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ABSTRACT - Nighttime driving is difficult owing to low visibility and lights. Nighttime accidents are
more dangerous due to reduced obstacle detection, poor vision, and trouble evaluating distances.
Knowing the causes and dynamics of nighttime accidents is essential for improving road safe

and preventing collisions when natural light is limited. This study proposes using an infrared therma

EYWORDS
preventing crashes under such circumstances. The investigation compared the i bject detection

camera sensor with the normal camera visual to evaluate how well it worked X ormal camera,
has been done on the road in Pekan, Pahang. Yolov8 deep learning has been fiitegrated gg:; elga";’i’;‘;r a

cameras to detect items like cars, motorcycles, and traffic lights. The test fin
how temperature variations can be utilized to precisely detect items o
The study showed that infrared thermal sensors are impressivi
motorcycles, and vehicles. The infrared camera's actual detection on

Collision avoidance

camera works in dark conditions, with a faster frame rate of 6
55.25 fps. The results of this study demonstrate that using iniisare

detection capabilities and, hence, enhance nighttime ros %
1.0 INTRODUCTION

Based on the data in recent years, motg, than 50 million people have been injured, while the death toll due to road
traffic accidents was 1.35 million annuably [2]. Injuries sustained in motor vehicle accidents are consistently ranked
among the top 10 significant mortality on a worldwide scale, and they now hold the top spot as the leading
0,.speeding, drunk driving, reckless driving, fatigue, and drowsiness are some of the
ther factors include bad weather, poor vehicle maintenance, inexperienced drivers,

) situation-specific contextual factors [4]. However, one of the significant contributors
otably influenced by late-night driving and adverse weather conditions compared to other
e primary cause of many accidents, fatalities, and injuries has been driving in conditions of limited
geipitation during the nighttime [5]; apart from that, the likelihood of unfavorable outcomes resulting
from collisions was@mearly three times higher in low-light conditions as compared to those occurring in daylight. The
increased probability Of severe injuries in nighttime accidents can be attributed to various factors, including driver fatigue,
substance use, and excessive vehicle speed [6].

factors that lead to drivi
running stop sign

Diverse strategies have been adopted to augment road safety, including policies, regulations, law enforcement, road
infrastructure or system alterations, and other measures with extensive implications that affect traffic circumstances,
driving conduct, and general travel. The interventions above are designed to mitigate the hazards linked to vehicular
collisions and enhance the safety of individuals utilizing roadways [7]. However, road safety at night needs more attention
from the government, which has resulted in significant accidents [8]. Several factors that make the government not
interested in developing road safety at night are as follows: There is a perception among governmental entities that there
is a lower volume of traffic at night compared to daytime [9], [10]. Consequently, nighttime road safety initiatives may
receive a reduced allocation of resources and attention, as they may be perceived as a lower priority. The allocation of
adequate resources for nighttime road safety initiatives may pose a challenge, particularly when faced with competing
priorities. Implementing road safety measures tailored to nighttime conditions may be perceived as a more costly endeavor
by governmental bodies. Potential expenditures include costs associated with upgraded lighting systems, improved
signage, and heightened law enforcement presence during evening periods. Governments may allocate resources towards
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addressing road safety issues deemed more urgent or having a higher frequency of occurrence, such as impaired driving,
distracted driving, or exceeding speed limits. Prioritizing certain aspects may lead to unintended consequences, such as a
potential decrease in the focus on ensuring road safety during nighttime hours.

To enhance road safety, drivers typically need to install devices to mitigate potential accidents personally. Several
drivers utilized dashcam technology to ensure road safety. The presence of a dashcam is of utmost importance due to its
potential to provide vital evidence and documentation about road incidents, accidents, and unforeseen events. Utilizing
this evidence and documentation can facilitate the identification of culpability, mitigate the risk of fraudulent claims, and
improve road safety. In recent years, the Visible Light Communication (VLC) receiver that uses Complementary Metal
Oxide Semiconductor (CMOS) camera technology has attracted the attention of the stakeholders due to their excellent
dependability and simplicity of integration [11].

Nevertheless, a significant obstacle for VLC systems dependent on camera technology is attaining a substantial data
transmission rate [12]. Also, visible light cameras cannot always pick up different types of light, which makes it hard to
get good pictures of different parts of a vehicle when there is not much light or when there is a lot of backlighting [13].
Another technology is lidar, a sensing method capable of detecting. Following the mirroring process, the laser bursts are
detected by photodetectors known as avalanche photodiodes (APDs) or single-photon avalanchéddiodes (SPADSs).
Distance measurements are conducted by comparing the laser reflections to the emitted beal ecause the LIiDAR's
position and direction (pose) are known, the one-dimensional range readings can be used togfi e-dimensional
i unfavorable
weather conditions that can impair their accuracy and overall operational efficiency, like hea I, or fog [15].
Despite these sensors' demonstrated safety and efficacy, a limitation arises in th mance during nighttime
conditions. To address these constraints, the present study seeks to investigate th infrared thermal (IR)

