
DATA ANALYTICS AND APPLIED MATHEMATICS (DAAM) 
e-ISSN: 2773-4854
VOL. 3, ISSUE 1, 028 – 041
DOI: https://doi.org/10.15282/daam.v3i1.7594

28 *CORRESPONDING AUTHOR  | Darmawati |   darmath@unsulbar.ac.id
© The Authors 2019. Published by Universiti Malaysia Pahang Publishing. This is an open access article under the CC BY license. 

ORIGINAL ARTICLE 

Stability, cost-effectiveness, and global sensitivity analysis of COVID-19 model 
incorporating non-pharmaceutical interventions and indirect transmission 
Darmawati1*, W. Nur1

1Department of Mathematics, Universitas Sulawesi Barat,  91414 Majene, Indonesia 

ARTICLE HISTORY 
Received:04/01/2022 
Revised: 03/03/2022 
Accepted: 30/03/2022 

KEYWORDS 
Stability analysis 
Optimal control 
Cost-effectiveness 
Global sensitivity 
Covid-19 

INTRODUCTION 
Covid-19 is an ongoing pandemic which is caused by SARS-CoV-2 infection [1]. At the end of December 2019, 

Wuhan Health Commission reported the outbreak of unknown pneumonia [2]. However, the cases occur since December 
8, 2019 in Wuhan, China [1]. It is stated that this disease is the third coronavirus crisis since 2002 [2]. SARS-CoV-2 
belongs to the Coronaviridae family [3]. It is well known that coronavirus primarily targets human respiratory system [4]. 
SARS-CoV-2 is highly infectious and has spread to no less than 200 countries. This is the reason why WHO stated that 
covid-19 is a global threat (pandemic) [5]. 

In the beginning of the outbreak, it is believed that the transmission occurs from infected animal to human. However, 
it is now clear that the transmission occurs due to close contact or exposure to virus [3]. The transmission caused by 
sneezing, coughing, and sometimes talking is classified as direct transmission [6]. To reduce covid-19 spread, social 
distancing should be practiced [1], [5]. Ong et al. [7] and Wu et al. [8] stated that contaminated environment with infected 
person’s droplet potentially becomes a medium of transmission.  Based on this information, the transmission may occur 
even though  there is no a direct interaction between infected person and uninfected person. Therefore, we can say that 
this transmission mechanism is indirect transmission. To reduce covid-19 transmission, some researchers have 
recomended that we should not touch our eyes, mouth, and nose with unwashed hand [5]. In addition, the infected 
individuals should cover their mouth and nose by using tissue or mask [3] 

One of the covid-19 mathematical models proposed in the beginning of the outbreak is discussed in [9]. The authors 
investigate the impact of mask use in reducing covid-19 burden. Mathematical model related covid-19 are also discussed 
in [10]–[18]. Several models proposed in these papers do not take into account the indirect transmission. The impact of 
non-pharmaceutical aproach on the spread of covid-19 is discussed in [11], [12], [15], [18].  Some of these papers also 
present optimal control problem [11-14], [16], [18].  

In this paper, we propose covid-19 model considering mask-wearing, handwashing, social distancing, direct and 
indirect transmission. The main objectives of this work are to investigate the impact of non-phartmaceutical interventions 
on the spred of covid-19 when direct and indirect transmission are considered. To further explore the impact of indirect 
transmission of covid-19 and the effectiveness of non-pharmaceutical interventions, in this article, we discuss a cost-
effectiveness analysis and global sensitivity analysis. Cost-effectiveness analysis is carried out by calculating the average 
cost-effectiveness ratio (ACER) of each intervention. The method given in [19] is used in performing the global sensitivity 

