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RESEARCH ARTICLE 

Generation and Stress Analysis of Helical Gear Tooth Combining Involute with 
Epicycloidal and Hypocycloidal Profiles            

Mohammed Abdulaal Kadhim*, Mohammad Qasim Abdulah     

Mechanical Engineering Department, College of Engineering, University of Baghdad, Iraq 

ABSTRACT – This paper examines the helical gear that combines the involute with epicycloidal-
hypocycloidal profiles. The tooth profile was produced through the shaper-cutting process, which 
was conducted using an appropriate rack cutter with a Cartesian coordinate system. A computer 
program was developed using Microsoft Visual Basic and subsequently integrated into SolidWorks 
using the application programming interface. This numerical investigation aims to analyze the 
impact of tool parameters on the produced gear tooth profile, with the goal of enhancing the dynamic 
performance and deformation resistance of the proposed helical gear model. Additionally, this study 
assesses the effect of teeth thickness on the helical gear model. The results indicate a highly 
accurate approximation of the involute, cycloidal, and modified gear tooth profiles, which were 
programmed according to the module, teeth number, and rolling angle. The use of a combination of 
curves (epicycloidal, involute, and hypocycloidal) in a single tooth resulted in a larger contact area, 
thereby improving the ability of the gears to withstand greater pressures and extending their lifespan. 
The modified non-parallel helical gear drive outperformed other non-parallel helical gear drives. The 
best enhancements in maximum contact stress and teeth bending stress achieved approximately 
33.169% and 26.08% compared to the standard involute profile and about 17.69% and 0.67% when 
compared to the cycloidal profile. 

 
ARTICLE HISTORY 

Received : 25th Dec. 2023 

Revised : 30th Dec. 2024 

Accepted : 24th Jan. 2025 

Published : 20th Feb. 2025 

 
 

KEYWORDS 

Helical gear 

Generating process 

Involute 

Cycloidal 

Epicycloidal 

Hypocycloidal 

 

1. INTRODUCTION 

The primary failure mechanisms associated with helical gear drives during mutual contact are diverse. Gears typically 

experience two fundamental forms of tooth failure: fracture due to static and dynamic loads, as well as profile degradation, 

which can be attributed to the misalignment of the teeth pair during engagement, leading to interference between the 

edges of the gear teeth. A period of overlap exists in which two pairs of profiles are simultaneously in contact. Surface 

destruction, or tooth wear, can be categorized into five types based on its principal causes: abrasive wear, corrosive wear, 

early pitting, destructive pitting, and excessive scoring. This type of failure is characterized by the presence of pits that 

progressively enlarge, compromising the tooth surface and, in some cases, resulting in premature tooth fracture. Gear 

teeth may fail due to surface fatigue if the applied load exceeds the material's surface endurance strength. Bending failure 

occurs when the contact force on the tooth reaches or exceeds the yield strength of the gear tooth material. Modifications 

to gear design characteristics may prevent the tooth from breaking completely. Non-conventional helical teeth are used 

to minimize contact stress and improve tooth deflection and root stress. This study aims to systematically reduce contact 

stress, improve tooth deflection and root stress, and address interference effectively.  

Despite extensive research on contact and bending stresses in non-parallel helical gear drives, there are still concerns 

regarding this topic. Oswald [1] investigated the impact of contact area on noise generation in gearboxes with various 

tooth profiles of conventional and double helical gears, including two curves (i.e., involute and circular arc). The findings 

indicate that the contact ratio influences noise production across different gear variants. Litvin et al. [2] examined contact 

and bending stresses with transmission faults in typical involute teeth of spur gears influenced by two modifications: 

pressure angle and double crowning of teeth. An increase in pressure angle was found to enhance contact stresses for both 

symmetric and asymmetric teeth while reducing transmission errors for crowned teeth. Kumar [3] analyzed the cycloid 

spur gear profile and the impact of tooth count, module, and roller radius on bending and contact stresses and compared 

the findings with the involute tooth profile. The results indicate that the root stress of cycloid gears surpasses that of 

involute teeth under identical parameters. An increase in the module and a decrease in the number of teeth were shown 

to reduce bending stress, while the involute tooth profile produced less noise compared to the cycloidal tooth profile.  

Cananau [4] utilized the finite element method in ANSYS software to analyze tooth contact and root stresses of the 

involute gear tooth profile along the contact line during the tooth meshing cycle. The results indicate that the contact 

stress distribution in the front plane of the gear model corresponds to the root stress in the tooth fillet area along the 

contact line, with a significant escalation of stress on the tooth root fillet under non-uniform contact conditions during the 

meshing process. Kapelevich [5] investigated the mathematical formulation of standard and non-standard involute teeth 

for spur gears and examined the bending stress in the root fillet and the reduction of stress concentration on the gear tooth 

surface. The study demonstrated that non-standard gear teeth increased the bending strength by approximately 33% and 
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reduced the contact stress by around 20%. Farhangdoost et al. [6] conducted an analytical and numerical analysis of 

contact stress in conventional spur gears influenced by various geometric design elements. Four distinct examples of 

contact stress (involute, cycloidal, epicycloidal, and hypocycloidal) were compared. The results indicate that, in 

comparison to involute teeth, the decrease in contact stress for the same design is 30% for cycloidal, 46% for epicycloidal, 

and 21% for hypocycloidal profiles. Abdullah [7] presented an analytical solution using a trial graphical method to 

calculate the bending strength for asymmetric involute spur gear teeth, which was subsequently modified by Abdullah 

and Kadum [8] for calculating the bending strength for asymmetric involute helical gears. This equation can be utilized 

for symmetric helical gear teeth with a standard pressure angle (14.5°), asymmetric helical gear teeth with a pressure 

angle of 14.5° at the right side, and different pressure angles at the left side, varying from 20° to 35° in each step of 5°.  

