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ABSTRACT - The batch process is a production process with strong nonlinearity, which usually 
suffers from time-varying parameters and uncertainty of disturbances. Concerning the mentioned 
problems, this study proposes to investigate the application of the particle swarm optimization-based 
model-free adaptive control (PSO-MFAC) method for time-varying batch processes. Model-Free 
Adaptive Control (MFAC) is a data-driven control method, which is one of the promising methods to 
solve the nonlinear process. Firstly, a Full Form Dynamic Linearization Model-Free Adaptive Control 
method has been adopted for the control of batch processes. Further, considering that the adopted 
model-free adaptive control involves seven control parameters, such as cognitive scaling factor (φ1), 
social scaling factor (φ2), inertia weight (φ3), learning rate (η), control parameter update rate (𝜇𝐶), 

exploration rate (𝜌) and learning rate (𝜆) for MFAC obtained by a particle swarm optimization (PSO) 
algorithm in combination with a criterion function performance index. Finally, by comparing it with 
the existing methods, a typical batch fermentation was applied to verify that PSO-MFAC had a good 
control effect. The findings indicate that the PSO-MFAC controller exhibits a preference for 
exploiting the optimal option due to its φ3 value less than 0.1. The efficacy and feasibility of the PSO-
MFAC control effect have been proven by obtaining the lowest integral square error (ISE) value of 
1.1192 regarding the nonlinearity of the batch process due to time-varying challenges. 
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1.0 INTRODUCTION 

Batch processes are frequently employed in industries characterized by high-quality standards, diversified product 

offerings, and relatively low production volumes, such as fine chemicals, biopharmaceuticals, and food fermentation, in 

contrast to continuous processes commonly found in large-scale manufacturing facilities [1-3]. In a continuous process, 

the operation typically remains at the optimal economic point; in contrast, the operational conditions of a batch process 

change dynamically from beginning to end. As a result of this dynamic change, batch operations are more flexible than 

continuous operations, allowing operating conditions and cycle duration to be modified to correspond with actual 

production demand [4]. However, the strong nonlinearity inherent in the batch process is characterized by both time-

varying dynamics and non-stationary operating conditions, involving transition processes with variable objectives and 

covering transient phases of the operating range [5]. These issues bring great challenges to the control of batch processes. 

Although the control theory of industrial processes has been vigorously developed in recent decades, and ever-

changing control techniques are emerging, most of the control methods are only applicable to continuous processes, while 

they are powerless for batch processes, which are more complex in the system [6-7]. Research indicates that in batch 

process control, different strategies are used to prevent interference caused by changing model parameters and 

physicochemical processes. These strategies include adapting model parameters, correction conditions, and input 

variables [8-11]. For the present, most of the studies are still limited to simple proportional integral derivative (PID) 

control [12], neural network control [13] (NN), and model predictive control [14] (MPC). Among these methods, 

traditional PID controllers have difficulty overcoming the complexity and nonlinearity of industrial processes [15]. 

Furthermore, control methods such as NN and MPC make the actual process modeling more difficult, and model training 

requires a long period to ensure the reliability of the trained model [16]. 

For this study, data types vary based on research objectives and methods. Relevant data include experimental (e.g., 

sensor readings), process (e.g., task details), control (e.g., strategy info), simulation (e.g., model-generated data), 

optimization (e.g., PSO parameters), human-related (e.g., behavior), system identification, performance metrics, and 

historical data. The data selection and pre-processing of data are done carefully and in detail, ensuring ethical compliance. 
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A data-driven control method is effective for industrial processes with nonlinear and time-varying problems [17]. While 

PID control is widely used in production due to its simple structure and ease of implementation, it faces challenges with 

nonlinear, time-varying, and uncertain systems. In such cases, regulating its parameters can be difficult, leading to less 

satisfactory outcomes [18]. Model-free adaptive control (MFAC) is a type of data-driven control method that does not 

rely on a mechanistic or process model of the system. Instead, it uses the real-time input/output (I/O) data from the 

controlled system to design and implement adaptive control. This approach has been successful in achieving effective 

control performances. [19]. Recently, MFAC has gained significant popularity in the syngas manufacturing industry [20], 

intelligent transportation [21], motor systems [22], and so on. 

Compact form dynamic linearization model-free adaptive control (CFDL-MFAC), partial form dynamic linearization 

model-free adaptive control (PFDL-MFAC), and full form dynamic linearization model-free adaptive control (FFDL-

MFAC) are the three different forms of the MFAC control method [23]. Dynamic linearization excels due to its simplicity, 

adaptability to time-varying dynamics, model-free nature, ease of implementation, integration with optimization, and 

analytical insights. These traits align with the study's focus on model-free adaptive control in a dynamic environment, 

making it more suitable than alternative approaches for the specified research. First, for CFDL-MFAC, the structure is 

the simplest, considering only one feedback control for tracking deviation, which is equivalent to the time-varying 

deviation control term for tracking deviation; in addition, PFDL-MFAC enhances the previous approach by taking into 

account the dynamic and time-varying correlation between the change in the system's output in the next moment and the 

change in the inputs within a fixed-length sliding time window in the present moment; and finally, FFDL-MFAC, on the 

basis of the second MFAC form, also considers the effect of the comprehensive changes in the control inputs and the 

whole changes in the system outputs using a fixed-length sliding time window, then analyze the changes of system outputs 

in the next moment based on the present moment [23]. Given that the processing system is highly nonlinear, the first two 

forms do not always yield the desired satisfactory results [18]. 