Due to the intricate lighting circumstances, identifying vehicles at n
detection systems. Despite the considerable research in this fieldga unive
this issue has yet to be developed. The nighttime imaging quali uld be better, leading to reduced visibility and the
inability to discern vehicle outlines and colors. The primary cau his phenomenon can be attributed to the complex
characteristics of nighttime illuminations, including the presg isi
from opposing lanes. Dona Riccardo et al. [16], in their wo
by using the thermal camera during low light conditign
authors found that their integration significantly i |mpr

2d thermal cameras aiming for pedestrian detection
ing the pedestrian through infrared radiation. The
g detection of pedestrians, especially in rural areas.

In one of the notable studies by Wang et aI
wave radar infrared cameras, citing thei
resolution was not very high, the corg
and accurately find the specific area o
created to increase the accuracy of vehicle'@
characteristics of vehicles in infrared kwes.

|cIe detection application, the author employed millimeter-
a ablllty in challenging weather conditions. While the radar system's
of millimeter-wave radar and infrared imagery made it easier to quickly
t on the vehicle. In their study, a set of four novel Haar-like templates was
ection. The templates above were purposefully created to capture the unique
is makes them a valuable asset in the overall process of extracting vehicle

[

features. The application of tl iques yielded a significant enhancement of 2.9% in vehicle detection accuracy, as
indicated by the obtained_r experiments yielded a detection speed of 43 frames per second and a notable
detection accuracy of 92.4% i iofls demanding traffic scenarios.

dentifiication of vehicles at night is accomplished by analyzing their taillights and headlights.

! applying the two-dimensional discrete wavelet transform (2D-DWT) and background subtraction
techniques to theSiput image. The regions of interest are then extracted using the connected component technique. The
classification of these regions is subsequently performed through a hybrid approach involving the 2D-DWT and
convolutional neural network (CNN) classifiers. Based on the study's findings, the proposed method notably enhanced
precision and recall accuracy. Regarding video number 1, there was an improvement in the accuracy of precision and
recall, which reached 98.24%. In the second video, there was a notable enhancement in precision and recall accuracy,
with improvements of 98.78% and 98.49%, respectively. Furthermore, the night detection technique demonstrated a
processing capacity of 23.22 frames per second in the two videos captured at night. This method of CNN is proven to be
one of the systematic and proven methods to be implemented for YOLO algorithms and deep learning object detection
algorithms [19].

Xiaobiao et al. [20] introduced an approach for estimating distances and detecting pedestrians, both of which play a
critical role in ensuring safe driving practices and developing effective autonomous vehicle control strategies. The
approach employs a multi-task region-based convolutional neural network that integrates an enhanced network
architecture. The study collected data from a near-infrared camera equipped with two near-infrared fill-light devices,
which were used to capture authentic nighttime road scenarios. Accurate measurements of pedestrian distances were
obtained using LIDAR technology to train the model. The algorithm under consideration, which incorporates a component
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for estimating distances, demonstrates a processing speed exceeding seven frames per second. The pedestrian detection
system had an average absolute distance estimation error rate of less than 5% and an accuracy rate of about 80%.

Jinlong et al. [21] have discussed the problem of insufficient manual data for nighttime images captured by urban
surveillance cameras. This issue arises because most labeled systems predominantly concentrate on scenarios occurring
during the daytime. In order to improve vehicle recognition in unlabeled nighttime photos from the target domain, their
study employed domain adaptation approaches to determine the most effective strategy to use tagged daytime photographs
from the source domain. Furthermore, the researchers developed a method for estimating traffic flow parameters based
on traffic flow theory. To assess the efficacy of their proposed vehicle detection methodology, the researchers employed
a dataset comprising 2,200 traffic images. One thousand two hundred images were obtained during daylight hours, while
the remaining 1,000 were captured at night. The dataset comprised a total of 57,059 vehicles. In the computation analysis
during daylight hours, the Faster region-based convolutional neural network (RCNN) model was employed to assess the
average mean absolute error (MAE) and average root mean square error (RMSE). The MAE was determined to be 1.87
km/h, while the RMSE was 3.00. Faster R-CNN demonstrated an average mean absolute error (MAE) of 5.07 kilometers
per hour and an average root mean square error (RMSE) of 8.77 in nocturnal situations. Nevertheless, the errors decreased
upon implementing the suggested approach, resulting in an average root mean square error (RMSE) value of 7.61 and an
average mean absolute error (MAE) of 4.22 km/h. The suggested method demonstrated a mean reductioh in the percentage
of error (PER) of 15.13%.