Miltenović and Banić [9] explored the technical challenges and service landscape of high-strength gears, proposing a 

rapid methodology for forecasting the temperature of the gearbox system via finite element analysis (FEA). The gearbox 

was designed to calculate the ambient temperature of the gear unit for thermal stability determination. This methodology 

was developed to enable gear system designers to perform rapid FEA computation for temperature assessment. Gear 

designers use non-standard tooth profiles rather than traditional standard teeth. Consequently, the bending strength is 

enhanced by reaching the apex of the tooth. Becker et al. [10] established a parallel rack profile using a fourth-order 

polynomial. The design enhanced flank geometries and their characteristics were examined. A composite of steel worms 

and plastic wheels was engineered to replace several steel applications with highly efficient plastic materials, thereby 

improving the efficiency and strength of crossed helical gears. The study examined deformation and load distribution in 

different engagements based on dominant load and plastic material stiffness. The assumptions used in the computation 

provide strong concordance in both methodologies. The geometries of the two wheels were obtained by meshing each 

wheel with one side of the rack, allowing both wheels to intermesh while accounting for shaft angles deviating from 90°. 

This computation is also applicable to spur gears.  

Wu et al. [11] devised innovative flank shapes and modifications for crossed helical gears to enhance their efficiency. 

The study summarizes technical difficulties in transmission design, materials and manufacturing, design and 

manufacturing integration, and processing and performance assessment of high-strength gears. The study also discusses 

common applications in engineering equipment, wind power generation, and aviation engines, while highlighting recent 

advancements in anti-fatigue design, manufacture, and service performance assessment of high-strength gears. The 

objective of the study is to encourage the development and use of high-strength gear technology. In general, gears are 

used to transmit motion and power across shafts at various skew angles in numerous mechanical applications. The gearing 

system is regarded as an ideal drive in many applications [12]. Consequently, toothed gearing is a crucial component in 

gearbox transmission, offering several advantages, including a consistent speed ratio in the absence of slippage, extended 

service life, excellent dependability, and compact dimensions [13]. Three types of cases used for power transmission 

include involute, circular arc, and cycloid. The convex flank of one cycloidal tooth contacts the concave flank of the 

corresponding tooth, resulting in an extensive contact area that enhances wear resistance [14]. The contact in the involute 

gear profile occurs between two convex surfaces on interfacing teeth, resulting in a reduced contact area and less wear 

resistance [15].  

By combining knowledge with that of past researchers, previous surveys have provided convincing alternatives that 

enhance the load-carrying capacity of gears. More studies are being conducted on gearing technology systems to address 

the growing demand for improved dynamic gear drive performance. In this work, the present tooth is different from 

previous studies, where the unique tooth profile is analyzed to evaluate the contact with the root stress region numerically 

and compare it with the standard gear involute and cycloid tooth. Therefore, it is crucial to identify methods that enhance 

the characteristics of the tooth profile through the integration of two curves, specifically the amalgamation of involute 

profiles with epicycloidal and hypocycloidal profiles. The integrated tooth shape is designed to reduce bending loads, 

contact stresses, and tooth deflection, thereby preventing pinion failure inside the gearbox [16], [17]. Various techniques 

exist for the production of involute and cycloidal gears. To accurately produce the gear tooth profile or manufacture the 

gear using a standard CNC milling machine without form cutters, it is essential to determine the coordinates of the tooth 

profile corresponding to a specific production rack. This study will demonstrate the shaping process utilizing a cutting 

tool. 

2. COORDINATE SYSTEM  

Calculating the coordinates for locations on the gear contact surface is rather straightforward. The operation can be 

performed directly if the geometry of the rack used to produce the combined gear tooth profile is analytically 

comprehended. However, this method, which is complex to implement, requires data regarding the tooth profile, including 

a description of the rack, such as the module, teeth number, pressure angle, rolling angle, radius of generation, and helix 

angle. This study employs two coordinate transformations based on the fourth-order application of rotational and 

translational matrices. The first coordinate system illustrates the translation-rotation movements, whereas the subsequent 

one depicts the rotational motion between two wheels [18].  

The first transformation is represented by coordinate systems. 𝑆𝑔 and 𝑆𝑟  are firmly affixed to the wheel and the 

trapezoidal rack cutter, respectively. The performance of rotational and translational movements is relative to a fixed 

point at the origin in the global system of coordinate 𝑆𝑓, as seen in Figure 1. Point 𝑀 is located inside the coordinate 
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system 𝑆𝑔. The position vector is defined as 𝑆𝑔 = 𝑂𝑔𝑀̅̅ ̅̅ ̅̅ . Changes to the coordinates from 𝑆𝑔 to 𝑆𝑟  are defined by the matrix 

transformation 𝑀𝑟𝑔. The coordinate transformation from the first point on 𝑆𝑔 to the second point on 𝑆𝑟  is based on the 

matrix transformation. 

 

Figure 1. System for the coordination of translation and rotation 

𝑟𝑟 = 𝑀𝑟𝑔𝑟𝑔 = 𝑀𝑟𝑓𝑀𝑓𝑔𝑟𝑔 (1) 

where 𝑀𝑟𝑓 denotes the translational matrix and 𝑀𝑓𝑔 is the rotational matrix that denotes the state of rotation around the 

𝑧𝑓 axis. 

The rotation from 𝑆𝑔to 𝑆𝑟  occurs in a clockwise direction. In this context, the unit vector 𝐶𝑓 is defined as follows: 

𝑐𝑓 = [0 0 1]𝑇  (2) 

The following matrix is obtained by rotating the coordinate system from 𝑆𝑔 to 𝑆𝑟  clockwise, while ensuring that the two 

elements of the vector of unit are equivalent to zero and 𝐶𝑓 = 𝑘𝑓. 