Particle swarm optimization (PSO) is a global optimization algorithm that is effective in solving complex optimization 

problems involving nonlinear, non-differentiable, and multi-peaked functions. It has gained significant attention and 

application due to its simplicity, ease of implementation, minimal adjustable parameters, and favorable consequences 

[24]. Recently, researchers have utilized PSO to optimize the parameters of PID controllers, aiming to enhance the control 

efficacy [12]. However, such improved MFAC controllers are still rarely used for batch processes. Therefore, in order to 

better overcome the strong nonlinearity that batch processes have, the study firstly implements the third form of MFAC 

mentioned above, i.e., FFDL-MFAC, which will still be referred to as MFAC in the subsequent papers for the sake of 

convenience, secondly, considering a criterion function performance index that incorporates the squared accumulation of 

the tracking error and the input difference, the PSO method is employed to optimize the MFAC controller using seven 

initial values for the regulatory parameters. Ultimately, the proposed PSO-MFAC is utilized to control the intra-batch 

time-varying process. 

Therefore, the objective of this study is to examine the efficacy of the PSO-based MFAC (PSO-MFAC) method in 

addressing the nonlinearity of the batch process with time-varying particularities. The purpose of developing data-driven 

control approaches for time-varying batch processes holds substantial practical importance due to the inherent challenges 

in effectively modeling and controlling such processes.  

2.0 METHOD AND MATERIALS 

2.1 PSO-MFAC Control for Batch Processes 

To illustrate the general state form of batch processes, the study utilized a single-input-single-output (SISO) discrete 

nonlinear system, represented by Equation (1) [25-26]: 

𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘), 𝑦(𝑘 − 1), … , 𝑦(𝑘 − ny), 
 𝑢(𝑘), 𝑢(𝑘 − 1), … , 𝑢(𝑘 − nu), 
𝑣(𝑘), 𝑣(𝑘 − 1), . . . , 𝑣(𝑘 − nv))   

(1) 

where the state function denotes a nonlinear function describing the batch process, a dynamic system that varies with 

moment k; 𝑦(𝑘), 𝑢(𝑘), 𝑣(𝑘) are the output variable, the input variable (also known as control variables), and the process 

disturbances (mainly including the model parameter disturbances, the process noise and measurement noise are 

considered distinct components, with the disturbances presumed to represent extra factors. ny, nu, and nv are integers 

denoted as ny, nu, nv ∈ {1,2, 3…}. 

As the object of study, batch processes usually show the characteristics of the desired goal staged. According to the 

production nature of the batch process, set its batch time as 𝑡𝑓, sample every 𝑡𝑠 time, the entire batch cycle of the batch 

process can be separated into 𝑁 sub-process intervals, i.e. 𝑁 = 𝑡𝑓/𝑡𝑠, 𝑘 = 1,2, . . . , 𝑁, the entire cycle of the batch process 

involves using the MFAC controller to modify the input variables in a rational manner, hence controlling the output 

variables to achieve the optimum production capacity and satisfy the needs of the end product. The PSO-MFAC 

parameters were carefully chosen to reflect the complexity and dynamic nature of batch processes, particularly when 

considering a human-robot interaction environment. 
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Initialize the batch process with the provided input and output circumstances [𝑢(0),𝑦(0)] for computational 

convenience. The structure block diagram of a SISO batch process MFAC control system is depicted in Figure 1. 
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Figure 1. MFAC control Framework for batch processes 

At the beginning of the study, the following assumptions were made for the system of batch processes, i.e., Equation (1): 

Assumption 1: The continuity of the partial derivatives of the nonlinear state function f(⋅) with respect to the system inputs 

u(k) is confirmed.  

Assumption 2: The batch process system Eq. (1) fulfills the criteria of the condition of generalized Lipschitz, i.e., for any 

moment k and 𝛥𝑢(𝑘) ≠ 0, there are: 

𝛥𝑦(𝑘 + 1) = �̄� ⋅ |𝛥𝑢(𝑘)| (2) 

where, �̄� > 0 is a constant. 

According to the literature [23], under the conditions of Assumption 1 and Assumption 2, the controlled system 

described in Equation (1) can be transformed into a Full Form Dynamic Linearization (FFDL) data model that requires 

only I/O data, namely. 

𝑦(𝑘 + 1) = 𝑦(𝑘) + 𝜑𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) ⋅ 𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘) (3) 

where the subscript f of the pseudo partial derivative (PPD) 𝜑𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) denotes full, Ly and Lu are pseudo-orders, 0 ≤

𝐿𝑦 ≤ 𝑛𝑦, 1 ≤ 𝐿𝑢 ≤ 𝑛𝑢. The transformation of the FFDL data model into a PFDL data model occurs when Lu is 

equivalent to 0 and Lu is equivalent to L. Similarly, the FFDL data model transforms into a CFDL data model when Lu 

is equivalent to 0 and Lu is equivalent to 1. 