ABSTRACT – Covid-19 is an ongoing pandemic caused by SARS-CoV-2. Some interventions 
are implemented to control the spread of the disease. In Indonesia, there is a campaign related to 
non-pharmaceutical approach called 3M. This campaign is carried out so that people use masks, 
wash their hands, and keep their distance. In this paper, we propose a mathematical model 
considering non-pharmaceutical interventions and indirect transmission. The non-pharmaceutical 
interventions studied are the implementation of mask-wearing, handwashing, and social distancing. 
The model is presented as a system of first-order differential equations. The basic reproduction 
number is determined. The system has two equilibrium points, namely the disease-free equilibrium 
point and the endemic equilibrium point. The local stability condition of the disease-free equilibrium 
point is proved using the Lienard-Chipart criterion. Center manifold theory is used to prove the local 
stability condition of the endemic equilibrium point. We also study the optimal control strategy 
related to mask-wearing, handwashing, and social distancing. Furthermore,  cost-effectiveness 
analysis of intervention strategies is also conducted by studying the average cost-effectiveness 
ratio of each intervention strategy. Our results show that the most effective strategy to control covid-
19 spread is the combination of mask-wearing, handwashing, and social distancing. Moreover, the 
most cost-effective strategy is mask-wearing intervention. Global sensitivity analysis is performed 
by studying the partial rank correlation coefficient. The results show that mask-wearing intervention 
is the most influential intervention on basic reproduction number compared to social distancing and 
handwashing. 
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analysis.The paper is established as follows. The model construction is discussed in section 2. In section 3 and section 4, 
we present the basic properties of our proposed model and the basic reproduction number obtained, respectively.  Stability 
analysis is discussed in section 5. In section 6, we study the optimal control problem of proposed model. Numerical 
simulation results for optimal control problem, cost-effectiveness analysis, and global sensitivity analysis are presented 
in section 7. 

MODEL CONSTRUCTION 
In this section, we describe the model construction process. Firstly, we divide the human population into four 

compartments, namely susceptible human (S ) , latent human (L) , infectious human ( I ) , and recovered human (R) . V
represents SARS-CoV-2 on the surface of objects. The schematic diagram can be seen in Figure 1. 

Figure 1. Schematic diagram. 

The reduction in the number of susceptible humans happens due to direct and indirect transmission. We assume that 
direct transmission is affected by social distancing and indirect transmission is affected by handwashing. The dynamic of 
susceptible human compartment is represented by the following ordinary differential equation. 

( ) ( )1 1 2 21 1 ,h
dS u SI u SV S
dt

β β µ= Ω− − − − −  

where Ω is recruitment rate of susceptible humans, 1u is proportion of susceptible humans who implement social
distancing, 2u is proportion of susceptible humans who impelement handwashing, 1β  is transmission rate from infectious
humans to susceptible humans, 2β is infection rate of viruses, and hµ is the natural death rate of human. Susceptible 
humans who are infected through direct transmission or indirect transmission become latent humans. After completing 
the latent period, the latent humans leave latent human compartment and move to infectious human compartment. Further, 
latent humans are also reduced due to natural death. The dynamics of laten human compartment is described by the 
following differential equation. 

( ) ( )1 1 2 21 1 ,h
dL u SI u SV L L
dt

β β γ µ= − + − − −  

where is 
Latent period

1γ = . Infectious humans who have recovered leave the infectious human compartment and move 

to the recovered human compartment. Thus, the dynamic of  infectious human compartment is represented by the 
following equation 

,h
dI L I I
dt

γ σ µ= − −  

where σ is recovery rate. The recovered human compartment dynamics is described by 

.h
dR I R
dt

σ µ= −  

v

The increase in the number of SARS-CoV-2 in the environtment occurs due to droplets released by infectious humans. 
Therefore, the amount of virus released by infectious humans is affected by the use of masks. Further, the amount of virus 
on the surface of the object is reduced due to the natural death of the virus (µ ) . Therefore, the dynamics of SARS-CoV-
2 on the surface of objects is represented by equation 
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( )31 ,v
dV u I V
dt

α µ= − −  

where 3u is the proportion of infectious human who use mask and α is  the average amount of  SARS-CoV-2  released
by one infectious person per day. Therefore, the model obtained from the model construction process above is expressed 
as 

( ) ( )

( ) ( )

( )

1 1 2 2

1 1 2 2

3

1 1 ,

1 1 ,

,

.