Wau et al. [22] proposed a blind spot warning system (BSWS) consisting of camera
for blind spot detection (BSD) and dynamic calibration specifically designed to operate €
nocturnal conditions. The suggested solution uses the Horizontal Edge and Shadow oSite Region (HESCR)
technique to identify the region of interest and determine the exact location of the the cars in question
during the day. In detecting vehicles in nighttime road scenes, the system e ethodology that involves identifying

lighting conditions, including both daytime and nighttime scen
cumulative duration exceeding 30 minutes were recorded in r
conditions to conduct a quantitative evaluation of the vehicle i
of precision in identifying vehicles, attaining detection acc
scenarios, respectively.

. A series of experimental video sequences with a
vironments during both daytime and nighttime
formance. The system exhibits a notable degree

G
@ 97.22% and 91.11% during daylight and nighttime

@ res as inputs for a self-driving artificial neural network to
perform road-following in actual driving_sit gif” findings demonstrate that, in the studied scenarios, the
performance obtained utilizing these ph®toS{a t is, at the very least, comparable to camera-based models. The
evaluation's driving data set consists @ <@ m of difficult country roads. The collection contains information
from LiDAR, camera sensors, and centimet#e-level GNSS trajectory data. The dataset includes a range of meteorological
situations, including wintry snowfall. LIDAR models may rely on the depth and intensity channels while driving at night
since they are active sensing systemsft are’not reliant on outside light sources. The reflectivity of surfaces does not
affect the depth channel, offey iable results even when snow is covered. Even in training settings, it has been shown
that depth alone is inadequal afe end-to-end driving, although depth may still provide trustworthy information to
improve overall performance.

Tampuu et al. [23] examine the effectiveness

Li et al.
Enhancement

> propesed the development of a convolutional neural network that incorporates the Light
2 e network effectively improves visibility in low-light conditions by applying its robust nonlinear
fitting capabilitieSgEurthermore, it has been observed that implementing the neural network leads to a substantial decrease
in the computationalptime necessary for processing. The data additionally indicates that the network enhances the
identification of pedestrians and other vehicles under low-light circumstances, rendering them more apparent.

Xu Liu [25] identified unstructured road surfaces in visually challenging lighting scenarios, including low-light
conditions, backlighting, and hazy environments. The proposed method leverages thermal infrared imagery to achieve
improved segmentation of unstructured roads using thermal infrared images. The network architecture of URTSegNet
draws inspiration from BiSeNet V 2 and is composed of two branches, namely the Detail Branch and the Semantic Branch.
To assess the efficacy of URTSegNet, the researchers gathered a dataset consisting of infrared, unstructured road imagery.
This dataset encompasses a range of demanding scenarios, including complete darkness during the night, diminished
lighting conditions, backlighting, and atmospheric haze. The dataset was utilized to evaluate the model's performance,
which yielded an Intersection over Union (loU) score of 97.5%. Additionally, the model demonstrated an inference speed
of 129 frames per second (FPS) when executed on a single NVIDIA GTX 1660S graphics card.

Choi and Kim [26] developed a system under consideration that integrates a thermal infrared camera and a LiDAR

sensor to enhance the capabilities of object detection and identification in various lighting conditions, including both
daytime and nighttime scenarios. The researchers devised and produced a three-dimensional calibration target to
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externally calibrate the two sensors and acquire their external parameters to accomplish this objective. The researchers
conducted experiments to verify the performance of the system. The findings indicated that the proposed sensor system
and fusion algorithm effectively detected and identified objects, even in environments with limited visibility. The vision
camera and LiDAR sensor combo had an average object detection precision of 56.167% throughout the day. Conversely,
it was 55.914% with the combination of the LIDAR sensor and thermal infrared camera.

Zou et al. [27] present a novel model that centers on applying thermal infrared analysis in a specialized manner for
excavators, while Ikram et al. [28] used a transformer-based multimodal object detection. This article presents a novel
algorithm for detection and perception that utilizes multisensory fusion techniques to improve the performance of
excavators. Focusing on directly combining information from various sensors, the research focuses on optimizing the
data acquired from each sensor. This methodology is of utmost importance when excavators function in environments
with low illumination levels, presenting possible hazards to the operator and individuals walking nearby. To address this
matter, the scholars leverage the functionalities of three disparate sensors: infrared cameras, RGB cameras, and Light
Detection and Ranging (LiDAR) sensors. The authors present a novel approach for detecting obstacles that demonstrate
efficacy in seamlessly transitioning between diurnal and nocturnal conditions. The neural network methodology utilized
in this study exhibits enhanced performance compared to the existing detection algorithms. Furthermore, the integration
of three-dimensional data allows the sensors to capture and transmit the spatial coordinates of differeit obstacles to the
excavator's operator more efficiently.

ely infrared
vehicles and
9ng detection system for
at-night vehicles. To the best of the authors' knowledge, there needs to be more existifg a discusses optimizing

applying infrared thermal sensors
al signatures emitted by objects,

algorithm, mainly through the analysis of temperature details. The main
through temperature distribution analysis is that they can detect and

including vehicles, regardless of lighting conditions. This allows fer better
or completely dark environments where traditional visible-light ras may struggle. This study aims to investigate the
vehicle detection accuracy of infrared thermal sensors through Y algorithms, mainly through temperature analysis.