Define the process parameters: pseudo-partial derivatives 𝜑𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) and combinatorial vectors 𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘), which 

are combinatorial vectors of output variations 𝛥𝑦(𝑘) and input variations 𝛥𝑢(𝑘) with the following sequence of vectors: 

𝜑𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) = [𝜑1(𝑘), 𝜑2(𝑘), . . . , 𝜑𝐿𝑦(𝑘), 𝜑𝐿𝑦+1(𝑘), . . . , 𝜑𝐿𝑦+𝐿𝑢(𝑘)]𝑇 (4) 

  

𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘) = [𝛥𝑦(𝑘), 𝛥𝑦(𝑘 − 1), . . . , 𝛥𝑦(𝑘 − 𝐿𝑦 + 1), 𝛥𝑢(𝑘), 𝛥𝑢(𝑘 − 1), . . . , 𝛥𝑢(𝑘 − 𝐿𝑢 + 1)]𝑇 (5) 

Next, consider the following FFDL-MFAC control input criterion function: 

𝐽1(𝛥𝑢(𝑘)) = [𝑦𝑟(𝑘 + 1) − 𝑦(𝑘 + 1)]2 + 𝜆 ⋅ [𝛥𝑢(𝑘)]2 (6) 

where 𝐽1 is the control input objective function, 𝑦𝑟(𝑘 + 1) is the process output expected value, 𝑒(𝑘 + 1) is the process 

tracking error value, and 𝜆 > 0 is a weighting constant. In addition, there are the following definitions: 

𝑒(𝑘 + 1) = 𝑦𝑟(𝑘 + 1) − 𝑦(𝑘 + 1)  (7) 

  

𝛥𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1) (8) 

Bringing Equation (3) into Equation (6), first solving for the derivative of 𝛥𝑢(𝑘) and then making it zero, the learning 

law of the batch process FFDL-MFAC controller, i.e., the feedback expression for the input variable 𝑢(𝑘) is shown below: 

𝛥𝑢(𝑘) =
𝜑𝐿𝑦+1(𝑘) ⋅ 𝜌𝐿𝑦+1 ⋅ [𝑦𝑟(𝑘 + 1) − 𝑦(𝑘 + 1)]

𝜆 + [𝜑𝐿𝑦+1(𝑘)]2
 

(9) 

−
𝜑𝐿𝑦+1(𝑘) ⋅ ∑ ⋅ 𝜌𝑙 ⋅ 𝜑𝑙(𝑘) ⋅ 𝛥𝑦(𝑘 − 𝑙 + 1)𝐿𝑦

𝑙=1

𝜆 + [𝜑𝐿𝑦+1(𝑘)]2
 

−
𝜑𝐿𝑦+1(𝑘) ⋅ ∑ 𝜌𝑙 ⋅ 𝜑𝑙(𝑘) ⋅ 𝛥𝑢(𝑘 + 𝐿𝑦 − 𝑙 + 1)

𝐿𝑦+𝐿𝑢
𝑙=𝐿𝑦+2

𝜆 + [𝜑𝐿𝑦+1(𝑘)]2
 

=
𝜑𝐿𝑦+1(𝑘) ⋅ 𝜌𝐿𝑦+1

𝜆 + [𝜑𝐿𝑦+1(𝑘)]2
𝑒(𝑘) 

 

−
𝜑𝐿𝑦+1(𝑘) ⋅ ∑ ⋅ 𝜌𝑙 ⋅ 𝜑𝑙(𝑘) ⋅ 𝛥𝑦(𝑘 − 𝑙 + 1)

𝐿𝑦
𝑙=1

𝜆 + [𝜑𝐿𝑦+1(𝑘)]2
 

(9) 

cont. 
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−
𝜑𝐿𝑦+1(𝑘) ⋅ ∑ 𝜌𝑙 ⋅ 𝜑𝑙(𝑘) ⋅ 𝛥𝑢(𝑘 + 𝐿𝑦 − 𝑙 + 1)

𝐿𝑦+𝐿𝑢
𝑙=𝐿𝑦+2

𝜆 + [𝜑𝐿𝑦+1(𝑘)]2
 

The step factor 𝜌𝑙 > 0, where l is an integer ranging from 1 to L, is incorporated to enhance the versatility of the control 

method. The pseudo-order of the FFDL-MFAC controller is specifically set as Ly=1 and Lu=2, and thus 𝜑𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) = 

[𝜑1 𝜑2 𝜑3 ]T is obtained. 

Further, consider the following FFDL-MFAC partial derivative PPD estimation criterion function: 

𝐽2(�̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘)) = [𝑦(𝑘) − 𝑦(𝑘 − 1) 

(10) −�̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) ⋅ 𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘 − 1)]2 

+𝜇𝐶 ⋅ [�̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) − �̂�𝑓,𝐿𝑦,𝐿𝑢

𝑇 (𝑘 − 1)]2 

where 𝐽2 is the partial derivative estimation objective function and 𝜇𝐶 > 0 is a weight constant. In turn, the online 

estimation algorithm of �̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) can be known: 

�̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) = �̂�𝑓,𝐿𝑦,𝐿𝑢

𝑇 (𝑘 − 1) +
𝜂 ⋅ 𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘 − 1)

𝜇𝐶 + [𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘 − 1)]2
 

(11) 
⋅ [𝑦(𝑘) − 𝑦(𝑘 − 1) − �̂�𝑓,𝐿𝑦,𝐿𝑢

𝑇 (𝑘 − 1) ⋅ 𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘 − 1)] 

= �̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘 − 1) +

𝜂 ⋅ 𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘 − 1)

𝜇𝐶 + [𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘 − 1)]2
 

⋅ [𝛥𝑦(𝑘) − �̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘 − 1) ⋅ 𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘 − 1)] 

In order to make the control algorithm more general, a step factor 𝜂 ∈ (0,2] is introduced. In addition, there exists a PPD 

parameter reset algorithm: 

If |�̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘)| ≤ 𝜀 

(12) 
Or  |𝛥𝐻𝐿𝑦,𝐿𝑢(𝑘 − 1)| ≤ 𝜀 

Or  𝑠𝑖𝑔𝑛(�̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘)) ≠ 𝑠𝑖𝑔𝑛(�̂�𝑓,𝐿𝑦,𝐿𝑢

𝑇 (1)) 

Then  �̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) = �̂�𝑓,𝐿𝑦,𝐿𝑢

𝑇 (1) 

�̂�𝑓,𝐿𝑦,𝐿𝑢
𝑇 (1) is the initial value of the PPD, and the algorithm reset mechanism is introduced to make the PPD estimation 

algorithm more capable of tracking time-varying parameters. 

2.2 PSO Algorithm 

PSO algorithm is a class of biological group-inspired intelligent algorithms that originated from the study of bird flock 

foraging behavior. Researchers have found that birds suddenly change information to trajectories during the foraging 

process, such as changing direction, spreading out, gathering quickly, etc., and their behavior is unpredictable, but the 

whole group is always consistent; at the same time, the individuals have always maintained the optimal distance from 

each other; through the behavioral study of this kind of biological groups, it can be observed that the primary idea is to 

discover the ideal solution through the interactive behaviors of the individuals in the flock and the sharing of information 

to find the optimal solution [27]. Within the PSO algorithm, the population is defined as a collection of whole entities, 

while particles refer to individual entities. To achieve the best possible outcome for the overall population, the current 

ideal particle is identified and monitored among the particles in the search space of dimension d. The orientation and 

momentum of the particle are continuously revised, and the optimal solution is sought with the parallel particles and the 

spatial particles throughout the entire plenary space (comparing the optimization performance index function or known 

as the fitness function) [28]. 

Assuming that there are N d-dimensional space particles, a solution space of size N can be set. 𝑧𝑖 = (𝑧𝑖,1, 𝑧𝑖,2, . . . , 𝑧𝑖,𝑑) 

can be used to represent the first particle of the d-dimensional position vector, where i =1, 2..., N; at the same time, a 

performance index is expressed to determine the intensity of optimization of the particle's positional superiority or 

inferiority, which is called the particle swarm fitness evaluation function. Then, it can be known that the current position 

of the optimized spatial particle is 𝑧𝑖 ; The particle's current flight speed or distance is denoted as 𝑠𝑖 = (𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑑). 

𝑝𝑖 = (𝑝𝑖,1, 𝑝𝑖,2, . . . , 𝑝𝑖,𝑑) reflects the best position found by the particle to this point. Ultimately, the overall best position 

found by the entire particle swarm in the current moment can be written as 𝑝𝑔 = (𝑝𝑔,1, 𝑝𝑔,2, . . . , 𝑝𝑔,𝑑) [27]. 

The formula is used to update the position (𝑧𝑖) and the velocity (𝑠𝑖) of the space particle, in the i (dimensional space), 

in the T (iteration of the spatial search). [28]: 

𝑠𝑖,𝑗(𝑇 + 1) = �̃�𝑠𝑖,𝑗(𝑇) + 𝑐1𝑟1(𝑝𝑖,𝑗 − 𝑧𝑖,𝑗) + 𝑐2𝑟2(𝑝𝑔,𝑗 − 𝑧𝑖,𝑗) (13) 

  

𝑧𝑖,𝑗(𝑇 + 1) = 𝑧𝑖,𝑗(𝑇) + 𝑠𝑖,𝑗(𝑇 + 1) (14) 
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�̃� = �̃�𝑚𝑎𝑥 −
�̃�𝑚𝑎𝑥 − �̃�𝑚𝑖𝑛

𝑇𝑚𝑎𝑥

× 𝑇 (15) 

where 𝑖 = 1,2, . . . , 𝑁, 𝑗 = 1,2, . . . , 𝑑; T represents the number of iterations in the group particle search space, while Tmax 

represents the maximum number of iterations. �̃� is the coefficient for the inertia weight of space particle flight, with �̃�𝑚𝑖𝑛 

being the minimum value and �̃�𝑚𝑎𝑥 being the maximum value. 𝑐1 and 𝑐2 are the acceleration factors for space particle 

flight. 𝑟1 and 𝑟2 are random numbers between 0 and 1. 𝑠𝑖,𝑗(𝑇)  represents the acceleration of the first particle after the 

second iteration, with 𝑠𝑚𝑖𝑛 < 𝑠𝑖,𝑗 < 𝑠𝑚𝑎𝑥 . In addition, 𝑠𝑚𝑎𝑥 and 𝑠𝑚𝑖𝑛  are the maximum and minimum update rates of the 

spatial population particles, specify the size of the particle population's global ideal position, and specify the population 

fitness assessment function or optimization performance indicator function. 

