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ABSTRACT – Nighttime driving is difficult owing to low visibility and lights. Nighttime accidents are 
more dangerous due to reduced obstacle detection, poor vision, and trouble evaluating distances. 
Knowing the causes and dynamics of nighttime accidents is essential for improving road safety and 
preventing collisions when natural light is limited. This study proposes using an infrared thermal 
sensor to assist drivers in mitigating the issue of inadequate light at night, with the ultimate goal of 
preventing crashes under such circumstances. The investigation compared the infrared thermal 
camera sensor with the normal camera visual to evaluate how well it worked at night. The testing 
has been done on the road in Pekan, Pahang. Yolov8 deep learning has been integrated with both 
cameras to detect items like cars, motorcycles, and traffic lights. The test findings demonstrated 
how temperature variations can be utilized to precisely detect items on different types of roadways. 
The study showed that infrared thermal sensors are impressive at detecting traffic lamps, 
motorcycles, and vehicles. The infrared camera's actual detection on confusion matrices was 0.98 
for traffic lamps and 0.87 for motorcycles and vehicles. This shows how well the infrared thermal 
camera works in dark conditions, with a faster frame rate of 64.94 fps than regular cameras at 55.25 
fps. The results of this study demonstrate that using infrared technology can enhance object 
detection capabilities and, hence, enhance nighttime road safety. 
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1. INTRODUCTION 

Based on the data in recent years, more than 50 million people have been injured, while the death toll due to road 

traffic accidents was 1.35 million annually [1], [2]. Injuries sustained in motor vehicle accidents are consistently ranked 

among the top 10 significant causes of mortality on a worldwide scale, and they now hold the top spot as the leading 

cause of death [3]. Distracted driving, speeding, drunk driving, reckless driving, fatigue, and drowsiness are some of the 

factors that lead to driving accidents. Other factors include bad weather, poor vehicle maintenance, inexperienced drivers, 

running stop signs and red lights, and situation-specific contextual factors [4]. However, one of the significant contributors 

to the severity of accidents is notably influenced by late-night driving and adverse weather conditions compared to other 

contributing factors. The primary cause of many accidents, fatalities, and injuries has been driving in conditions of limited 

visibility and precipitation during the nighttime [5]; apart from that, the likelihood of unfavorable outcomes resulting 

from collisions was nearly three times higher in low-light conditions as compared to those occurring in daylight. The 

increased probability of severe injuries in nighttime accidents can be attributed to various factors, including driver fatigue, 

substance use, and excessive vehicle speed [6]. 

Diverse strategies have been adopted to augment road safety, including policies, regulations, law enforcement, road 

infrastructure or system alterations, and other measures with extensive implications that affect traffic circumstances, 

driving conduct, and general travel. The interventions above are designed to mitigate the hazards linked to vehicular 

collisions and enhance the safety of individuals utilizing roadways [7]. However, road safety at night needs more attention 

from the government, which has resulted in significant accidents [8]. Several factors that make the government not 

interested in developing road safety at night are as follows: There is a perception among governmental entities that there 

is a lower volume of traffic at night compared to daytime [9], [10]. Consequently, nighttime road safety initiatives may 

receive a reduced allocation of resources and attention, as they may be perceived as a lower priority. The allocation of 

adequate resources for nighttime road safety initiatives may pose a challenge, particularly when faced with competing 

priorities. Implementing road safety measures tailored to nighttime conditions may be perceived as a more costly endeavor 

by governmental bodies. Potential expenditures include costs associated with upgraded lighting systems, improved 

signage, and heightened law enforcement presence during evening periods. Governments may allocate resources towards 
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addressing road safety issues deemed more urgent or having a higher frequency of occurrence, such as impaired driving, 

distracted driving, or exceeding speed limits. Prioritizing certain aspects may lead to unintended consequences, such as a 

potential decrease in the focus on ensuring road safety during nighttime hours. 

To enhance road safety, drivers typically need to install devices to mitigate potential accidents personally. Several 

drivers utilized dashcam technology to ensure road safety. The presence of a dashcam is of utmost importance due to its 

potential to provide vital evidence and documentation about road incidents, accidents, and unforeseen events. Utilizing 

this evidence and documentation can facilitate the identification of culpability, mitigate the risk of fraudulent claims, and 

improve road safety. In recent years, the Visible Light Communication (VLC) receiver that uses Complementary Metal 

Oxide Semiconductor (CMOS) camera technology has attracted the attention of the stakeholders due to their excellent 

dependability and simplicity of integration [11]. 

Nevertheless, a significant obstacle for VLC systems dependent on camera technology is attaining a substantial data 

transmission rate [12]. Also, visible light cameras cannot always pick up different types of light, which makes it hard to 

get good pictures of different parts of a vehicle when there is not much light or when there is a lot of backlighting [13]. 

Another technology is lidar, a sensing method capable of detecting. Following the mirroring process, the laser bursts are 

detected by photodetectors known as avalanche photodiodes (APDs) or single-photon avalanche diodes (SPADs). 

Distance measurements are conducted by comparing the laser reflections to the emitted beams. Because the LiDAR's 

position and direction (pose) are known, the one-dimensional range readings can be used to find the three-dimensional 

Cartesian coordinates [14]. In addition, it should be noted that lidar sensors may exhibit vulnerability to unfavorable 

weather conditions that can impair their accuracy and overall operational efficiency, like heavy rain, snowfall, or fog [15]. 