1 ,

h

h

h

h

v

dS u SI u SV S
dt
dL u SI u SV L L
dt
dI L I I
dt
dR I R
dt
dV u I V
dt

β β µ

β β γ µ

γ σ µ

σ µ

α µ

= Ω− − − − −

= − + − − −

= − −

= −

= − −

(1) 

where 1 2 3, , [0,1)u u u ∈ , 0Ω > ,  and the other parameters are positive. We assume that the control parameter never reaches 
1 because there are always groups of people who are ignorant of the appeal to use masks, wash hands, and keep a distance. 

BASIC PROPERTIES AND EQUILIBRIUM POINTS 
In this section, we present the basic properties and equilibrium points of system (1). 

Theorem 1. If initial values given are non-negative, then the solutions of system (1) are non-negative and bounded. 
Proof. Firstly, we show that the invariant region of system (1) is 5

0R+ . From system (1), we get 

( ) ( )

( )

0, 0, 0, 0, 0

1 1 2 1
0, 0, 0, 0, 0

0, 0, 0, 0, 0

0, 0, 0, 0, 0

3
0, 0, 0, 0, 0

0,

1 1 0,

0,

0.

1 0.

S L I R V

S L I R V

S L I R V

S L I R V

S L I R V

dS
dt

dL u SI u SV
dt

dI L
dt

dR I
dt

dV u I
dt

β β

γ

σ

α

= ≥ ≥ ≥ ≥

≥ = ≥ ≥ ≥

≥ ≥ = ≥ ≥

≥ ≥ ≥ = ≥

≥ ≥ ≥ ≥ =

= Ω >

= − + − ≥

= ≥

= ≥

= − ≥

Since 0idx
dt

≥  for 0ix = and 0j ix ≠ ≥  where , 1, 2,3, 4,5i j = , 1x S= , 2x L= , 3x I= , 4x R= , 5 ,x V= based on 

Lemma 2 in [20], we conclude that 5
0R+  is invariant set of system (1). It is indicated that the solutions of system (1) are 

in 5
0R+  if initial conditions given are in 5

0R+ .  Hence,  if initial values given are non-negative, then the solutions of system 
(1) are non-negative.

Now we prove that the solutions of system (1) are bounded if initial values given are non-negative. We already stated
that human population is divided into four disjoint compartments, i.e. , , ,S L I R . Hence, we get N S L I R= + + + , where 
N is the total number of human. From the first four equations of system (1), we have 

.h
dN N
dt

µ= Ω−  (2) 

It clear that (2) is the first-order linear differential equation. After solving (2), we have ( )
h

N t
µ
Ω

≤ . This result implies 

that ( )
h

I t
µ
Ω

≤ . From the last equation of system (1), we have 
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( )

( )

3

3

1

1 .

v

v
h

dV u I V
dt

u V

α µ

α µ
µ

= − −

Ω
≤ − −

Based on Gronwall inequality, it is proved that V is bounded, i.e., ( ) ( )31

h v

u
V t

V
α

µ µ
− Ω

≤ . The proof is completed.  

To determine the equilibrium points, we set the left hand side of system (1) equal to zero and determine the resulted 
system solutions. There are two equilibrium points of the system, i.e., disease-free equilibrium point 

( )* * * * *
0 , , , , ,0,0,0,0

h
S L I R V µ

 ΩΓ = =  
 

and endemic equilibrium point ( )** ** ** ** **
1 , , , ,S L I R VΓ = , where 

( )( )

( )

( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

( )

( )
( )( )

( ) ( )
( )( )

**
**

**
**

**

1 1 2 2 3
**

**

**
3**

2 2 31 1

,

,

1
,

1 1 1

,

1
,

1 11
.

h h

h

h

e h v h h

h h h h

h

v

e
h h h h v h h

I
S

I
L

R
I

u u u

IR

u I
V

u uu
R

γ γ µ σ µ
µ γ

σ µ
γ

µ µ γ µ σ µ
β γ µ σ µ β α γ µ σ µ

σ
µ

α
µ

β α γβ γ
µ γ µ σ µ µ µ γ µ σ µ

Ω − + +
=

+
=

− + +
=

− + + + − − + +

=

−
=

− − Ω− Ω
= +

+ + + +

It is easy to see that 0Γ  always exists in 5
0R+ . Furthermore, 1Γ  exists in 5

0R+  if 1eR > . In the next section we show 
that the existence condition of 1Γ  is totally dependent on the basic reproduction number. 