The PSO algorithm is used to optimize the batch process's MFAC settings. The adopted FFDL-MFAC has seven 

parameters, which are cognitive scaling factor (𝜑1), social scaling factor (𝜑2), inertia weight (𝜑3), learning rate (𝜂), 

control parameter update rate (𝜇𝐶), exploration rate (𝜌) and learning rate for MFAC (𝜆) [23]. It should be noted that the 

"cognitive scaling factor (𝜑1), social scaling factor (𝜑2), and inertial scaling factor (𝜑3)" in MFAC are one of the control 

parameters, which mainly act on the controlled object (such as fermentation process) to achieve tracking control; The 

inertia weight coefficients (�̃�) and acceleration factors (c1 and c2) of the PSO method are only parameters of the search 

algorithm itself and only apply to the optimization-solving process. In addition, based on the influence of parameters in 

the formula, the range of values for the above seven parameters is marked under the corresponding formula. By randomly 

selecting any number near the value range, the powerful optimization ability of the PSO algorithm can easily obtain the 

optimal parameter values. Therefore, the particle population of the PSO algorithm is set as a seven-dimensional space, 

and the addition of the tracking error squared cumulative and input difference is chosen as the minimum fitness evaluation 

function, which is the performance index to discriminate the superiority of the population particles (control parameters), 

as follows. 

𝐽3(𝑒(𝑘)) = 2−1 ∑[𝑦𝑟(𝑘) − 𝑦(𝑘)]2

𝑁𝑘

𝑘=1

+ |𝑢(𝑘) − 𝑢(𝑘 − 1)| 

(16) 

= 2−1 ∑ 𝑒2(𝑘)

𝑁𝑘

𝑘=1

+ |𝛥𝑢(𝑘)| 

where 𝐽3  is the target tracking error performance metric. 

2.3 PSO-MFAC Controller 

In this section, a particle swarm optimization-based FFDL-MFAC controller, PSO-MFAC controller, is introduced 

for the batch process, the adaptive process of which is shown in Figure 2.  
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Figure 2. PSO-MFAC controller for the batch process 

Figure 2 illustrates the PSO algorithm is used for the off-line optimization of the MFAC controller parameters for the 

batch process, indicated by the dashed lines; the adaptive mechanism is implemented by constantly updating the pseudo 

partial derivatives 𝜑1, 𝜑2, 𝜑3 by means of a full-format dynamic linearization method. In addition to this, for the PSO-

MFAC controller sense, the controller selects a set of pseudo-orders Ly = 1 and Lu = 2; furthermore, as the control 

parameters of the MFAC, on the one hand, the parameter values of the optimized 𝜑1, 𝜑2, 𝜑3 are different; on the other 

hand, as the pseudo-partial derivatives, 𝜑𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) =[𝜑1 𝜑2 𝜑3]T will be updated and learned accordingly with the time-

varying dynamics of the system of the batch process, and thus, it can be made 𝜌1 = 𝜌2 = 𝜌3 = 𝜌 ∈ (0,1]. Thus, there are: 

 

𝛥𝑢(𝑘) =
𝜑2(𝑘) ⋅ 𝜌2

𝜆 + [𝜑2(𝑘)]2 𝑒(𝑘) −
𝜑2(𝑘) ⋅ 𝜌1 ⋅ 𝜑1(𝑘) ⋅ 𝛥𝑦(𝑘)

𝜆 + [𝜑2(𝑘)]2 −
𝜑2(𝑘) ⋅ 𝜌3 ⋅ 𝜑3(𝑘) ⋅ 𝛥𝑢(𝑘 − 1)

𝜆 + [𝜑2(𝑘)]2  (17) 
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=
𝜑2(𝑘)⋅𝜌

𝜆+[𝜑2(𝑘)]2 𝑒(𝑘) −
𝜑2(𝑘)⋅𝜌⋅𝜑1(𝑘)⋅𝛥𝑦(𝑘)

𝜆+[𝜑2(𝑘)]2  −
𝜑2(𝑘)⋅𝜌⋅𝜑3(𝑘)⋅𝛥𝑢(𝑘−1)

𝜆+[𝜑2(𝑘)]2  

And the updating law of 𝜑𝑓,𝐿𝑦,𝐿𝑢
𝑇 (𝑘) = [𝜑1 𝜑2 𝜑3]T can be directly referred to Eq. (11) in this paper. Controlling batch 

operations with the suggested PSO-MFAC controller; The PSO algorithm first initializes the control parameters of the 

MFAC controller, such as 𝜑1、𝜑2、𝜑3、𝜂、𝜇𝐶、𝜌and 𝜆. Second, the MFAC's dynamic linearization adaptive 

mechanism continually updates the 𝜑1, 𝜑2 and 𝜑3 at different points in the batch process to adjust to the time-varying 

dynamics of the system. Finally, batch simulation of a typical fermentation process is used to investigate the control effect 

of the proposed PSO-MFAC. 

The implementation flowchart of the PSO-MFAC method used for batch simulation of the fermentation process is 

shown in Figure 3. The main steps of its implementation are: 

Step 1:  Take the fermentation tank as the object, with a batch running for 80 hours and a cycle of 0.5 hours. 

Step 2:  Build an MFAC control system for the fermentation process. 