: Without road lamps. In addition to the utilization of
of a gonventional visual camera to assess and compare the

shof the infrared camera sensor. This analysis will offer a
and further substantiate the necessity of infrared cameras for

system that enhances road safety and reduces collisions i
infrared camera testing, this study will also incorporate the
nocturnal performance of the camera with the capg
significant understanding of the extent of the visual.capa
nighttime applications.

2.0 MATERIAL AND METHOI

An extensive description of the expe
sensors employed, their respective typgs, andya
relevant ideas and methodologi ilized in the experiment, which can be divided into three primary sections. Normal
and infrared camera sensors
distance. Additionally, théfre
with the YOLOv m. Finally, the chapter examines practical implementations of combining the infrared camera
sensor with th 8n-algorithm in low-light conditions.

2.1  Vehiclea amera Preparation

The present study ‘employed a vehicle equipped with a 2.0-liter engine capacity. Figure 1 indicates the vehicle setup
for the testing. The conventional and infrared cameras were mounted to the roof of the vehicle frame and linked to a
monitoring screen. The primary function of the monitoring display is to visually represent the perspective captured by the
infrared thermal camera sensor. The infrared camera was also linked to a 5-volt power source to supply the required
power for its functioning.
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Figure 2. Vehicle tested route for the image collection.
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Table 1. General specifications of a normal camera.

Specification Description
Image Sensor 12-megapixel image sensor
Video Recording HD at up to 60fps
Field of View (FOV) 170-degree wide-angle lens
Display 2-inch LCD screen
Connectivity Wi-Fi for wireless file transfer and remote control
Removable 1050mAh rechargeable battery, approximately 90 minutes of
Battery Life continuous recording time
Time-lapse recording, burst photo mode, adjustable exposure, loop recording,
Additional Features built-in adjustable filters
Storage Supports MicroSD cards up to 64GB

Table 2. General specifications of the infrared camera sensor.
Specification Description
Signal output object temperature  0-5V

Lower limit signal output ov
Upper limit signal output 5V

Temperature unit °C
Thermocouple 20Q
Digital interfaces USB, RS232, RS485, Profi DP,

Modbus RTU, Ethernet

Sensing head Electronic box
Environmental rating IP65 (NEMA-4 -
Material Stainless st Die Casting
Dimensions m, M48x 1.5 89 mm x 70 mm x 30 mm
Ambient temperature cable °C [High-temperature cable -
): 180 °C]
System accuracy + 1 °Qer £+ 1% +1,5°Cor+1,5%

2.2 System workflo

Figure 3 proaid comprehensive depiction of the proposed system. The custom dataset comprises various entities,
including ve 4@ estrians, and traffic lights, recorded during the Pekan Pahang's daytime and nighttime periods on
the road. In theSimitial stage, the system extracts consecutive frames from the input video, segregating them based on

whether they belofg, to the day or night. This enables independent processing to be conducted on each frame. The
determination of the¥sampling rate, which establishes the quantity of frames per second (fps), is based on specific
requirements. Each frame contains items identified and categorized using a convolutional neural network (CNN) model.
The YOLOv8n model is the object detection model for system implementation and development. The YOLOv8n model
has been trained to accurately classify the abovementioned objects, with the vehicle perspective serving as the basis for
identification. Consequently, the resulting image encompasses bounding boxes that indicate the detected objects.
Ultimately, evaluating the system's performance hinges on its efficacy in detecting objects under varying lighting
conditions, encompassing both daytime and nighttime scenarios.
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Figure 3. System workflow.

In 2015, University of Washington academics Joseph Redmon and Ali Farhadi created the sophisticated object
recognition system YOLO (You Only Look Once) [15]. According to Zhao et al. [9], Typically, object detection models
consist of three phases: object classification, feature extraction, and ROI selection. The initial version of YOLO exhibited
rapid object recognition capabilities yet encountered challenges in accurately localizing smaller objects. Nevertheless, the
utilization of YOLO in our study is manageable due to the absence of tiny images in the dataset employed for our specific
problem. The YOLO algorithm functions by partitioning input images into a grid of dimensions M x M. The detection of
an object is attributed to a specific grid cell if the object's center is situated within said cell. Both the bounding box
coordinates and the associated confidence scores are included in the predictions produced by YOLO. The confidence
score in the YOLO algorithm is determined by multiplying the probability of an object being present (Pr(Object)) with
the Intersection over Union (IOU) metric. Pr(Object) represents the likelihood of an object being detected, while 10U
quantifies the degree of overlap between the predicted bounding box as indicated in Equation (1). The grid cell provides
conditional class probabilities as Pr(Class|Object).