Despite these sensors' demonstrated safety and efficacy, a limitation arises in their performance during nighttime 

conditions. To address these constraints, the present study seeks to investigate the utilization of infrared thermal (IR) 

cameras in the context of vehicle detection, with a specific emphasis on nighttime driving conditions. 

Due to the intricate lighting circumstances, identifying vehicles at night presents a substantial obstacle for vehicle 

detection systems. Despite the considerable research in this field, a universally applicable or flawless method to tackle 

this issue has yet to be developed. The nighttime imaging quality could be better, leading to reduced visibility and the 

inability to discern vehicle outlines and colors. The primary cause of this phenomenon can be attributed to the complex 

characteristics of nighttime illuminations, including the presence of excessive reflected light and the interference arising 

from opposing lanes. Donà Riccardo et al. [16], in their work, applied thermal cameras aiming for pedestrian detection 

by using the thermal camera during low light conditions and detecting the pedestrian through infrared radiation. The 

authors found that their integration significantly improved the detection of pedestrians, especially in rural areas. 

In one of the notable studies by Wang et al. [17] for a vehicle detection application, the author employed millimeter-

wave radar infrared cameras, citing their unique adaptability in challenging weather conditions. While the radar system's 

resolution was not very high, the combination of millimeter-wave radar and infrared imagery made it easier to quickly 

and accurately find the specific area of interest on the vehicle. In their study, a set of four novel Haar-like templates was 

created to increase the accuracy of vehicle detection. The templates above were purposefully created to capture the unique 

characteristics of vehicles in infrared images. This makes them a valuable asset in the overall process of extracting vehicle 

features. The application of these techniques yielded a significant enhancement of 2.9% in vehicle detection accuracy, as 

indicated by the obtained results. The experiments yielded a detection speed of 43 frames per second and a notable 

detection accuracy of 92.4% in various demanding traffic scenarios. 

Slimani et al. [18] Identification of vehicles at night is accomplished by analyzing their taillights and headlights. 

Achieving this involves applying the two-dimensional discrete wavelet transform (2D-DWT) and background subtraction 

techniques to the input image. The regions of interest are then extracted using the connected component technique. The 

classification of these regions is subsequently performed through a hybrid approach involving the 2D-DWT and 

convolutional neural network (CNN) classifiers. Based on the study's findings, the proposed method notably enhanced 

precision and recall accuracy. Regarding video number 1, there was an improvement in the accuracy of precision and 

recall, which reached 98.24%. In the second video, there was a notable enhancement in precision and recall accuracy, 

with improvements of 98.78% and 98.49%, respectively. Furthermore, the night detection technique demonstrated a 

processing capacity of 23.22 frames per second in the two videos captured at night. This method of CNN is proven to be 

one of the systematic and proven methods to be implemented for YOLO algorithms and deep learning object detection 

algorithms [19]. 

Xiaobiao et al. [20] introduced an approach for estimating distances and detecting pedestrians, both of which play a 

critical role in ensuring safe driving practices and developing effective autonomous vehicle control strategies. The 

approach employs a multi-task region-based convolutional neural network that integrates an enhanced network 

architecture. The study collected data from a near-infrared camera equipped with two near-infrared fill-light devices, 

which were used to capture authentic nighttime road scenarios. Accurate measurements of pedestrian distances were 

obtained using LIDAR technology to train the model. The algorithm under consideration, which incorporates a component 

for estimating distances, demonstrates a processing speed exceeding seven frames per second. The pedestrian detection 

system had an average absolute distance estimation error rate of less than 5% and an accuracy rate of about 80%. 
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Jinlong et al. [21] have discussed the problem of insufficient manual data for nighttime images captured by urban 

surveillance cameras. This issue arises because most labeled systems predominantly concentrate on scenarios occurring 

during the daytime. In order to improve vehicle recognition in unlabeled nighttime photos from the target domain, their 

study employed domain adaptation approaches to determine the most effective strategy to use tagged daytime photographs 

from the source domain. Furthermore, the researchers developed a method for estimating traffic flow parameters based 

on traffic flow theory. To assess the efficacy of their proposed vehicle detection methodology, the researchers employed 

a dataset comprising 2,200 traffic images. One thousand two hundred images were obtained during daylight hours, while 

the remaining 1,000 were captured at night. The dataset comprised a total of 57,059 vehicles. In the computation analysis 

during daylight hours, the Faster region-based convolutional neural network (RCNN) model was employed to assess the 

average mean absolute error (MAE) and average root mean square error (RMSE). The MAE was determined to be 1.87 

km/h, while the RMSE was 3.00. Faster R-CNN demonstrated an average mean absolute error (MAE) of 5.07 kilometers 

per hour and an average root mean square error (RMSE) of 8.77 in nocturnal situations. Nevertheless, the errors decreased 

upon implementing the suggested approach, resulting in an average root mean square error (RMSE) value of 7.61 and an 

average mean absolute error (MAE) of 4.22 km/h. The suggested method demonstrated a mean reduction in the percentage 

of error (PER) of 15.13%. 