𝑀𝑓𝑔 = [

𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅
𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅
0
0

0
0

    

0 0
0 0
1
0

0
1

] (3) 

Figure 1 indicates that: 

(𝑂𝑟𝑂𝑓
̅̅ ̅̅ ̅̅ )𝑓 = [𝑟𝑝∅ −𝑟𝑝 0]𝑇 (4) 

The translational matrix can be calculated using the following formula: 

𝑀𝑟𝑓 = [

1 0
0 1
0
0

0
0

    

0 𝑟𝑝∅

0 −𝑟𝑝
1
0

0
1

] (5) 

The vectors 𝑟𝑔⃗⃗⃗   and 𝑟𝑟⃗⃗   are positioned as follows: 

rg⃗⃗  ⃗ = [xgi ygj zgk 1]T, r2⃗⃗  ⃗ = [xri yrj zrk 1]T (6) 

The transformation matrix derived from Equations 1–6 is as follows: 

𝑀𝑟𝑔 = [

𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅
𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅
0
0

0
0

    

0 𝑟𝑝∅

0 −𝑟𝑝
1
0

0
1

] (7) 

  

𝑥𝑟 = 𝑥𝑔𝑐𝑜𝑠∅ − 𝑦𝑔𝑠𝑖𝑛∅ + 𝑟𝑝∅ (8) 

  

𝑦𝑟 = 𝑥𝑔𝑠𝑖𝑛∅ + 𝑦𝑔𝑐𝑜𝑠∅ − 𝑟𝑝 (9) 

  

𝑧𝑟 = 𝑧𝑔 (10) 

In order to ascertain the location 𝑟𝑔⃗⃗⃗   in relation to the position 𝑟𝑟⃗⃗  , the inverse matrix 𝑀𝑟𝑔
−1 = 𝑀𝑔𝑟 is determined in 

relation to the elements of matrix 𝑀𝑟𝑔. However, 𝑀𝑟𝑔 is not unique; thus, the inverse of this matrix is feasible. Therefore: 
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𝑀𝑔𝑟 = [

𝑐𝑜𝑠∅ 𝑠𝑖𝑛∅
−𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅

0
0

0
0

    

0 𝑟𝑝(𝑠𝑖𝑛∅ − ∅𝑐𝑜𝑠∅)

0 𝑟𝑝(𝑐𝑜𝑠∅ + ∅𝑠𝑖𝑛∅)

1
0

0
1

] (11) 

Subsequently, the matrix can be utilized as: 

𝑟𝑔 = 𝑀𝑔𝑟𝑟𝑟  (12) 

Following that:  

𝑥𝑔 = 𝑥𝑟𝑐𝑜𝑠∅ + 𝑦𝑟𝑠𝑖𝑛∅ + 𝑟𝑝(𝑠𝑖𝑛∅ − ∅𝑐𝑜𝑠∅) (13) 

  

𝑦𝑔 = −𝑥𝑟𝑠𝑖𝑛∅ + 𝑦𝑟𝑐𝑜𝑠∅ + 𝑟𝑝(𝑐𝑜𝑠∅ + ∅𝑠𝑖𝑛∅) (14) 

  

𝑧𝑔 = 𝑧𝑟 (15) 

The second transformation is represented by two types. The first transformation is coordinate systems 𝑆𝑝(𝑥𝑝 , 𝑦𝑝, 𝑧𝑝) and 

𝑆𝑔(𝑥𝑔, 𝑦𝑔, 𝑧𝑔) that are securely linked to the two wheels, denoted as g and p, respectively. The rotational change will 

occur around parallel axes. ∅𝑝 and ∅𝑔 represent the rotation angles for the two wheels, respectively, as seen in Figure 2. 

These angles are connected by the following equation:  

 

Figure 2. Coordinate system of rotational motion in opposite direction 

∅𝑔

∅𝑝

=
𝑟𝑝𝑝

𝑟𝑝𝑔

 (16) 

The terms 𝑟𝑝𝑝
 and 𝑟𝑝𝑔

 are the pinion's and the gear's pitch circle radii, respectively, while E represents the minimal 

distance between the rotational axis. 𝑆𝑓𝑝 and 𝑆𝑓𝑔  are auxiliary coordinate systems that are securely affixed to the fixed 

frame for each pinion and gear cylinder. The coordinate transformation system transitioning from 𝑆𝑔 to 𝑆𝑝 is based on the 

following matrix: 

𝑟𝑝 = 𝑀𝑝𝑔𝑟𝑔 = 𝑀𝑝𝑓𝑝
𝑀𝑓𝑝𝑓𝑔

𝑀𝑓𝑔𝑔𝑟𝑔 (17) 

𝑀𝑝𝑓𝑝  and 𝑀𝑓𝑔𝑔 represent the rotating matrix, whereas 𝑀𝑓𝑝𝑓𝑔 denotes the translational matrix. 

Therefore: 

 𝑟𝑝 = [𝑥𝑝 𝑦𝑝 𝑧𝑝 1]𝑇  (18) 

  

𝑟𝑔 = [𝑥𝑔 𝑦𝑔 𝑧𝑔 1]𝑇  (19) 

  

𝑀𝑓𝑔𝑔 = [

𝑐𝑜𝑠∅𝑔 𝑠𝑖𝑛∅𝑔

−𝑠𝑖𝑛∅𝑔 𝑐𝑜𝑠∅𝑔

0
0

0
0

    

0 0
0 0
1
0

0
1

]  (20) 
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𝑀𝑝𝑓𝑝
= [

𝑐𝑜𝑠∅𝑝 𝑠𝑖𝑛∅𝑝

−𝑠𝑖𝑛∅𝑝 𝑐𝑜𝑠∅𝑝

0
0

0
0

    

0 0
0 0
1
0

0
1

]               (21) 

  

𝑀𝑓𝑝𝑓𝑔 = [

1 0
0 1
0
0

0
0

    

0 0
0 𝐸
1
0

0
1

]  (22) 

The equation yields the following matrix: 

𝑀𝑝𝑔 = [

𝑐𝑜𝑠 (∅𝑝 + ∅𝑔) 𝑠𝑖𝑛(∅𝑝 + ∅𝑔)

−𝑠𝑖𝑛(∅𝑝 + ∅𝑔) 𝑐𝑜𝑠(∅𝑝 + ∅𝑔)

0
0

0
0

    

0 𝐸𝑠𝑖𝑛∅𝑝

0 𝐸𝑐𝑜𝑠∅𝑝

1
0

0
1

]        (23) 