Class; X IOUS4" = Class;|Object X Object X [0UST4! Q)
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Normalization is applied to ensure that the bounding box coordinates fall within the range of 0 to 1. To incorporate
non-linearity, the subsequent layers employ the leaky rectified linear activation function, as specified, except the final
layer, which utilizes a linear activation function. Equation (2) shows the methodology employed to derive class-specific
confidence scores for individual bounding boxes in the testing phase.

FQ) = {i ifx>0 (2)

0.1x otherwise

2.3  Data analysis procedure

The methodology begins with obtaining a suitable dataset for training and testing, such as the Roboflow dataset
manager, which should contain annotated images of labeled vehicles, motorcycles and traffic lights. Integrating camera
and infrared (IR) sensors involves creating a connection between these sensors and the vehicle's system, ensuring a smooth
integration of hardware and software components. The camera sensor captures real-time images or videos by collecting
infrared (IR) sensor data. The camera and infrared sensor data that have been obtained are subsequentlyganalyzed to detect
and classify potential objects such as vehicles, motorcycles and traffic lights. Next, the dataset is rogessed by resizing

over union (MIOU). If necessary, the model is fine-tuned to enhanc
improvements stage, the YOLOV8-n model's results are contrasted with
camera and infrared (IR) sensors. Parameters such as precision, ageuracy, F1 score are computed to assess the
integrated system's efficacy. The analysis identifies potential imp ent areas by examining discrepancies between the
model's predictions and the sensor data.

2.4 Confusion Matrix

The evaluation of a classification model or ClaSSI e
a widely utilized table known as a confusion m
terminology can be confusing.

Table 3 depicts a confusion matrix
(cells along the diagonal) and the incoff
for assessing the predictive performa

ormance on known test data is commonly conducted using
he confusion matrix is generally easy to understand, its

0 classification problem, exhibiting the correctly predicted choices
@ odal choices. The confusion matrix offers three essential metrics
ceof the algorithm: The total prediction error is determined by summing the
absolute differences between the predictediand observed volumes for each mode and then dividing this sum by the total
trip volume. The fraction of observedﬁde 2lections that are incorrectly predicted is known as the classification error.

' ts the percentage of observations correctly identified and positioned in the diagonal
aflier, are essential for assessing the algorithm's predictive ability. The following is
ion matrix:

cells. The indicators, as men
the nomenclature used igthe C€

Table 3. Crucial terms used in the confusion matrix.

Predicted
Actual NO YES
NO ™ FP
YES FN TP
p _ (TP +TN)
CCUracy =TP + TN + FP + FN) ®3)
T iti te = TP
rue pOSl e rate = TP n FN
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3.0 RESULTS AND DISCUSSION

This paper uses two tools to show accurate results in a clear and meaningful way: the temperature distribution analysis
and the confusion matrix. It also included an analysis of visual images using grey-level analysis to demonstrate the quality
of the infrared visual condition. The confusion matrix compares the expected and actual choices and shows how prediction
errors are distributed among the observed categories. The research analysis was shown in three different ways; (a) The
hardware analysis uses an infrared thermal sensor to see temperature and grey levels. (b) They test and train to predict
accuracy for motorcycles, traffic lamps, and vehicles using regular cameras and thermal infrared visualization. (c)
analyzing the ability to make predictions based on training and testing data.

3.1  Grey-Scale Level Analysis of the Infrared Sensor

Based on the grey-level infrared image, the average, middle value, spread, and shape are used to understand the
thermal patterns. The results have helpful information about the image's strength and spread. The grey-level infrared
image had an average value of 98.89 and a middle value of 115.0. The median is higher than the mean, meaning the image
has lower grey-level values. This suggests that there are colder regions in Figure 4. The skewness vélue is close to zero
at 0.015, which means the distribution is almost symmetrical with a slight tendency towards colder regions. This
information shows that the scene has different temperatures, with slightly colder areas in Figu