Step 3:  Select the 7 MFAC control parameters that need to be optimized (ϕ1, ϕ2, ϕ3, η, μ, ρ, λ); 

Step 4:  Use the PSO algorithm to optimize the seven parameters in Step 3. PSO initializes the seven particle parameters 

corresponding to them. The particle information includes the position of the particle itself, the positions of the 

particle group, and the search speeds of these particles. 

Step 5:  Select 𝐽3 as the PSO algorithm optimization fitness function for the fermentation process MFAC system. 

Step 6:  By calculating the fitness function value of PSO optimization, continuously compare 𝑝𝑖  and 𝑝𝑔 to update the 

particle's position 𝑧𝑖   and velocity𝑠𝑖 until the end of the iteration. 

Step 7:  Obtain the optimal indicator value 𝐽3 = 𝑝𝑔 and the particle positions (7 parameter values of MFAC) 

corresponding to 𝑝𝑔; 

Step 8:  End. 

Start

Initialize 7 particles (include population 

positions,  search speeds) of the PSO algorithm

MFAC with 7 Parameters (ϕ1, ϕ2, ϕ3, η, μ, ρ, λ )

Correspond to

Fermentation Process (80h/batch, 0.5h/sample)

Apply to

Index J3  for the MFAC system of fermentation process

(As the PSO fitness function)

Calculate Pi and Pg of PSO algorithm

(Pg is the optimal value for J3)

Update Zi and Si according to 

equations (13) - (15)

Obtain Pg and corresponding 

MFAC parameters

T < Tmax

PSO-MFAC

for Fermentor

End
 

Figure 3. Implementation flowchart of PSO-MFAC control in batch fermentation process 

2.4 Batch Fermentation Process   

The simulation environment for this article is Matlab R2010a (version 7.10), with a CPU frequency of 2.6 GHz and 

8.0 GB of memory. Using the m file of Matlab for programming implementation, the used data can be obtained through 

the mechanism mathematical model (mathematical differential equation) of the fermentation process. Taking the 

fermentation process as an example for batch simulation, the fermentation process used is a typical nonlinear process with 

time-varying characteristics. Studying a simple and efficient fermentation process control method and applying it to a 

practical biological fermentation experimental set-up can improve the control quality of bacterial mass concentration in 

the fermentation process, ultimately affecting the product quality and energy consumption in the production process, 
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which is related to the production efficiency of enterprises and has important engineering application value. The following 

mathematical differential equations can be used to characterize the investigated batch fermentation process to confirm the 

suggested approach's viability and efficacy. [29-31]: 

𝑑𝑋

𝑑𝑡
= −𝐷𝑋 + 𝜇𝑋 (18) 

  
𝑑𝑆

𝑑𝑡
= 𝐷(𝑆𝑓 − 𝑆) −

𝜇𝑋

𝑌𝑋/𝑆

 (19) 

  
𝑑𝑃

𝑑𝑡
= −𝐷𝑃 + (𝛼𝜇 + 𝛽)𝑋 (20) 

  

𝜇 =
𝜇𝑚(1 − 𝑃/𝑃𝑚)𝑆

𝐾𝑚 + 𝑆 + 𝑆2/𝐾in

 (21) 

In the formula, the substrate concentration, product concentration, and flow-added substrate concentration are 

expressed as S, P, 𝑆𝑓 respectively, D is the dilution rate of the fermentation process, and X is the bacterial concentration 

of the fermentation process. 𝜇 is the bacterial growth rate of the fermentation process, which is mainly used to reflect its 

inhibitory effect on the substrate and the product in the fermentation process. Additionally, expressed in terms of 𝜇𝑚, 𝑃𝑚, 

𝐾𝑚, 𝐾in and 𝑌𝑋/𝑆 are the highest rate of growth of the bacterium, the coefficient of product saturation, the constant 

of substrate saturation, the constant of substrate inhibition and the rate coefficient of the bacterium's yield to the substrate 

during the fermentation process. Nevertheless, α and β represent the fermentation reaction process's kinetic parameters, 

and specific parameter values and operating conditions can be obtained from the study of Henson and Seborg [29]. The 

process input variable is usually chosen as the dilution rate (D). The concentration of bacterial (X), the concentration of 

substrate concentration(S), and the produced substance concentration (P) can all be used as process output variables. It 

has been shown that if the dilution rate (D) of the fermentation process is reasonably adjusted to control the bacterial 

concentration (X), to obtain the optimum capacity of production [29], therefore, the concentration of bacterial (X) was 

chosen as the variable for process output [19].  

D

D
Sf

PSO-MFAC

Controller

X,S,P  

Figure 4. Schematic diagram of batch fermentation process PSO-MFAC control 

Figure 4 depicts the batch process control scheme, where controlling X is accomplished by modifying D. The batch 

fermentation process is decomposed into four subintervals using the control scheme, and PSO-MFAC control is 

performed 20 hours on the fermentation process with a sub-process time to investigate the affiance of a time-by-time 

optimal control effect that can be obtained under time-varying process parameters.  