Wu et al. [22] proposed a blind spot warning system (BSWS) consisting of camera models that undergo algorithms 

for blind spot detection (BSD) and dynamic calibration specifically designed to operate efficiently in both diurnal and 

nocturnal conditions. The suggested solution uses the Horizontal Edge and Shadow Composite Region (HESCR) 

technique to identify the region of interest and determine the exact location of the shadows cast by the cars in question 

during the day. In detecting vehicles in nighttime road scenes, the system employs a methodology that involves identifying 

luminous objects and subsequently recognizing the paired headlights of the specific vehicles of interest. This approach 

serves the purpose of enabling blind spot detection (BSD) functionality. The system under consideration exhibits 

operational capabilities at frame rates of 20 and 50 frames per second, thereby ensuring its functionality under varying 

lighting conditions, including both daytime and nighttime scenarios. A series of experimental video sequences with a 

cumulative duration exceeding 30 minutes were recorded in road environments during both daytime and nighttime 

conditions to conduct a quantitative evaluation of the vehicle detection performance. The system exhibits a notable degree 

of precision in identifying vehicles, attaining detection accuracies of 97.22% and 91.11% during daylight and nighttime 

scenarios, respectively. 

Tampuu et al. [23] examine the effectiveness of using pictures as inputs for a self-driving artificial neural network to 

perform road-following in actual driving situations. Their findings demonstrate that, in the studied scenarios, the 

performance obtained utilizing these photos as input is, at the very least, comparable to camera-based models. The 

evaluation's driving data set consists of more than 500 km of difficult country roads. The collection contains information 

from LiDAR, camera sensors, and centimetre-level GNSS trajectory data. The dataset includes a range of meteorological 

situations, including wintry snowfall. LiDAR models may rely on the depth and intensity channels while driving at night 

since they are active sensing systems that are not reliant on outside light sources. The reflectivity of surfaces does not 

affect the depth channel, offering reliable results even when snow is covered. Even in training settings, it has been shown 

that depth alone is inadequate for safe end-to-end driving, although depth may still provide trustworthy information to 

improve overall performance. 

Li et al. [24] have proposed the development of a convolutional neural network that incorporates the Light 

Enhancement Net. The network effectively improves visibility in low-light conditions by applying its robust nonlinear 

fitting capabilities. Furthermore, it has been observed that implementing the neural network leads to a substantial decrease 

in the computational time necessary for processing. The data additionally indicates that the network enhances the 

identification of pedestrians and other vehicles under low-light circumstances, rendering them more apparent. 

Xu Liu [25] identified unstructured road surfaces in visually challenging lighting scenarios, including low-light 

conditions, backlighting, and hazy environments. The proposed method leverages thermal infrared imagery to achieve 

improved segmentation of unstructured roads using thermal infrared images. The network architecture of URTSegNet 

draws inspiration from BiSeNet V 2 and is composed of two branches, namely the Detail Branch and the Semantic Branch. 

To assess the efficacy of URTSegNet, the researchers gathered a dataset consisting of infrared, unstructured road imagery. 

This dataset encompasses a range of demanding scenarios, including complete darkness during the night, diminished 

lighting conditions, backlighting, and atmospheric haze. The dataset was utilized to evaluate the model's performance, 

which yielded an Intersection over Union (IoU) score of 97.5%. Additionally, the model demonstrated an inference speed 

of 129 frames per second (FPS) when executed on a single NVIDIA GTX 1660S graphics card. 

Choi and Kim [26] developed a system under consideration that integrates a thermal infrared camera and a LiDAR 

sensor to enhance the capabilities of object detection and identification in various lighting conditions, including both 

daytime and nighttime scenarios. The researchers devised and produced a three-dimensional calibration target to 

externally calibrate the two sensors and acquire their external parameters to accomplish this objective. The researchers 

conducted experiments to verify the performance of the system. The findings indicated that the proposed sensor system 

and fusion algorithm effectively detected and identified objects, even in environments with limited visibility. The vision 

camera and LiDAR sensor combo had an average object detection precision of 56.167% throughout the day. Conversely, 

it was 55.914% with the combination of the LiDAR sensor and thermal infrared camera. 
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Zou et al. [27] present a novel model that centers on applying thermal infrared analysis in a specialized manner for 

excavators, while Ikram et al. [28] used a transformer-based multimodal object detection. This article presents a novel 

algorithm for detection and perception that utilizes multisensory fusion techniques to improve the performance of 

excavators. Focusing on directly combining information from various sensors, the research focuses on optimizing the data 

acquired from each sensor. This methodology is of utmost importance when excavators function in environments with 

low illumination levels, presenting possible hazards to the operator and individuals walking nearby. To address this 

matter, the scholars leverage the functionalities of three disparate sensors: infrared cameras, RGB cameras, and Light 

Detection and Ranging (LiDAR) sensors. The authors present a novel approach for detecting obstacles that demonstrate 

efficacy in seamlessly transitioning between diurnal and nocturnal conditions. The neural network methodology utilized 

in this study exhibits enhanced performance compared to the existing detection algorithms. Furthermore, the integration 

of three-dimensional data allows the sensors to capture and transmit the spatial coordinates of different obstacles to the 

excavator's operator more efficiently. 