Original Image

ewness: 0.015044068502652073

Gray level of the image

e

0 50 100 150 200 250
Gray Level

e 4. Grey-scale Level Analysis

re through Infrared Visualization

sIs findings of the temperature differences of detected objects in various road
conditions, includimg i nction, and straight road scenarios. Significant variations were observed among
own in Figure 5(b), the temperatures of human subjects, motorcycles, and vehicles were
8 °C, and 25.8 °C at the T-junction. The temperature at a random cursor point in this area was
recorded at 25. Similar analyses were performed for the junction and straight road conditions. As shown in Figure
6(b), at the junctio e recorded temperatures for vehicles and traffic lamps were 28.5 °C and 27.5 °C, respectively,
while the random cursor point temperature was 23 °C. On the straight road, as in Figure 7(b), the motorcycle and vehicle
temperatures were measured at 30.6 °C and 28.6 °C, respectively. The results demonstrate that object temperature can
serve as a distinguishing factor between different objects and help identify them accurately. The temperature profiles in
Figure 6(d) and Figure 7(d) illustrate the temperature changes over time. This continuous process reveals the highest and
lowest temperature points. In the T-junction scenario in Figure 5, temperatures ranged from 20 °C to 32 °C, while at the
junction in Figure 6, the range was 23.3 °C to 28.3 °C. For the straight road condition in Figure 7, temperatures varied
between 26 °C and 31.5 °C. Notably, the temperature profiles are influenced by the specific road conditions, leading to
varying temperature ranges. The temperature-time diagram graphically presents the selected objects' temperature trends,
providing further insights into their behavior. Additionally, the histogram depicts the percentage temperature differences
for each road condition. At the T-junction, the temperature variations were approximately 11.4%; at the junction, they
were 8%; and on the straight road, they reached 12.1%.

measured at
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This study com s ¥egular visual and infrared (IR) spot-finding camera sensors in nighttime conditions. Detection
performance ey@a an is cehducted on straight highways, T-junctions, and junctions based on YOLOV8 results. Before
that, the experim setup is complete. The measurement of frames per second (FPS) involves analyzing the time it
takes for a mode@ process inputs and perform post-processing on a single GPU.

3.3 Accuracy Analysi

The visual camera sensor's preprocessing speed was 3.6 ms, its inference speed was 8.5 ms, and post-processing per
image was 6 ms. These measurements indicate an approximate frame rate of 55.25 FPS. The data suggests that
performance in nighttime conditions is relatively efficient. The IR spot-finding camera sensor demonstrated a
preprocessing speed of 6.4 ms, a postprocessing speed of 5.1 ms, and an inference speed of 3.9 ms, resulting in an
estimated frame rate of 64.94 FPS. The mentioned advancement shows a significant enhancement in terms of both speed
and efficiency when compared to the standard visual camera sensor. The performance of the IR sensor remained consistent
across all scenarios. The preprocessing time slightly increased, while the inference time demonstrated a nearly 50%
reduction. That indicates that the sensor can easily analyze infrared data. The performance of the IR sensor remained
consistent across all scenarios. The preprocessing time slightly increased while the inference time significantly reduced,
indicating the sensor's efficient analysis of infrared data in Figure 8(a).

The successful detection of objects did not significantly impact the speed or frame rate. The system's ability to
maintain performance after detection suggests robustness in various nighttime driving scenarios. The performance of the
visual camera and IR sensor remained stable after detection. The increased frame rate means a higher responsiveness to
environmental changes, particularly in complex junctions in Figure 8(b).
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Normal camera sensor’s images before detection

Figure 8. Ve || Detection Images before and after applying the algorithm for Using Normal Camera and Infrared
Camera

The IR spot-finding camera sensor is more suited for real-time applications due to its greater frame rate and quicker

inference time, particularly in difficult dark situations. Both sensors performed well, but the IR sensor's higher frame rate
may provide advantages in detecting fast-moving objects. The study carefully examined important performance metrics,
such as box_loss, class_loss, and obj_loss, to compare the IR spot-finding sensor to the regular visual camera sensor. The
metrics plots are utilized for training and validation outcomes in the Google colaboratory simulation results.
In object detection, cls_loss sorts objects into groups, box_loss ensures the groups' boundaries correctly include the
objects, and dIf_loss (usually a distance-based loss) ensures that features inside an object are correctly located. Together,
these three losses make for a complete and accurate detection system. The lower cls_loss and ojb_loss indicate higher
accuracy of evaluation metrics.

In Figure 9, the performance metrics of a visual camera sensor are evaluated under nighttime conditions, presenting
both training and validation results. After completing 30 epochs, the training values for box_loss, cls_loss, and dfl_loss
(objectiveness) have stabilized at 1.6933, 1.1616, and 1.1634, respectively. Simultaneously, there has been a rise in both
precision and recall values, reaching 0.596 and 0.53472, respectively. Table 5 discusses the mean average precision,
specifically mAP50 and mAP50-95.
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Two previous studies illustrate object detection using average visual cameras. Girshick et al. (2014) introduced a
method called R-CNN, employing convolutional neural networks (CNN) for both object detection and semantic
segmentation, employing the PASCAL VOC 2010 dataset and attaining a mean average precision (mAP) of
approximately 58%. Their work laid the foundation for feature extraction, utilizing pre-trained CNNs to scan regions of
interest within images. Two years later, Liu et al. (2016) built upon this foundation, proposing the Single Shot MultiBox
Detector (SSD), which simultaneously predicts multiple bounding boxes and class scores for those boxes in a single pass.
The SSD demonstrated a remarkable precision of 76.8% on the VOC 2007 test. The notable increase in precision
illustrates how the field has rapidly advanced, optimizing both speed and accuracy for real-time object detection
applications.