Equations 17–23 are used to produce the following equations: 

                           𝑥𝑝 = 𝑥𝑔 𝑐𝑜𝑠(∅𝑝 + ∅𝑔) + 𝑦𝑔𝑠𝑖𝑛(∅𝑝 + ∅𝑔) + 𝐸𝑠𝑖𝑛∅𝑝 (24) 

  

                             𝑦𝑝 = −𝑥𝑔𝑠𝑖𝑛(∅𝑝 + ∅𝑔) + 𝑦2 𝑐𝑜𝑠(∅𝑝 + ∅𝑔) + 𝐸𝑐𝑜𝑠∅𝑝 (25) 

  

         𝑧𝑝 = 𝑧𝑔 (26) 

In order to obtain the components of the matrix 𝑀𝑔𝑝, the inverse matrix 𝑀𝑝𝑔
−1 is utilized: 

𝑀𝑔𝑝 = [

𝑐𝑜𝑠 (∅𝑝 + ∅𝑔) −𝑠𝑖𝑛(∅𝑝 + ∅𝑔)

𝑠𝑖𝑛(∅𝑝 + ∅𝑔) 𝑐𝑜𝑠(∅𝑝 + ∅𝑔)

0
0

0
0

    

0 𝐸𝑠𝑖𝑛∅𝑔

0 −𝐸𝑐𝑜𝑠∅𝑔

1
0

0
1

] (27) 

The transformation of inverse coordinates is defined by the following matrix equation: 

𝑟𝑔 = 𝑀𝑔𝑝𝑟𝑝  (28) 

Equation 28 resulted in: 

𝑥𝑔 = 𝑥𝑝 𝑐𝑜𝑠(∅𝑝 + ∅𝑔) − 𝑦𝑝𝑠𝑖𝑛(∅𝑝 + ∅𝑔) + 𝐸𝑠𝑖𝑛∅𝑔 (29) 

  

𝑦𝑔 = −𝑥𝑝𝑠𝑖𝑛(∅𝑝 + ∅𝑔) + 𝑦𝑝 𝑐𝑜𝑠(∅𝑝 + ∅𝑔) − 𝐸𝑐𝑜𝑠∅𝑔 (30) 

  

𝑧𝑔 = 𝑧𝑝 (31) 

For the second transformation, two gears convert the rotation along parallel axes while maintaining the same 

directional orientation, as seen in Figure 3. The coordinate systems 𝑆𝑝(𝑥𝑝, 𝑦𝑝 , 𝑧𝑝) and 𝑆𝑔(𝑥𝑔, 𝑦𝑔, 𝑧𝑔) are securely affixed 

to the two wheels. 𝑆𝑓𝑝and 𝑆𝑓𝑔  are established coordinate systems; 𝐸 represents the minimal distance between the rotation 

axes; ∅𝑝 and ∅𝑔 represent the rotation angles for the two wheels, respectively; and 𝑟𝑝𝑝
 and 𝑟𝑝𝑔

 are wheel 1's and wheel 

2's radii of the pitch circles, respectively. 

 

Figure 3. Coordinate system of rotational motion in the same direction 
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The transformation matrix 𝑀𝑔𝑝 is as follows:  

𝑀𝑔𝑝 = 𝑀𝑔𝑓𝑔𝑀𝑓𝑔𝑓𝑝𝑀𝑓𝑝𝑝 (32) 

  

𝑀𝑔𝑝 = [

𝑐𝑜𝑠 (∅𝑝 − ∅𝑔) 𝑠𝑖𝑛 (∅𝑝 − ∅𝑔)

−𝑠𝑖𝑛 (∅𝑝 − ∅𝑔) 𝑐𝑜𝑠 (∅𝑝 − ∅𝑔)

0
0

0
0

    

0 −𝐸𝑠𝑖𝑛∅𝑔

0 𝐸𝑐𝑜𝑠∅𝑔

1
0

0
1

] (33) 

The inverse matrix 𝑀𝑔𝑝 = 𝑀𝑔𝑝
−1: 

𝑀𝑝𝑔 = [

𝑐𝑜𝑠 (∅𝑝 − ∅𝑔) −𝑠𝑖𝑛 (∅𝑝 − ∅𝑔)

𝑠𝑖𝑛 (∅𝑝 − ∅𝑔) 𝑐𝑜𝑠 (∅𝑝 − ∅𝑔)

0
0

0
0

    

0 𝐸𝑠𝑖𝑛∅𝑝

0 −𝐸𝑐𝑜𝑠∅𝑝

1
0

0
1

] (34) 

As a result, the coordinate transformation from 𝑠𝑝 to 𝑠𝑔 is as follows: 

𝑥𝑔 = 𝑥𝑝 𝑐𝑜𝑠(∅𝑝 − ∅𝑔) + 𝑦𝑝𝑠𝑖𝑛(∅𝑝 − ∅𝑔) − 𝐸𝑠𝑖𝑛∅𝑔 (35) 

  

𝑦𝑔 = −𝑥𝑝𝑠𝑖𝑛(∅𝑝 − ∅𝑔) + 𝑦𝑝 𝑐𝑜𝑠(∅𝑝 − ∅𝑔) + 𝐸𝑐𝑜𝑠∅𝑔         (36) 

  

𝑧𝑔 = 𝑧𝑝  (37) 

Subsequently, the coordinate transformation from 𝑠𝑔 to 𝑠𝑝 is as follows: 

𝑥𝑝 = 𝑥𝑔 𝑐𝑜𝑠(∅𝑝 − ∅𝑔) − 𝑦𝑔𝑠𝑖𝑛(∅𝑝 − ∅𝑔) + 𝐸𝑠𝑖𝑛∅𝑝  (38) 

  

𝑦𝑝 = −𝑥𝑔𝑠𝑖𝑛(∅𝑝 − ∅𝑔) + 𝑦2 𝑐𝑜𝑠(∅𝑝 − ∅𝑔) − 𝐸𝑐𝑜𝑠∅𝑝         (39) 

  

𝑧𝑝 = 𝑧𝑔  (40) 

3. GENERATION OF GEAR TOOTH PROFILE  

The gear tooth profile can be represented by curves and surfaces derived using the coordinate transformation approach. 