Much literature has been published on optimizing various sensors and multiple types of cameras, namely infrared 

cameras, lidars, radar, and millimeter-wave sensors, with integrated algorithms to enhance and detect vehicles and 

obstacles. The primary aim of this study is to tackle the challenges above by developing a vehicle detection system for 

at-night vehicles. To the best of the authors' knowledge, there needs to be more existing literature that discusses optimizing 

vehicle detection analysis performance in nighttime scenarios using an infrared thermal sensor combined with the Yolov8 

algorithm, mainly through the analysis of temperature details. The main advantage of applying infrared thermal sensors 

through temperature distribution analysis is that they can detect and capture thermal signatures emitted by objects, 

including vehicles, regardless of lighting conditions. This allows for better visibility and detection of vehicles in low-light 

or completely dark environments where traditional visible-light cameras may struggle. This study aims to investigate the 

vehicle detection accuracy of infrared thermal sensors through Yolov8 algorithms, mainly through temperature analysis. 

The study will focus on the roads in Pekan, Pahang. It aims to develop a more reliable and efficient driver assistance 

system that enhances road safety and reduces collisions in areas without road lamps. In addition to the utilization of 

infrared camera testing, this study will also incorporate the use of a conventional visual camera to assess and compare the 

nocturnal performance of the camera with the capabilities of the infrared camera sensor. This analysis will offer a 

significant understanding of the extent of the visual capacity and further substantiate the necessity of infrared cameras for 

nighttime applications. 

2. METHODS AND MATERIAL 

An extensive description of the experimental platform is given in this section., including a detailed discussion of the 

sensors employed, their respective types, and associated parameters. Furthermore, this paper thoroughly elucidates the 

relevant ideas and methodologies utilized in the experiment, which can be divided into three primary sections. Normal 

and infrared camera sensors are evaluated under actual road conditions in Pekan Pahang, encompassing a 20-kilometer 

distance. Additionally, the research will be undertaken to optimize and enhance the integration of infrared camera sensors 

with the YOLOv8n algorithm. Finally, the chapter examines practical implementations of combining the infrared camera 

sensor with the YOLOv8n algorithm in low-light conditions. 

2.1 Vehicle and Camera Preparation 

The present study employed a vehicle equipped with a 2.0-liter engine capacity. Figure 1 indicates the vehicle setup 

for the testing. The conventional and infrared cameras were mounted to the roof of the vehicle frame and linked to a 

monitoring screen. The primary function of the monitoring display is to visually represent the perspective captured by the 

infrared thermal camera sensor. The infrared camera was also linked to a 5-volt power source to supply the required 

power for its functioning. 

 

Figure 1. Vehicle and camera setup 

Figure 2 shows the route for the visual collection for both day and night. The drive covers two segments of the route, 

commencing at McDonald's Pekan and concluding at Terminal Bas Pekan, covering a total distance of 8.2 kilometers. 

Subsequently, the testing phase continues from Pantai Serandu and extends over a distance of 5.6 kilometers. 
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Figure 2. Vehicle tested route for the image collection 

 

Table 1. General specifications of a normal camera 

Specification Description 

Image Sensor 12-megapixel image sensor 

Video Recording HD at up to 60fps 

Field of View (FOV) 170-degree wide-angle lens 

Display 2-inch LCD screen 

Connectivity Wi-Fi for wireless file transfer and remote control 

Battery Life Removable 1050mAh rechargeable battery, approximately 90 minutes 

of continuous recording time 

Additional Features Time-lapse recording, burst photo mode, adjustable exposure, loop 

recording, built-in adjustable filters 

Storage Supports MicroSD cards up to 64GB 

 

Table 2. General specifications of the infrared camera sensor 

Specification Description 

Signal output object temperature 0 - 5 V 
 

Lower limit signal output 0 V 
 

Upper limit signal output 5 V 
 

Temperature unit ℃ 
 

Thermocouple 20 Ώ 
 

Digital interfaces USB, RS232, RS485, Profibous DP, Modbus RTU, Ethernet 
 

Sensing head Electronic box 

Environmental rating IP65 (NEMA-4) - 

Material Stainless steel Die Casting 

Dimensions 100 mm x 50 mm, M48x 1.5 89 mm x 70 mm x 30 mm 

Ambient temperature cable  Max. 105 ℃ [High-temperature 

cable (optional): 180 ℃] 

- 

System accuracy ± 1 ℃ or ± 1% ± 1,5 ℃ or ± 1,5% 
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2.2 System Workflow  

Figure 3 provides a comprehensive depiction of the proposed system. The custom dataset comprises various entities, 

including vehicles, pedestrians, and traffic lights, recorded during the Pekan Pahang's daytime and nighttime periods on 

the road. In the initial stage, the system extracts consecutive frames from the input video, segregating them based on 

whether they belong to the day or night. This enables independent processing to be conducted on each frame. The 

determination of the sampling rate, which establishes the quantity of frames per second (fps), is based on specific 

requirements. Each frame contains items identified and categorized using a convolutional neural network (CNN) model. 

The YOLOv8n model is the object detection model for system implementation and development. The YOLOv8n model 

has been trained to accurately classify the abovementioned objects, with the vehicle perspective serving as the basis for 

identification. Consequently, the resulting image encompasses bounding boxes that indicate the detected objects. 

Ultimately, evaluating the system's performance hinges on its efficacy in detecting objects under varying lighting 

conditions, encompassing both daytime and nighttime scenarios. 