Train/box_loss Train/cls_loss Train/dfl_loss metrics/Precision(B) metrics/Recall(B)
—— resuts | 1.6 Lo
4 4
2.24 15
3 14
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iy 2| 13
1 1.2
1
0 20 0 20 0 20
Val/box_loss Val/cls loss Val/dfl _loss
2.3 4.0
1 1.55]
23 3.5 |
- 20 1.501
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Figure 9. Performance Evaluati of Visual Camera Senor at Night
Based on an analysis of visual sensor e ce ation metrics and a review of previous studies, it has been

alle in object detection, especially in low-light conditions. Apart from
amera IS significant. Figure 11 displays all the performance metric plots.
After an impressive performance after trating for 30 epochs, the values for box_loss, cls_loss, and dfl_loss have become
1.003, 0.47605, and 0.99079, respectively @I he precision and recall have also increased to 0.92119 and 0.90534,
respectively. The validation re i%ding the mean average precision values mAP50 and mAP50-95, are discussed
in Table 5.

After an extensive
dataset. The re

YOLOv5m reat ‘ ’ 3

inin encompassing 400 epochs, various algorithms were evaluated using the FLIR
ignificant insights into the performance of different models. Specifically, the mean average
P50%) was recorded as follows: Faster R-CNN demonstrated a mAP50% of 79.3%,
.9%, YOLO-ACN achieved 82.3%, and YOLO-CIR topped the models with a mAP50% of 84.9%.
Their findings highilight that the YOLO-CIR model demonstrates enhanced performance. However, in this particular
experiment, the YOEO V8 model performed much better, achieving a remarkable 94.7% mAP50%, as detailed in
Table 5.

precision at §

Following the analysis of performance metrics for the typical visual camera sensor and the IR spot-finding camera
sensor, significant differences are apparent in their effectiveness under nighttime conditions. The comparison distinctly
emphasizes the enhanced detection abilities of the IR spot-finding sensor, especially in challenging nighttime and low-
light situations.
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A set of custom images was selected in the dataset to validate the experimental model performance as a part of those
169 images for the visual camera sensor in Table 4 and 171 images for the IR spot-finding camera sensor in Table 5.
Normal visual camera sensors achieved a 58.1% mean average precision at mAP50(B). An enhancement of the YOLOv3
algorithm by Y. Wang et al. (2019) to create an end-to-end ship target detection system The study provided detailed
results for the mean average precision with a 50% overlap (mAP50) on different versions of YOLOvV3. Specifically, the
mAP50 for YOLOv3-608 was recorded at 73.7%, while for YOLOv3-416, it was 71.2. Furthermore, the study also
reported a mAP50 of 75.1 for FPN and FRCN.

Train/box_loss Train/cls_loss Train/dfl_loss Metrics/Precision(B) Metrics/Recall(B)

1.6 2.5 —e— results 1.3 0.9
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0.5 1.0 0.5
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Figure 10. Performance Evalu
Table 4. Visu or performance at night
Box mMAP50-
Class Images (P) R mAP50(B) 95(B)
All 169 0.692 0.511 0.581 0.262
Motorcycle 169 0.504 0.259 0.315 0.116
Traffic-lamp 16 , 18 0.827 0.668 0.723 0.303
Vehicle 399 0.744 0.605 0.704 0.365
On the other hand Rs ding sensor achieved 94.7 % mAP50 in Table 5. In all metrics evaluated, the IR

sensor performg thamythe standard visual camera sensor and other previous studies.

Table 5. IR sensor performance

Box
Class Images Instances (P) R mAP50(B) mAP50-95(B)
All 171 662 0.919 0.928 0.947 0.567
Motorcycle 171 62 0.852 0.871 0.901 0.554
Traffic-lamp 171 49 0.969 0.98 0.974 0.497
Vehicle 171 551 0.936 0.935 0.966 0.65

All table results have optimized that the IR sensor significantly performed better in the YOLOV8 simulation test,
especially in low-light night conditions. Visual sensor result analysis shows how difficult it is to detect objects at night.

3.4 Confusion Matrix

Obiject detection performance between IR spot-finding sensors and standard camera sensors during nighttime has been
evaluated through a comprehensive comparative analysis of confusion matrices in Figure 11. The study examined true

15 journal.ump.edu.my/ijame <«



M.S.Beg et al. | International Journal of Automotive and Mechanical Engineering | Vol. XX, Issue X (2025)

detection accuracies for three distinct classes: motorcycles, traffic lamps, and vehicles. False detections brought forth
further distinctions.

