEE International Symposium

on Safety, Security, and Rescue Robotics, SSRR 2020, Abu Dhabi, United Arab Emirates, 2020, pp. 136-141.

[39] S. Adinandra and A. Syarif, “A low cost indoor localisation system for mobile robot experimental setup,” Journal

of Physics: Conference Series, vol. 1007, 2018.

[40] M. Irfan, S. Dalai, K. Kishore, S. Singh, and S. A. Akbar, “Vision-based Guidance and Navigation for Autonomous

MAV in Indoor Environment,” in 2020 11th International Conference on Computing, Communication and

Networking Technologies, ICCCNT 2020, Kharagpur, India, 2020, pp. 1-5.

[41] M. F. Sani and G. Karimian, “Automatic navigation and landing of an indoor AR. Drone quadrotor using ArUco

marker and inertial sensors,” in 1st International Conference on Computer and Drone Applications: Ethical

Integration of Computer and Drone Technology for Humanity Sustainability, IConDA 2017, Kuching, Malaysia,

2017, pp. 102-107.

[42] W. R. Norris and A. E. Patterson, “System-level testing and evaluation plan for Field Robots: A Tutorial with Test

Course Layouts,” Robotics, vol. 8, no. 4, pp. 83, 2019.

[43] F. Mihalič, M. Truntič, and A. Hren, “Hardware-in-the-Loop Simulations: A Historical Overview of Engineering

Challenges,” Electronics, vol 11(15), pp. 2462, 2022.

Pre
-P

ro
of

 C
op

y