 

Figure 3. System workflow 

In 2015, University of Washington academics Joseph Redmon and Ali Farhadi created the sophisticated object 

recognition system YOLO (You Only Look Once) [15]. According to Zhao et al. [9], Typically, object detection models 

consist of three phases: object classification, feature extraction, and ROI selection. The initial version of YOLO exhibited 

rapid object recognition capabilities yet encountered challenges in accurately localizing smaller objects. Nevertheless, the 
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utilization of YOLO in our study is manageable due to the absence of tiny images in the dataset employed for our specific 

problem. The YOLO algorithm functions by partitioning input images into a grid of dimensions M × M. The detection of 

an object is attributed to a specific grid cell if the object's center is situated within said cell. Both the bounding box 

coordinates and the associated confidence scores are included in the predictions produced by YOLO. The confidence 

score in the YOLO algorithm is determined by multiplying the probability of an object being present (Pr(Object)) with 

the Intersection over Union (IOU) metric. Pr(Object) represents the likelihood of an object being detected, while IOU 

quantifies the degree of overlap between the predicted bounding box as indicated in Equation (1). The grid cell provides 

conditional class probabilities as Pr(Class|Object).  

𝐶𝑙𝑎𝑠𝑠𝑖 × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = 𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡 × 𝑂𝑏𝑗𝑒𝑐𝑡 × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ (1) 

Normalization is applied to ensure that the bounding box coordinates fall within the range of 0 to 1. To incorporate 

non-linearity, the subsequent layers employ the leaky rectified linear activation function, as specified, except the final 

layer, which utilizes a linear activation function. Equation (2) shows the methodology employed to derive class-specific 

confidence scores for individual bounding boxes in the testing phase. 

𝑓(𝑥) = {
𝑥,

0.1𝑥

𝑖𝑓𝑥 > 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2) 

 2.3 Data Analysis Procedure 

The methodology begins with obtaining a suitable dataset for training and testing, such as the Roboflow dataset 

manager, which should contain annotated images of labeled vehicles, motorcycles and traffic lights. Integrating camera 

and infrared (IR) sensors involves creating a connection between these sensors and the vehicle's system, ensuring a smooth 

integration of hardware and software components. The camera sensor captures real-time images or videos by collecting 

infrared (IR) sensor data. The camera and infrared sensor data that have been obtained are subsequently analyzed to detect 

and classify potential objects such as vehicles, motorcycles and traffic lights. Next, the dataset is preprocessed by resizing 

images (640x640), converting annotations to YOLO format if necessary, and dividing it into training and testing sets. A 

Google Colab platform is utilized to conduct deep learning experiments to establish the necessary environment. Ultralytics 

YOLOv8.0.111; Python-3.10.11 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB). Use of a Persistence-M GPU, two 

CPUs, 12.7 GB of RAM, and a 23.3/78.2 GB HDD. The network architecture and optimizer settings are initialized 

accordingly. Subsequently, the YOLOv8n model is trained on the annotated images or videos from the training dataset. 

The model's performance is evaluated during training using mean average precision (mAP) or mean intersection over 

union (mIOU). If necessary, the model is fine-tuned to enhance its performance further. During the iterative improvements 

stage, the YOLOv8-n model's results are contrasted with the ground truth information obtained from the camera and 

infrared (IR) sensors. Parameters such as precision, accuracy, recall, and F1 score are computed to assess the integrated 

system's efficacy. The analysis identifies potential improvement areas by examining discrepancies between the model's 

predictions and the sensor data. 

2.4 Confusion Matrix 

The evaluation of a classification model or classifier's performance on known test data is commonly conducted using 

a widely utilized table known as a confusion matrix. While the confusion matrix is generally easy to understand, its 

terminology can be confusing. Table 3 depicts a confusion matrix about a binary classification problem, exhibiting the 

correctly predicted choices (cells along the diagonal) and the incorrectly classified modal choices. The confusion matrix 

offers three essential metrics for assessing the predictive performance of the algorithm: The total prediction error is 

determined by summing the absolute differences between the predicted and observed volumes for each mode and then 

dividing this sum by the total trip volume. The fraction of observed mode selections that are incorrectly predicted is 

known as the classification error. The correctly predicted rate represents the percentage of observations correctly 

identified and positioned in the diagonal cells. The indicators, as mentioned earlier, are essential for assessing the 

algorithm's predictive ability. The following is the nomenclature used in the confusion matrix: 

Table 3. Crucial terms used in the confusion matrix 

 Predicted 

Actual  NO YES 

 NO TN FP 

 YES FN TP 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(3) 

 

  



M. S. Beg et al. │ International Journal of Automotive and Mechanical Engineering │ Volume 22, Issue 1 (2025) 

journal.ump.edu.my/ijame  12243 

3. RESULTS AND DISCUSSION  

This paper uses two tools to show accurate results in a clear and meaningful way: the temperature distribution analysis 

and the confusion matrix. It also included an analysis of visual images using grey-level analysis to demonstrate the quality 

of the infrared visual condition. The confusion matrix compares the expected and actual choices and shows how prediction 

errors are distributed among the observed categories. The research analysis was shown in three different ways; (a) The 

hardware analysis uses an infrared thermal sensor to see temperature and grey levels. (b) They test and train to predict 

accuracy for motorcycles, traffic lamps, and vehicles using regular cameras and thermal infrared visualization. (c) 

analyzing the ability to make predictions based on training and testing data. 