BASIC REPRODUCTION NUMBER 
The reproduction number is obtained using next generation matrix described in [21]. The infected compartments are 

, ,L I V . Hence, we get the following next-generation matrix 
( )

( )( )
( ) ( )

( )( )
( )

( )
( ) ( )

( )
( )2 2 3 2 2 31 1 1 1 2 2

1

1 1 1 11 1 1

0 0 0 .
0 0 0

h h h h v h h h h h v h h v

u u u uu u u

FV

β α γ β αβ β γ β
µ γ µ σ µ µ µ γ µ σ µ µ σ µ µ µ σ µ µ µ

−

 − − Ω − − Ω− Ω − Ω − Ω
+ + 

+ + + + + + 
 =  
 
  
 

 

The characteristic polynomial of 1FV −  is 

( ) ( )
( )( )

( ) ( )
( )( )
2 2 31 12 1 11

.
h h h h v h h

u uu
P

β α γβ γ
λ λ λ

µ γ µ σ µ µ µ γ µ σ µ

  − − Ω− Ω
= − +    + + + +  

 

Following [21], the reproduction number is given by 

0 0 0 ,a bR R R= +

where 

( )
( )( )

( ) ( )
( )( )
2 2 31 1

0 0
1 11

, .a b

h h h h v h h

u uu
R R

β α γβ γ
µ γ µ σ µ µ µ γ µ σ µ

− − Ω− Ω
= =

+ + + +
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Notice that the basic reproduction number consists of two terms. The first term ( )0
aR  relates to direct transmission by 

infectious humans while the second term ( )0
bR relates to indirect transmission that occurs due to the presence of viruses 

on the surface of objects. The first term denotes the secondary case produced by an infectious human during his infectious 
period. Meanwhile, the second term represents the secondary case produced by the virus during its lifetime on the surface 
of the object. It is clear that 0eR R= . Hence, 1Γ  exists in 5

0R+  if 0 1R > . 

STABILITY ANALYSIS 
Theorem 2. If 0 1R <  then 0Γ  is locally asymptotically stable. If 0 1R =  then one eigenvalue of Jacobian matrix of 
system (1) at 0Γ  is zero. If 0 1R >  then 0Γ  is unstable. 
Proof. The Jacobian matrix of system (1) at 0Γ  is given by 

( )

( ) ( )
( ) ( ) ( )

( )

( )

* *
1 1 2 2

* *
1 1 2 2

0

3

0 1 0 1

0 1 0 1
.0 0 0

0 0 0
0 0 1 0

h

h

h

h

v

u S u S

u S u S
J

u

µ β β

γ µ β β
γ σ µ

σ µ
α µ

 − − − − −
 
 − + − −
 Γ = − + 
 −
  − − 

 

The characteristic equation of ( )0J Γ  is

( ) ( ) ( )2
1 ,hH Hλ λ µ λ= +  

where 

( )
( ) ( )
( )( )( )
( ) ( )( )

3 2
1 1 2 3

1

2 0

3 0

,

,

1 ,

1 .

h h v

a
h h v

v h h

H h h h

h

h R

h R

λ λ λ λ

γ µ σ µ µ

γ µ σ µ µ

µ γ µ σ µ

= + + +

= + + + +

= + + + −

= − + +

Notice that ( )0J Γ  has two negative eigenvalues i.e. 1 2 hλ λ µ= = − . Since 1 2 3, , [0,1)u u u ∈  and the other parameters

are positive, it is clear that 0 0, 0a bR R > . Hence, 0 1R <  implies 0 0, 1a bR R < . Thus, if 0 1R <  then 1 2 3, , 0h h h > . Obviously, 
if 0 1R >  then there is a sign change in the sequence of ( )1H λ coefficient. Hence, based on Descartes' sign rule [22],
there is a positive eigenvalue if 0 1R > . Thus, 0Γ is unstable if 0 1R > . 