A point that follows a predetermined path produces the assumed curve. Furthermore, the surface is created by a curve that 

follows a certain trajectory [19].  

3.1 Generation of Involute Curve 

An involute curve is produced by a certain point 𝑀 that is firmly attached to the line 𝐵𝐷̅̅ ̅̅ . This straight line rotates 

without sliding across the circle with a radius of 𝜌, as illustrated in Figure 4. The derivation of the involute curve relies 

on Equations 11, 12, and 13, which delineate the coordinate transformation from 𝑆𝑟  to 𝑆𝑔. The creating point is denoted 

in the system of coordinate 𝑆𝑔 by: 

[𝑥𝑔
(𝑀)

𝑦𝑔
(𝑀)

𝑧𝑔
(𝑀)

1]𝑇 = [0 −𝑎 0 1]𝑇       (41) 

Where 𝑎 is constant. 

The approach yields the following equations of the involute curve: 

𝑥𝑔 = −𝑎𝑠𝑖𝑛∅ +  𝜌(𝑠𝑖𝑛∅ − ∅𝑐𝑜𝑠∅)  (42) 

  

𝑦𝑔 = −𝑎𝑐𝑜𝑠∅ + 𝜌(𝑐𝑜𝑠∅ + ∅𝑠𝑖𝑛∅)  (43) 

Equations 42 and 43 indicate that there are two categories of involute curves. An ordinary involute curve is produced 

when 𝑎 = 0. Conversely, a shortened involute curve is generated if 𝑦2
(𝑀)

= 𝑎 > 0. Figure 4 illustrates the involute curve 

utilized to construct a tooth surface. 
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Figure 4. Generation of the involute curve 

3.2 Generation of Cycloid Curve 

A cycloid curve is produced by a point 𝑀 that is firmly attached to a radius circle 𝛾. This circle rolls down a straight 

line without sliding, as seen in Figure 5. The system of coordinate 𝑆𝑔 is firmly enclosed in the circle. The coordinate 

system 𝑆𝑟  is strictly linked to the linear path. The creating point is delineated in the system of coordinate 𝑆𝑟  by: 

𝑂𝑟𝑀̅̅ ̅̅ ̅̅ = [0 −𝑎 0 1]𝑇 (44) 

The coordinate of transformation in the transition matrix from 𝑆𝑟  to 𝑆𝑔 is delineated by the following equations [18]: 

𝑥𝑔 = −𝑎 𝑠𝑖𝑛∅ + 𝛾∅ (45) 

  

𝑦𝑔 = 𝑎 𝑐𝑜𝑠∅ − 𝛾 (46) 

An ordinary cycloid is generated when 𝑎 = 𝛾, while a shorter cycloid is generated when 𝑎 < 𝛾. 

 

Figure 5. Generation of the cycloid curve 

3.3 Generation of Epicycloid and Hypocycloid Curves 

An epicycloid curve is produced by a point 𝑀 that is securely attached to circle 2. This circle rolls without sliding 

over the externally tangent circle 1. The radii of the circles are 𝛾1 and 𝛾2. They possess centrodes, and the relative motion 

between them is characterized by pure rolling. Figure 6 depicts the curve formed by the coordinate system 𝑆𝑝. 𝑀0 and 𝑀 

denote two locations of the point of tracking for the epicycloid curve. The epicycloid is delineated in the system of 

coordinate 𝑆𝑝 that is permanently affixed to circle 1. The equations of the epicycloid curve can be determined through 

coordinate transformation from 𝑆𝑔 to 𝑆𝑝, as shown in Figure 6. The generation point 𝑀 is delineated inside the coordinate 

system 𝑆𝑔 by: 

[𝑥𝑔
(𝑀)

𝑦𝑔
(𝑀)

𝑧𝑔
(𝑀)

1]𝑇 = [0 −𝑎 0 1]𝑇 (47) 

Where 𝑎 = 𝑂2𝑀 > 𝛾2. 

Integrating Equations 29, 30, and 31 into Equation 47 produces the following equations: 

𝑥𝑝 = (𝛾1 + 𝛾2)𝑠𝑖𝑛∅1 − 𝑎 𝑠𝑖𝑛 [∅1 (1 +
𝛾1

𝛾2

)] (48) 
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𝑦𝑝 = (𝛾1 + 𝛾2)𝑐𝑜𝑠∅1 − 𝑎 𝑐𝑜𝑠 [∅1 (1 +
𝛾1

𝛾2

)] (49) 

 

 

Figure 6. Generation of the epicycloid curve 

The derivations of the hypocycloid curve are based on an alternate methodology similar to the prior process. The 

generating circle 2 will rotate inside circle 1 in the same manner, as illustrated in Figure 7. Consequently, the computations 

use (𝛾1 − 𝛾2) rather than (𝛾1 + 𝛾2) in the aforementioned equations. The subsequent modified equations of the 

hypocycloid curve are: 

𝑥𝑝 = (𝛾1 − 𝛾2)𝑠𝑖𝑛∅1 − 𝑎 𝑠𝑖𝑛 [∅1 (
𝛾1

𝛾2
− 1)]    (50) 

  

𝑦𝑝 = (𝛾1 − 1)𝑐𝑜𝑠∅1 + 𝑎 𝑐𝑜𝑠 [∅1 (
𝛾1

𝛾2

− 1)] (51) 

For a standard epicycloid and hypocycloid, the constant 𝑎 will be equal to 𝛾1. 