3.1 Grey-Scale Level Analysis of the Infrared Sensor 

Based on the grey-level infrared image, the average, middle value, spread, and shape are used to understand the 

thermal patterns. The results have helpful information about the image's strength and spread. The grey-level infrared 

image had an average value of 98.89 and a middle value of 115.0. The median is higher than the mean, meaning the image 

has lower grey-level values. This suggests that there are colder regions in Figure 4. The skewness value is close to zero 

at 0.015, which means the distribution is almost symmetrical with a slight tendency towards colder regions. This 

information shows that the scene has different temperatures, with slightly colder areas in Figure 4. 

 

Figure 4. Grey-scale level analysis 

3.2 Analysis of Object Temperature through Infrared Visualization 

This section presents the analysis findings of the temperature differences of detected objects in various road 

conditions, including T-junction, junction, and straight road scenarios. Significant variations were observed among 

different object classes. As shown in Figure 5(b), the temperatures of human subjects, motorcycles, and vehicles were 

measured at 26.5 °C, 28 °C, and 25.8 °C at the T-junction. The temperature at a random cursor point in this area was 

recorded at 25.1 °C. Similar analyses were performed for the junction and straight road conditions. As shown in Figure 

6(b), at the junction, the recorded temperatures for vehicles and traffic lamps were 28.5 °C and 27.5 °C, respectively, 

while the random cursor point temperature was 23 °C. On the straight road, as in Figure 7(b), the motorcycle and vehicle 

temperatures were measured at 30.6 °C and 28.6 °C, respectively. The results demonstrate that object temperature can 

serve as a distinguishing factor between different objects and help identify them accurately. The temperature profiles in 

Figure 6(d) and Figure 7(d) illustrate the temperature changes over time. This continuous process reveals the highest and 

lowest temperature points. In the T-junction scenario in Figure 5, temperatures ranged from 20 °C to 32 °C, while at the 

junction in Figure 6, the range was 23.3 °C to 28.3 °C. For the straight road condition in Figure 7, temperatures varied 

between 26 °C and 31.5 °C. Notably, the temperature profiles are influenced by the specific road conditions, leading to 

varying temperature ranges. The temperature-time diagram graphically presents the selected objects' temperature trends, 

providing further insights into their behavior. Additionally, the histogram depicts the percentage temperature differences 

for each road condition. At the T-junction, the temperature variations were approximately 11.4%; at the junction, they 

were 8%; and on the straight road, they reached 12.1%. 
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Figure 5. IR sensor performance at T- junction 
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Figure 6. IR sensor performance at junction 
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Figure 7. IR sensor performance at straight road 

3.3 Accuracy Analysis 

This study compares regular visual and infrared (IR) spot-finding camera sensors in nighttime conditions. Detection 

performance evaluation is conducted on straight highways, T-junctions, and junctions based on YOLOv8 results. Before 

that, the experimental setup is complete. The measurement of frames per second (FPS) involves analyzing the time it 

takes for a model to process inputs and perform post-processing on a single GPU. 

The visual camera sensor's preprocessing speed was 3.6 ms, its inference speed was 8.5 ms, and post-processing per 

image was 6 ms. These measurements indicate an approximate frame rate of 55.25 FPS. The data suggests that 

performance in nighttime conditions is relatively efficient. The IR spot-finding camera sensor demonstrated a 

preprocessing speed of 6.4 ms, a postprocessing speed of 5.1 ms, and an inference speed of 3.9 ms, resulting in an 

estimated frame rate of 64.94 FPS. The mentioned advancement shows a significant enhancement in terms of both speed 

and efficiency when compared to the standard visual camera sensor. The performance of the IR sensor remained consistent 

across all scenarios. The preprocessing time slightly increased, while the inference time demonstrated a nearly 50% 

reduction. That indicates that the sensor can easily analyze infrared data. The performance of the IR sensor remained 

consistent across all scenarios. The preprocessing time slightly increased while the inference time significantly reduced, 

indicating the sensor's efficient analysis of infrared data in Figure 8(a). 

The successful detection of objects did not significantly impact the speed or frame rate. The system's ability to 

maintain performance after detection suggests robustness in various nighttime driving scenarios. The performance of the 
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visual camera and IR sensor remained stable after detection. The increased frame rate means a higher responsiveness to 

environmental changes, particularly in complex junctions in Figure 8(b). 

 
(a) 

 

 
(b) 

Figure 8. Vehicle detection images before and after applying the algorithm for  using normal camera and infrared 

camera 

The IR spot-finding camera sensor is more suited for real-time applications due to its greater frame rate and quicker 

inference time, particularly in difficult dark situations. Both sensors performed well, but the IR sensor's higher frame rate 

may provide advantages in detecting fast-moving objects. The study carefully examined important performance metrics, 

such as box_loss, class_loss, and obj_loss, to compare the IR spot-finding sensor to the regular visual camera sensor. The 

metrics plots are utilized for training and validation outcomes in the Google colaboratory simulation results. 

In object detection, cls_loss sorts objects into groups, box_loss ensures the groups' boundaries correctly include the 

objects, and dlf_loss (usually a distance-based loss) ensures that features inside an object are correctly located. Together, 

these three losses make for a complete and accurate detection system. The lower cls_loss and ojb_loss indicate higher 

accuracy of evaluation metrics. 