3.0 RESULT AND DISCUSSION 

3.1 Pseudo-Partial Derivative Parameters of PSO-MFAC 

Regarding the batch process control issue, the control performance is improved by obtaining high-quality control 

parameters through reasonable and effective performance indicators [32]. In order to realize the adaptive control of PSO-

MFAC controller for a batch process, firstly, a set of MFAC parameters were selected to be optimized by the PSO 

algorithm in a certain target range (e.g., desired target concentration of batch fermentation process, Xk
set =4.5~5.0), with 

a batch time of 40 hours, a sampling time of 0.5 hours, and a sampling moment of 0.05 hours, as shown in Table 1. The 

PSO algorithm was employed to enhance the optimization of the control parameters of MFAC and design the PSO-MFAC 

controller. Under the condition of concentration Xk
set = 5.0 and no parameter time-variation, the tracking control effect 

for 20 hours is shown in Figure 5. The corresponding online self-adjustment of the PPD parameters of the MFAC 

controller is shown in Figure 6. The cognitive scaling factor (φ1) represents the influence of a particle’s personal best-

known position (pbest) on its updated velocity, whereas the social scaling factor (φ2) represents the influence of the global 

best-known position (gbest) on a particle’s updated velocity. These parameters φ1 and φ2 define the degree to which a 

particle updates its position under the influence of its own prior performance (exploration) and the best-known solution 
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in the entire swarm (exploitation) with the value of 0.7416 and -1.1219, respectively. The inertia weight (φ3) parameter 

governs the balance between exploration and exploitation [33]. A higher φ3 value favors exploration, while a lower value 

favors exploitation. A higher φ3, often in the range of 0.9 to 1.0 or even higher, encourages more search space exploration. 

This can be useful to investigate a greater range of control actions to quickly react to significant changes in the system’s 

behavior. Meanwhile, A lower φ3, commonly ranging from 0.1 to 0.4 or perhaps lower, facilitates the prioritization of 

exploiting the most optimal options. The utilization of the PSO-MFAC controller can facilitate the convergence towards 

optimal or near-optimal control actions, particularly when the system dynamics exhibit a certain degree of stability. 

Therefore, the obtained value of φ3 was 0.0083, indicating that the φ3 has a lower value, proves the PSO-MFAC controller 

favors the exploitation for the optimal option. 

Table 1. Parameters of the MFAC controller operating the algorithm of PSO for xk
set=4.5 to 5.5 

Parameter Value 

𝜑1 0.7416 

𝜑2 -1.1219 

𝜑3 0.0083 

𝜂 -0.2431 

𝜇𝐶 0.5042 

𝜌 0.6396 

𝜆 0.5639 

 

 

Figure 5. PSO-MFAC set-point of performance tracking at Xk
set=5.0 

 

 

Figure 6.  Three Pseudo-partial Derivative Parameters of PSO-MFAC controller for Xk
set=5.0 

3.2 Fermentation Process Of PSO-MFAC Controller 

Batch operations typically have time-varying process parameters and multi-stage sub-interval targets, such as the time-

varying, uncertain model parameter problem that is typical of fermentation processes [32]. The batch fermentation is 

assumed to have a homogeneous mixture, constant density/viscosity, perfect mixing, isothermal conditions, steady initial 

state, constant reaction kinetics, negligible gas-liquid mass transfer resistance, ideal sensors/actuators, and no external 

disturbances. Linearization assumes small deviations from equilibrium for approximating nonlinear dynamics. Two 

crucial factors, namely the maximal growth rate (𝜇𝑚) and the coefficient of bacterial yield to substrate (𝑌𝑋/𝑆), are 

particularly significant to most bio-reaction processes. These parameters are variable and can alter the reaction process's 
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usual course. [32,34]. It has been shown [12,32] that 𝜇𝑚 and 𝑌𝑋/𝑆 , if they are out of a certain range, the controller is no 

longer able to regulate them. The time-varying controllable range of 𝜇𝑚 and 𝑌𝑋/𝑆 is shown in Table 2. 

Table 2. The range of 𝜇𝑚and 𝑌𝑋/𝑆 with xk
set =4.5~7 for the batch fermentation process 

Xk
set 4.5 5.0 5.5 

𝜇𝑚 0.48~0.50 0.48~0.50 0.45~0.50 

𝑌𝑋/𝑆 0.4~0.6 0.4~0.52 0.4~0.51 

In general, control performance is measured in terms of the common ISE metric (Integral Square Error, Integral Square 

of Error): 

ISE = ∑|𝑒(𝑘)|2

�̃�

𝑘=1

 (22) 

with the aim of verifying the efficacy of the projected PSO-MFAC control, considering the uncertainty of the time-varying 

parameters in the above batch fermentation process at 𝜇𝑚=[0.48,0.65] and 𝑌𝑋/𝑆 = [0.3,0.55], the traditional PID [16], 

simple MFAC [18], and Auto-tuning neural PID (ANPID) [12] were used to compare with the proposed PSO-MFAC 

method, respectively. As a comparison, the formula structure of the traditional PID control and ANPID method used is 

as follows, that is: 

∆𝑢(𝑘) = 𝐾𝑝(𝑒(𝑘) − 𝑒(𝑘 − 1)) + 𝐾𝑖𝑒(𝑘) + 𝐾𝑑(𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)) (23) 

where, 𝐾𝑖 = 𝐾𝑝𝑡𝑠𝑇𝑖
−1 and 𝐾𝑑 = 𝐾𝑝𝑇𝑑𝑡𝑠

−1 denote the integral gain coefficient and the differential gain coefficient, 

respectively. 

The assessment of the control performance of the above four methods is presented in Table 3, and PSO-MFAC has a 

more favorable control effect due to its lowest ISE value, which is 1.1192 compared to the other methods. 