 

Figure 7. Generation of the hypocycloid curve 

4. GENERATION OF GEAR TOOTH PROFILE USING TOOLS 

The cross-section of the gear tooth surface is generated at the plane. Figure 8 illustrates the position of the cutter to 

the wheel for cutting. The relationship between the angular velocity w of the rotating gear blank around point O, measured 

in rpm, and the velocity of the translational cutter v, expressed in mm/sec, is given by [20]: 

|𝑣|

𝑤
= 𝑟𝑝 =

𝑧

2𝐷𝑝

 (52) 

In this context, rp denotes the pitch circle radius, 𝑍 represents the teeth number, and Dp signifies the diametral pitch. The 

circle of the pitch can be regarded as the wheel centrode formed by cutting. The cutter has a pitch line, which is an 

imperceptible straight line perpendicular to the circle of the pitch and parallel to the linear velocity direction. Throughout 

the cutting procedure, the rack oscillates parallel to the gear rotation axis. The gear tooth configuration is produced as the 

envelope for the set of rack-cutter profiles [21]. 
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Figure 8. Generation of tooth profile using a rack-cutter 

In this work, several rack-cutter shapes were used to generate different types of gear tooth profiles. Figure 9 shows 

the cutters used to generate different samples of gear teeth, including the trapezoid cutter, cycloid cutter, and modified 

cutter (non-standard). Figures 9(c) and (d) show the modified rack-cutters for mixed tooth profile gears that consist of a 

straight line and a cycloid curve. 

  
(a) (b) 

  

  
(c) (d) 

 
(e) 

Figure 9. Coordinate systems of rack-cutters for the (a) trapezoid cutter, (b) cycloid cutter, (c) modified cutter 1,               

and (d) modified cutter 2, and (e) the cycloid curve coordinate system with a straight line 
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The equation of a straight line can be expressed using the coordinate system, as indicated in the equation [20]. 

𝑥𝑟 = 𝑦𝑟𝑡𝑎𝑛 (𝛼) (53) 

The coordinate system for the cycloid curve is defined by Equations 45 and 46. The initial coordinates of the cycloid 

curve are defined as 𝑥𝑐 along the X-axis and 𝑦𝑐 along the Y-axis, as shown in Figure 9(e). These coordinates can be 

determined using the following calculations [14], [22]: 

𝑥𝑐 = 2𝑅𝑖𝑛𝑣(𝛼)  (54) 

  

𝑦𝑐 = 𝑅 − 𝑅𝑐𝑜𝑠(2𝛼) (55) 

Where 𝛼 is the inclination of a straight line to the Y-axis, which is equivalent to the cutter pressure angle of the involute 

curve, R is the rolling circle radius, and 𝑥𝑐  and 𝑦𝑐 are the distance between the pitch point and the cycloid curve begins.  

Subsequently, the procedures for the creation of a helical gear are finalized by designing the parameter of the helix 

angle on the pitch cylinder. The helicoid surface is formed by a set of planar curves of identical shape executing a helical 

motion [21]. Figure 10 illustrates two coordinate systems. The first 𝑆𝑜 is a fixed coordinate and the second 𝑆ℎ is a movable 

coordinate system that executes a helical motion regarding 𝑆𝑜. In this context, the axial displacement and rotation angle 

in helical motion are defined by 𝜓 and 𝑝𝜓, respectively, where 𝑝 is the helical motion parameter or “the pitch of the 

helical,” which is provided by [23]: 

𝑝 =
𝐻

2𝜋
 (56) 

The axial displacement 𝐻 is associated with a single full rotation. 

The planar curve 𝐿 is defined in a system of coordinates Sh(xh, yh, zh), as shown in Figure 10, by the following equation 

[24]:  

𝑥ℎ = 𝑥ℎ(𝜃), 𝑦ℎ = 𝑦ℎ(𝜃), 𝑧ℎ = 0              𝜃1 ≤ 𝜃 ≤ 𝜃2 (57) 

Where 𝜃 is an independent variable. The created helicoid surface is defined in the system of coordinates; therefore, the 

equation becomes: 

𝑟𝑜 = 𝑀𝑜ℎ𝑟ℎ (58) 

Where: 

𝑟𝑜 = [𝑥𝑜 𝑦𝑜 𝑧𝑜 1]𝑇 (59) 

  

𝑟ℎ = [𝑥ℎ(𝜃) 𝑦ℎ(𝜃) 𝑧ℎ(𝜃) 1]𝑇  (60) 

  

𝑀𝑜ℎ = [

𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

0
0

0
0

    

0 0
0 0
1
0

𝑝𝜓
1

] (61) 

Using the matrix equation in Equation 58 yields:  

𝑥𝑜 = 𝑥ℎ(𝜃)𝑐𝑜𝑠𝜓 − 𝑦ℎ(𝜃)𝑠𝑖𝑛𝜓 (62) 

  

𝑦𝑜 = 𝑥ℎ(𝜃)𝑠𝑖𝑛𝜓 + 𝑦ℎ(𝜃)𝑐𝑜𝑠𝜓 (63) 

  

𝑧𝑜 = 𝑝𝜓 (64) 

Where 𝜃1 ≤ 𝜃 ≤ 𝜃2 and 𝜓1 ≤ 𝜓 ≤ 𝜓2. 

Equations 62, 63, and 64 represent the generated helicoid surface. The surface coordinates are specified by the given 

values at any 𝑥𝑜, 𝑦𝑜, and 𝑧𝑜 positions, which are defined by 𝜃 and 𝜓. 

  
(a) (b) 

Figure 10. Generation of the helicoid: (a) illustration of the coordinate system and (b) illustration of the generation of a 

helicoid by screw motion 
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5. SOFTWARE PROGRAM  

The computer software is based on the equations outlined in the previous section for the creation of involute, cycloidal, 

and modified helical gear tooth profiles. The software was written using Microsoft Visual Basic and subsequently 

integrated with the programming interface of SolidWorks using macro recording. The essential input data are the normal 

module, normal pressure angle, helix angle, teeth number, addendum circle radius, rolling radius, rotation angle, screw 

parameter, and face width. The methodology employed by the program is illustrated in a schematic diagram in Figure 11. 

The following section elucidates the processes involved in tooth creation and the methods for creating various surfaces 

of compounded curves [25]. 