In Figure 9, the performance metrics of a visual camera sensor are evaluated under nighttime conditions, presenting 

both training and validation results. After completing 30 epochs, the training values for box_loss, cls_loss, and dfl_loss 

(objectiveness) have stabilized at 1.6933, 1.1616, and 1.1634, respectively. Simultaneously, there has been a rise in both 

precision and recall values, reaching 0.596 and 0.53472, respectively. Table 5 discusses the mean average precision, 

specifically mAP50 and mAP50-95. 
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Two previous studies illustrate object detection using average visual cameras. Girshick et al. (2014) introduced a 

method called R-CNN, employing convolutional neural networks (CNN) for both object detection and semantic 

segmentation, employing the PASCAL VOC 2010 dataset and attaining a mean average precision (mAP) of 

approximately 58%. Their work laid the foundation for feature extraction, utilizing pre-trained CNNs to scan regions of 

interest within images. Two years later, Liu et al. (2016) built upon this foundation, proposing the Single Shot MultiBox 

Detector (SSD), which simultaneously predicts multiple bounding boxes and class scores for those boxes in a single pass. 

The SSD demonstrated a remarkable precision of 76.8% on the VOC 2007 test. The notable increase in precision 

illustrates how the field has rapidly advanced, optimizing both speed and accuracy for real-time object detection 

applications. 

 

Figure 9. Performance evaluation metrics of visual camera senor at night 

Based on an analysis of visual sensor performance evaluation metrics and a review of previous studies, it has been 

determined that nighttime situations present challenges in object detection, especially in low-light conditions. Apart from 

that, the performance of the IR spot-finding camera is significant. Figure 10 displays all the performance metric plots. 

After an impressive performance after training for 30 epochs, the values for box_loss, cls_loss, and dfl_loss have become 

1.003, 0.47605, and 0.99079, respectively. The precision and recall have also increased to 0.92119 and 0.90534, 

respectively. The validation results, including the mean average precision values mAP50 and mAP50-95, are discussed 

in Table 5. 

After an extensive training phase encompassing 400 epochs, various algorithms were evaluated using the FLIR 

dataset. The results reveal significant insights into the performance of different models. Specifically, the mean average 

precision at 50% overlap (mAP50%) was recorded as follows: Faster R-CNN demonstrated a mAP50% of 79.3%, 

YOLOv5m reached 81.9%, YOLO-ACN achieved 82.3%, and YOLO-CIR topped the models with a mAP50% of 84.9%. 

Their findings highlight that the YOLO-CIR model demonstrates enhanced performance. However, in this particular 

experiment, the YOLO V8 model performed much better, achieving a remarkable 94.7% mAP50%, as detailed in         

Table 5. Following the analysis of performance metrics for the typical visual camera sensor and the IR spot-finding 

camera sensor, significant differences are apparent in their effectiveness under nighttime conditions. The comparison 

distinctly emphasizes the enhanced detection abilities of the IR spot-finding sensor, especially in challenging nighttime 

and low-light situations. 

A set of custom images was selected in the dataset to validate the experimental model performance as a part of those 

169 images for the visual camera sensor in Table 4 and 171 images for the IR spot-finding camera sensor in Table 5. 

Normal visual camera sensors achieved a 58.1% mean average precision at mAP50(B). An enhancement of the YOLOv3 

algorithm by Y. Wang et al. (2019) to create an end-to-end ship target detection system The study provided detailed 

results for the mean average precision with a 50% overlap (mAP50) on different versions of YOLOv3. Specifically, the 

mAP50 for YOLOv3-608 was recorded at 73.7%, while for YOLOv3-416, it was 71.2. Furthermore, the study also 

reported a mAP50 of 75.1 for FPN and FRCN. 
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Figure 10. Performance evaluation metrics of infrared sensor at night 

 

Table 4. Visual camera sensor performance at night 

Class Images Instances Box (P) R mAP50(B) mAP50-95(B) 

All 169 637 0.692 0.511 0.581 0.262 

Motorcycle 169 54 0.504 0.259 0.315 0.116 

Traffic-lamp 169 184 0.827 0.668 0.723 0.303 

Vehicle 169 399 0.744 0.605 0.704 0.365 

On the other hand, the IR spot-finding sensor achieved 94.7 % mAP50 in Table 5.   In all metrics evaluated, the IR sensor 

performed better than the standard visual camera sensor and other previous studies. 

Table 5. IR sensor performance 

Class Images Instances Box (P) R mAP50(B) mAP50-95(B) 

All 171 662 0.919 0.928 0.947 0.567 

Motorcycle 171 62 0.852 0.871 0.901 0.554 

Traffic-lamp 171 49 0.969 0.980 0.974 0.497 

Vehicle 171 551 0.936 0.935 0.966 0.650 

All table results have optimized that the IR sensor significantly performed better in the YOLOv8 simulation test, 

especially in low-light night conditions. Visual sensor result analysis shows how difficult it is to detect objects at night. 

3.4 Confusion Matrix 

Object detection performance between IR spot-finding sensors and standard camera sensors during nighttime has been 

evaluated through a comprehensive comparative analysis of confusion matrices in Figure 11. The study examined true 

detection accuracies for three distinct classes: motorcycles, traffic lamps, and vehicles. False detections brought forth 

further distinctions. 