Table 3. Comparison of PSO-MFAC control performance and other methods for xk
set=4.5~5.5 

Method Time-varying Range ISE Value 

Traditional 

PID 

𝜇𝑚=0.48~0.65,𝑌𝑋/𝑆=0.3~0.55 2.9178 

Simple 

MFAC 

𝜇𝑚=0.48~0.65,𝑌𝑋/𝑆=0.3~0.55 1.9817 

ANPID 𝜇𝑚=0.48~0.65,𝑌𝑋/𝑆=0.3~0.55 1.1643 

PSO-MFAC 𝜇𝑚=0.48~0.65,𝑌𝑋/𝑆=0.3~0.55 1.1192 

Figures 7 to 10 represent the fluctuation of the process parameters μm and YX/S, depending on the control of process 

disturbances and noise. In Figure 7, due to the fact that parameter tuning usually relies on experience, conventional PID 

controllers have very average tracking control effects for nonlinear processes with time-varying parameters. The simple 

form of MFAC only considers the time-varying dynamic relationship between the output change and input change at a 

certain moment and has poor stability in the tracking process. As for the adaptive mechanism of the ANPID controller, 

the PID parameters can be dynamically adjusted according to the time-varying parameters of the nonlinear process, which 

has a good tracking control effect. The PSO-MFAC adopted fully utilizes the influence of input and output changes in a 

certain period of time in historical information on the output changes in the next moment. On the other hand, by using the 

PSO algorithm for intelligent optimization, high-quality control parameters are obtained, thus, the PSO-MFAC tracking 

curve is closer to the ideal trajectory than the other approaches, i.e., it has the best tracking control effect. Figure 8 depicts 

the equivalent MFAC pseudo-partial derivative online adaptive scenario, demonstrating that the PSO-MFAC controller 

may update the control parameters to obtain superior tracking control. Analyzing the cases in Figures 7 and 8, the proposed 

PSO-MFAC controller is capable of adaptively regulating the batch process based on real-time information to satisfy the 

state requirements of the corresponding sub-processes as soon as the desired value changes, the step disturbance occurs, 

and the noise occurs. As the process operation time progresses, the suggested PSO-MFAC control system has a superior 

time-by-time convergent control effect. 
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Figure 7. The Comparison of PSO-MFAC Tracking performance and other methods in batch process 

 

 

Figure 8. PSO-MFAC control parameters of the batch process 

Figure 9 illustrates the time-varying behavior of μm against time in batch processing. The time-varying behavior of a 

batch process's maximum growth rate, particularly in the context of a PSO-MFAC system, refers to how the system's rate 

of optimizing and adapting to changing conditions develops over time. The μm is frequently employed to refer to the rate 

of convergence or optimization of the PSO algorithm. In the context of PSO-MFAC applied to a batch process, there are 

several factors that can contribute to the occurrence of time-varying behavior in the maximum growth rate, such as process 

dynamic, PSO-MFAC parameters, exploitation and exploration, feedback and measurement noise and batch phases. The 

plot in Figure 9 proves that the growth rate has increased over time since the value of μm was 0.5-h at time 0 hour, whereas 

by the time of 80 hours of batch processing, the value of μm has risen to 0.58-h.  

 

Figure. 9. Time-varying behavior of 𝝁𝒎 of the batch process 

Meanwhile, Figure 10 demonstrates the time-varying behavior towards Yx/s. During a batch process, the time-varying 

behavior of the Yx/s comprises real-time control parameter optimization to ensure that the system adapts to changing 

circumstances. The plot shows that at 0 hour to 20 hours was the initial state with the value of 0.4-h in range. During the 

initial stage of the batch process, it is common for the Yx/s to reach its maximum value. This is mostly attributed to the 

presence of a higher amount of substrate and the bacteria being in a period of exponential growth. The growth phases of 

the bacteria influence the time-varying behavior of the Yx/s. The coefficient may decrease when the bacteria progress from 

the exponential growth phase to the stationary phase, as shown in the plot at time 60 hours to 80 hours. In addition, 
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considering the control problems of batch processes that may exist in the cases of expectation setting, repetitive operation, 

and under incomplete process information, further research directions include parameter optimization for data-driven 

setting tuning MFAC [35], data-driven control in a two-dimensional framework [36], control methods under incomplete 

information [37], control methods based on active learning [38] dynamic data reconciliation [39], etc. 

 

Figure 10. Time-varying behavior of YX/S for the batch process 

4.0 CONCLUSION  

Considering a number of processes are difficult to adequately model for control, establishing data-driven control 

methods for time-varying batch processes is a challenge of major practical significance. The suggested PSO-MFAC 

control approach is basic in structure and straightforward to implement, and it achieves good tracking control outcomes 

by updating the main controller parameters for nonlinear and time-varying parameter problems found in batch processes. 

In summary, compared with the traditional PID control, simple MFAC control and ANPID control methods, the PSO-

MFAC control method, with simple structure, is easy to realize and robust. The adoption of the PSO-MFAC method was 

predicated on its proven efficacy in handling nonlinearities and time-varying parameters in batch processes, as 

substantiated by prior studies. The proposed PSO-MFAC control scheme is an effective and feasible control method for 

the nonlinear and time-varying parameter problems of batch processes. 
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