 

Figure 11. Flow chart of generation of tooth profile for different curve helical gear 

6. RESULTS AND DISCUSSION  

At the stress concentration location at the gear teeth root, bending stress is a major contributor to tooth failure. The 

system is brought to a halt by this catastrophic disaster. The objective of this project is to investigate the effect of the teeth 

profile design on the thickness of the gear teeth base to increase its strength resistance. Figures 12 and 13 provide the 

fundamental findings of the program and illustrate the family of forms for trapezoid and cycloid cutters, as well as the 

final tooth profiles of the produced gears. The results of the simulation indicate that the teeth of the produced gears act as 

cantilevered beams [26], with the cross-sectional area and tooth thickness that are directly related to the distance between 

the normal load position and the maximum stress zone. This study seeks to identify the weakest tooth thickness among 

various tooth systems that affect gear bending strength.  

The configuration of the rack cutters, in conjunction with the coordinate system employed in this analysis, is crucial 

for accurately depicting the gear teeth. The initial coordinate system, which involves the translation and rotation between 

a line and a circle, utilizes the trapezoidal cutter. This system is characterized by a straight line that produces the involute 

curve of the gear teeth surface, as illustrated in Figure 12. The second coordinate system involves rotational motion 

between two circles and employs a cycloid cutter composed of two cycloid curves. These curves produce the epicycloid 

and hypocycloid shapes that define the surface of the gear teeth, as illustrated in Figure 13. A shaper may use the modified 

rack cutter to form the contour of the gear teeth. This cutter consists of a straight line at its center, two upper and lower 

cycloid curves, and an additional area. Consequently, the tooth gear may exhibit an epicycloidal, involute, and 

hypocycloidal configuration, respectively. 
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(a) (b) 

  

  
(c) (d) 

Figure 12. Involute tooth geometry for 14 teeth: (a) α𝑛 = 14.5°, (b) α𝑛 = 20°, (c) α𝑛 = 25°, and (d) α𝑛 = 35° 

 

  
(a) (b) 

  

  
(c) (d) 

Figure 13. Cycloid tooth geometry for 14 teeth: (a) 𝑅 = 15 mm, (b) 𝑅 = 12 mm, (c) 𝑅 = 9 mm, and (d) 𝑅 = 6 mm 

The two-dimensional shapes of the gear tooth profiles were constructed using SolidWorks software for comparative 

analysis of the findings [27]. The types examined include the involute profile, cycloidal profile, and modified tooth profile. 
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Different cutters were used to produce different types of tooth cross-sections. The teeth of the shaper cutter are a 

combination of epicycloid and involute curves, as demonstrated in Figure 14, formed by a straight line and a cycloid 

curve that is perpendicular to the oblique line and above the tool's pitch line. This design effectively prevents the gear 

teeth from rubbing against one another, which is essential for reducing or eliminating interference. Figure 14 presents the 

profile deviations resulting from variations in the pressure angles and rolling radius R. The selected R was 15 mm, 12 

mm, and 9 mm. It is shown that the slope deviation of the gear tooth is positive when the material in the profile is increased 

closer to the tooth tip, in relation to the tooth design. 

  
(a) (b) 

  

  
  

(c) (d) 

 
(e) 

Figure 14. Modifications of involute-epicycloidal teeth geometry for 14 teeth: (a) 𝛼𝑛 = 14.5° and 𝑅 = 12 mm, 

(b) 𝛼𝑛 = 14.5° and 𝑅 = 6 mm, (c) 𝛼𝑛 = 14.5° and 𝑅 = 9 mm, (d) 𝛼𝑛 = 25° and 𝑅 = 9 mm, and  

(e) 𝛼𝑛 = 20° and 𝑅 = 9 mm 

Tables 1 and 2 present the thickness values obtained from the create-to-order samples for involute and cycloidal 

profiles, demonstrating the influence of several design parameters, such as pressure angles and roller radius, on the 

thickness of the tooth to mitigate excessive root stress. The findings indicate that the most important design elements for 

controlling tooth thickness in involute gears (which could increase by approximately 29.53%) and cycloidal gears (which 

could increase by 36.89%) are the angle of pressure and the rolling generating circle, respectively. This information is 

clearly shown in Figures 15 and 16. The thickness of the tooth increases with a higher pressure angle; conversely, it 

decreases as the rolling radius decreases, assuming that the normal module and the number of teeth remain constant at 

the same gear size. An analysis of these figures reveals a notable improvement in thickness. The study's most unexpected 

findings pertain to the improvement of bending strength achieved through the optimization of the pressure angle while 

minimizing the radius of the roller-generating circle. 
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Table 1. Tooth thickness (in mm) for different normal pressure angles for 𝑚𝑛 = 7 mm and 𝑍= 14 teeth 

Cases 𝛼𝑛 
Tooth thickness 

(mm) 

1 14.5° 11.17 

2 20° 11.61 

3 25° 12.63 

4 35° 15.85 

 

 

 

 

 

 

 

 

 

Figure 15. Relationship between normal pressure angle and teeth thickness 

Table 2. Tooth thickness (in mm) for different cycloid teeth profiles for 𝑚𝑛 = 7 mm and 𝑍= 14 teeth 

Cases R (mm) 
Tooth thickness 

(mm) 

1 15 11.51 

2 12 12.13 

3 9 14.30 

4 6 18.24 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Relationship between the radius of the rolling circle and teeth thickness 

In gear theory, helical gears are defined as a series of spur gears arranged at an angle equal to or exceeding that of a 

helix [28]. An appropriate screw motion parameter was used to generate the surface of the helical teeth, as illustrated in 

Figure 17, which includes several helical gear models with different helix angles. The connection between the screw 

parameter factor and the helix angle value at the pitch circle is inversely proportional, as shown in Figures 17 and 18. The 

proposed modification to the gear teeth employed in this study is demonstrated in Figure 17(e). Furthermore, when the 

helix angle is close to zero, the helical face width goes straight under small thrust loads (Figure 18). As the helix angle 
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increases, the thrust force grows, and the helical face width also becomes more spiral. Another benefit of the present work 

is the ability to alter the tooth profile to enhance thrust force. The optimal approach for reducing transmission error 

involves minimizing interference by reducing the common normal distance between tangent points. 