The IR sensor exhibited superior performance, with accuracies nearing perfection for traffic lamps (0.98) and 

substantial correctness for motorcycles and vehicles (0.89 and 0.96, respectively). That indicates the IR sensor's adeptness 

at capturing and correctly identifying objects under the constrained luminosity of nighttime. The IR sensor's false 

detection rates were generally low, except for vehicles as background (0.83). The absence of errors in classifying 

motorcycles with other classes is particularly striking, showcasing the sensor's precision. 

Conversely, the normal camera sensor's performance was markedly lower, with the most significant disparity observed 

in the motorcycle class (0.31). The reduced accuracy signals the limitations of traditional visual sensors in conditions 

lacking sufficient illumination. The normal camera sensor exhibited more widespread false detection rates, with 

pronounced errors such as a 0.63 rate for vehicles being mistaken for the background. These findings indicate a heightened 

susceptibility to misclassifications, particularly under challenging visual conditions. 



M. S. Beg et al. │ International Journal of Automotive and Mechanical Engineering │ Volume 22, Issue 1 (2025) 

journal.ump.edu.my/ijame   12250 

 

Figure 11. Confusion matrix of IR sensor’s and normal camera censor’s detection at night 

The IR spot-finding sensor is the optimal choice for nighttime object detection. Its enhanced accuracy and reduced 

false detection rates make it a more suitable and reliable option, demonstrating the value of leveraging infrared technology 

for object recognition tasks in nighttime conditions. 

4. CONCLUSION 

Detecting vehicles at night is always hard for vehicle systems, affecting driving safety. This study highlights the role 

of infrared thermal sensors at night to assist the driver in a collision avoidance system. Therefore, the application of 

Yolov8 embedded into infrared thermal sensors has been emphasized in this study. In conclusion, these studies show that:  

The analysis examined how temperatures varied between objects in different road situations: T-junction, junction, and 

straight road. Different types of objects showed noticeable differences. At the T-junction, people, motorcycles, and cars 

showed 26.5°C, 28°C, and 25.8°C, respectively. In the junction situation, the vehicle and traffic lamp temperatures were 

28.5°C and 27.5°C, respectively, while the random cursor point was at 23°C. On the straight road, motorcycles and 

vehicles had temperatures of 30.6°C and 28.6°C, respectively. This study shows that differences in the temperature of 

objects can help with accurate identification. The temperature graphs in Figures 9 and 10 show how temperatures change 

over time. They show the highest and lowest temperatures, respectively. Temperature ranges change because of road 

conditions. The graph and chart display how the temperature of an object changes over time and the percentage differences 

for different road conditions: T-junction (11.4%), junction (8%), and straight road (12.1%). 

The infrared image with different shades of grey was analyzed. The distribution's average, median, spread, and shape 

were calculated to understand the thermal patterns. The results show information about how strong and spread out the 

image is. The image's median is higher than the average, which means there are lower grey-level values and colder regions 

in Figure 7. The skewness value is 0.015, which is close to zero. This means the distribution is almost symmetrical but 

slightly leans towards colder regions. This data shows different temperatures in the scene, with colder areas being more 

common. 

Based on the comparison of how well regular and infrared cameras detect objects at night, The camera sensor can 

process images in 3.6 milliseconds and make decisions in 8.5 milliseconds. This means it can capture about 55.25 frames 

per second. On the other hand, the IR sensor showed better efficiency. It had preprocessing and inference speeds of 6.4 

ms and 3.9 ms, which resulted in an estimated frame rate of 64.94 FPS. The IR sensor works quickly in real-time, 

especially at night. 

In comparison to the normal visual camera sensor and the IR spot-finding camera's performance metrics at night, the 

IR spot-finding camera's impressive performance after evaluating the plot metrics, especially precision, recall, and mean 

average precision, shows that this camera is much better for nighttime operations than the normal visual camera sensor. 

The IR spot-finding camera demonstrated lower loss values and achieved higher precision and recall rates, signaling its 

ability to detect and classify objects more efficiently and accurately. This decision stems from its demonstrated capability 

to achieve 94.7% mean average precision compared to the 58.1% achieved by the normal visual camera sensor. 

Using the confusion matrix, the IR sensor had a high accuracy of 0.98 for traffic lamps and a reasonable accuracy of 

0.89 and 0.96 for motorcycles and vehicles. This shows that the sensor works well in low-light conditions. The IR sensor 

mostly had low false detections, except when vehicles were in the background (0.83). The IR sensor was precise in 

classifying motorcycles. On the other hand, the regular camera sensor did not perform as well, especially for motorcycles 

(0.31), showing that it has some drawbacks in dark environments. 

The infrared camera sensor is the best and most effective choice when detecting objects at night. The improved 

accuracy and fewer false detections make it a better and more reliable choice for these situations. This improvement 

shows how important it is to use infrared technology to recognize objects in dark places. The IR sensor can improve safety 



M. S. Beg et al. │ International Journal of Automotive and Mechanical Engineering │ Volume 22, Issue 1 (2025) 

journal.ump.edu.my/ijame  12251 

and efficiency when driving at night. It is more accurate and reduces false alarms compared to visual sensors. This result 

shows that using infrared-based solutions is practical and effective for dealing with the challenges of detecting objects in 

low-light conditions. 
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