The IR sensor exhibited superior performance, with accuracies nearing perfection for traffic lamps (0.98) and
substantial correctness for motorcycles and vehicles (0.89 and 0.96, respectively). That indicates the IR sensor's adeptness
at capturing and correctly identifying objects under the constrained luminosity of nighttime. The IR sensor's false
detection rates were generally low, except for vehicles as background (0.83). The absence of errors in classifying
motorcycles with other classes is particularly striking, showcasing the sensor's precision.

Conversely, the normal camera sensor's performance was markedly lower, with the most significant disparity observed
in the motorcycle class (0.31). The reduced accuracy signals the limitations of traditional visual sensors in conditions
lacking sufficient illumination. The normal camera sensor exhibited more widespread false detection rates, with
pronounced errors such as a 0.63 rate for vehicles being mistaken for the background. These findings indicate a heightened
susceptibility to misclassifications, particularly under challenging visual conditions.
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£ 0.05 0.02 0.96 0.78 2 0.68 0.63
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Motorcycle Traffic-lamp Vehicle Background Motorcycle Traffic-lamp Vehicle Background
(a) IR sensor at night Actual (b]\@amera sensor at night  Actual

Figure 11. Confusion Matrix of IR Seng

The IR spot-finding sensor is the optimal chaice
false detection rates make it a more suitable
for object recognition tasks in nightti

al Camera Censor’s Detection at Night

% ime object detection. Its enhanced accuracy and reduced
ad reliable option, demonstrating the value of leveraging infrared technology
ons:

4.0 CONCLUSION

Detecting vehicles at nig ays hard for vehicle systems, affecting driving safety. This study highlights the role
of infrared thermal senso t o assist the driver in a collision avoidance system. Therefore, the application of
Yolov8 embedded into infrare I sensors has been emphasized in this study. In conclusion, these studies show that:

The analysiS
straight road.

ed howy temperatures varied between objects in different road situations: T-junction, junction, and
types of objects showed noticeable differences. At the T-junction, people, motorcycles, and cars
showed 26.5°C, 288C, and 25.8°C, respectively. In the junction situation, the vehicle and traffic lamp temperatures were
28.5°C and 27.5°C,“espectively, while the random cursor point was at 23°C. On the straight road, motorcycles and
vehicles had temperatures of 30.6°C and 28.6°C, respectively. This study shows that differences in the temperature of
objects can help with accurate identification. The temperature graphs in Figures 9 and 10 show how temperatures change
over time. They show the highest and lowest temperatures, respectively. Temperature ranges change because of road
conditions. The graph and chart display how the temperature of an object changes over time and the percentage differences
for different road conditions: T-junction (11.4%), junction (8%), and straight road (12.1%).

The infrared image with different shades of grey was analyzed. The distribution's average, median, spread, and shape
were calculated to understand the thermal patterns. The results show information about how strong and spread out the
image is. The image's median is higher than the average, which means there are lower grey-level values and colder regions
in Figure 7. The skewness value is 0.015, which is close to zero. This means the distribution is almost symmetrical but
slightly leans towards colder regions. This data shows different temperatures in the scene, with colder areas being more
common.

Based on the comparison of how well regular and infrared cameras detect objects at night, The camera sensor can
process images in 3.6 milliseconds and make decisions in 8.5 milliseconds. This means it can capture about 55.25 frames
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per second. On the other hand, the IR sensor showed better efficiency. It had preprocessing and inference speeds of 6.4
ms and 3.9 ms, which resulted in an estimated frame rate of 64.94 FPS. The IR sensor works quickly in real-time,
especially at night.

In comparison to the normal visual camera sensor and the IR spot-finding camera's performance metrics at night, the
IR spot-finding camera's impressive performance after evaluating the plot metrics, especially precision, recall, and mean
average precision, shows that this camera is much better for nighttime operations than the normal visual camera sensor.
The IR spot-finding camera demonstrated lower loss values and achieved higher precision and recall rates, signaling its
ability to detect and classify objects more efficiently and accurately. This decision stems from its demonstrated capability
to achieve 94.7% mean average precision compared to the 58.1% achieved by the normal visual camera sensor.

Using the confusion matrix, the IR sensor had a high accuracy of 0.98 for traffic lamps and a reasonable accuracy of
0.89 and 0.96 for motorcycles and vehicles. This shows that the sensor works well in low-light conditions. The IR sensor
mostly had low false detections, except when vehicles were in the background (0.83). The IR sensor was precise in
classifying motorcycles. On the other hand, the regular camera sensor did not perform as well, especially for motorcycles
(0.31), showing that it has some drawbacks in dark environments.

The infrared camera sensor is the best and most effective choice when detecting objects
accuracy and fewer false detections make it a better and more reliable choice for these situa
shows how important it is to use infrared technology to recognize objects in dark places. TheR se
and efficiency when driving at night. It is more accurate and reduces false alarms comparedito
shows that using infrared-based solutions is practical and effective for dealing with e of detecting objects in
low-light conditions.

improvement
prove safety
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