  
(a) (b) 

  

  
(c) (d) 

 
(e) 

Figure 17. Helical gear models consisting of epi-involute-hypocycloidal teeth profile  at 𝑚𝑛 = 7 mm, 𝛼𝑛 = 14.5°, 𝑍 = 14 

teeth, and 𝑅 = 9 mm with different helix angles of (a) 𝛽 = 15°, (b) 𝛽 = 22.5°, (c) 𝛽 = 30°, (d) 𝛽 = 37.5°, and (e) 𝛽 = 45° 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Relationship between helix angle and screw parameter 

 For comparing the results of contact and bending stresses, three cases of gear teeth profiles were examined. The first case 

is an involute teeth profile, the second case is a cycloidal tooth profile, and the third case is a modified tooth (epicycloid 

involute-hypocycloid teeth profile). Table 3 presents the various design parameters of mating non-parallel helical gears 

for all profiles. The material used in the evaluation is steel with Young's modulus of 207 GPa and a Poisson's ratio of 0.3. 

A constant power transmission of 20.0 kW at 1,440.0 rpm was applied across all models. Finite element analysis was 

conducted using ANSYS 2019 software to estimate the stress values [29], [30], and [31]. 
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Table 3. Specifications of gear teeth 

Cases 
Normal module, 

𝑚𝑛 (mm) 

Normal pressure 

angle, 𝛼𝑛 (°) 

Rolling circle 

radius, 𝑅 (mm) 

Helix angle, 

𝛽 (°) 

Face width, 

𝐹 (mm) 

No. of 

teeth 

1 7 14.5 - 45 40 14 

2 7 - 9 45 40 14 

3 7 14.5 9 45 40 14 

 

 
(a) 

 

 
(b) 

 
(c) 

Figure 19. Von Mises criterion in non-parallel helical gears for (a) an involute gear, (b) a cycloidal gear, and  

(c) a combined gear 
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Table 4. Maximum criterion values 

Cases 
Contact 

stresses (MPa) 

Bending 

stresses (MPa) 

1 411.31 156.28 

2 333.96 116.30 

3 274.88 115.52 

The models were configured to meet the boundary criteria. The mesh size of the gear tooth element improved gradually 

by increasing the mesh density. This section of the stress analysis aims to examine the contact and bending stresses in 

three instances of non-parallel helical gear drives, which are produced by an involute profile, a cycloid profile, and a 

modified tooth profile, as shown in Table 3. Figures 19(a), (b), and (c) present the results of the von Mises criteria for the 

involute, cycloidal, and modified tooth profiles, respectively, as analyzed using the ANSYS Workbench package. The 

results demonstrate a three-tooth model comprising three cases, each exhibiting a point of maximum contact stress located 

at the pitch region between the mated helical teeth, along with bending stress observed at the tooth root fillet region. 

Although the maximum stress value occurs at the pitch point, which can lead to scuffing and pitting, the bending stress 

significantly contributes to fractures in the gear field. This ultimately results in a jump in the gearbox drive, potentially 

leading to system failure. Table 4 presents the contact and bending stresses for all cases, indicating the highest values for 

the involute helical gear. Subsequently, the stress values decrease with a change in the teeth profile to the cycloid helical 

gear, followed by an increase observed with the compound helical teeth surface.  

 

 

 

 

 

 

 

 

 

 

Figure 20. Relationship between cases of helical gears and contact stresses 

In comparison to cases 1 and 2, the contact stress value for modification case 3 (274.88 MPa) is lower (see Figure 20). 

When compared to involute and cycloid helical teeth profiles, the compound-modified helical teeth profile achieved 

enhancements of approximately 33.169% and 17.690%, respectively. Regarding bending stress in this study, the involute 

tooth profile exhibits the worst case in thickness at the tooth root region. Figure 21 indicates that the bending stress values 

for the two usual examples are 156.28 MPa and 116.30 MPa, respectively. However, when using the modified helical 

tooth profile, the bending stress value is 152.52 MPa. The improvement percentages are 26.081% and 0.670% when 

compared to the involute and cycloid helical tooth profiles, respectively. The relationship between the cycloid helical 

teeth and the modified compounded helical teeth is nearly equivalent, as the utilized cutters possess identical cycloid 

curve dimensions, resulting in a congruent hypocycloid curve and matching tooth thicknesses. The decrease in contact 

and bending stresses is attributed to the interaction of the three compounded curves (epicycloidal, involute, and 

hypocycloidal), which results in a greater tooth thickness compared to the other helical gear cases 1 and 2. The 

modifications to the helical tooth gear components influence the configuration of the global stiffness matrix, leading to 

reduced induced stresses inside the gearbox unit. 
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Figure 21. Relationship between cases of helical gears and bending stresses 

6. CONCLUSION 

The developed design and computer software for the creation of the combined involute-cycloidal teeth profile have 

successfully been applied. The conjugation of the gear tooth profile with profile modifications is accomplished by 

applying the modified cutter in the normal section. The main parts of the new method were generated automatically in 

the cross-section of the teeth by using the equations for gear teeth surfaces. The intersection points of the tooth profiles 

were obtained from the envelope of the family of rack-cutter shapes. The boundary conditions prevented the accuracy 

loss associated with developing solid models using CAD computer software. For the same design parameters, the 

epicycloid-involute-hypocycloidal non-parallel helical gear exhibited lower contact and bending stresses than other non-

parallel helical gear profiles. Contact and bending stresses decreased by 33.169% and 26.08% compared to the standard 

involute profile, respectively. The reduction in contact and bending stresses was approximately 17.69% and 0.67% when 

compared to the cycloidal profile, respectively. Using the combination of curves (epicycloidal, involute, and 

hypocycloidal) in one tooth leads to an increase in the contact area. This, in turn, enhances the ability of the gears to 

withstand higher loads and prolongs their lifespan. 
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