We observe that if 0 1R =  then 3 0h = . This result suggests that ( )0J Γ  has simple zero eigenvalue if 0 1R = . Now,
we use Lienard-Chipart criterion to prove the local stability condition of 0Γ . Based on Lienard-Chipart criterion [23], 

0Γ is locally asymptotically stable if 1 1 2 3 30, 0, 0h h h h h> − > > . Clearly, 1 0h > . Moreover, if 0 1R <  then 3 0h > . We 
can show that 1 2 3 0h h h− > that is 

( ) ( )( ) ( )( )( )( )( )
( ) ( )( ) ( ) ( )

1 2 3 0

2 *
3 2 2

1

1 1 .

a
h h v h h

v h h

h h h R

u u S

γ µ σ µ µ γ µ σ µ

µ γ µ σ µ αγ β

− = + + + + − + +

+ + + + + − −

1

1

Certainly, if  R0 < 1 then h h1 2  h3− > 0 . Therefore, based on Lienard-Chipart criterion [23], if  R0 < 1 then Γ0 is locally 
asymptotically stable.  

Theorem 3. The endemic equilibrium point Γ1 is locally asymptotically stable if R0 > 1 . 

Proof.  It has been shown that J (Γ0 ) has simple zero eigenvalue if R0 = 1 . Therefore, we can use the method
proposed in [24] to prove that there is a positive equilibrium point which is locally asymptotically stable when R0 > 1 . 
Based on Theorem 2, R0 = 1 is a critical point of stability of the disease-free equilibrium point because one of the 
eigenvalues of the Jacobian matrix of the system at Γ0 is 0. Firstly, we choose β as bifurcation parameter. It is easy to 
show that critical point of β that is equivalent to R0 = 1 is 
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( ) ( )( )
( )

*
1 0

1
1 .

1
h h hbR

u
γ µ σ µ µ

β
+ +

= −
− Ω

 

It is easy to check that ( )*
0 1,J βΓ  has simple zero eigenvalue. Next, we determine the left eigenvector v and

right  eigenvector w  of ( )*
0 1,J βΓ  corresponding to zero eigenvalue. We get 

( ) ( ) ( )( )
( )

( )
( )

( )
( )

( )

* * *
1 1 2 2 3 2

1 1

3
2 2 2

2
3 3 3

2
4 4

*
3 22 2 3

5 5

1 1 1
0, ,

, ,

, ,

0, ,

11
, ,

v

h v h

h

h

h h

v h v h

u S u S u w
v w

v
v w w

wv v w

wv w

u wu S v
v w

β µ β α γ

µ µ σ µ

γ
γ µ

γ
σ µ

σγ
µ σ µ

αγβ γ
µ γ µ µ σ µ

− + − −
= = −

+

= =
+

= =
+

= =
+

−−
= =

+ +

where 3v is arbitrarily positive and 2w is determined when . 1v w =
  . It is straightforward to show that 2 0w > . Before

aplying theorem 4.1 in [24], we set 1 2 3 4 5, , , ,x S x L x I x R x V= = = = =  and i
i

dx
f

dt
=  for 1, 2,3, 4,5i = . Hence, we get 

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( )
( )

2 * * * *
2 0 1 1 1 2 2 3 2 *3 2

2 1 3 1
1 3

2 * * * *
2 0 1 1 1 2 2 3 2 *3 2

2 3 2 1
3 1

, 1 1 1
0,

, 1 1 1
0,

v

h h v h h

v

h h h v h

f u S u S u wv wv w w
x x

f u S u S u wv wv w w
x x

β β µ β α γγ γ
β

γ µ µ µ σ µ σ µ

β β µ β α γγ γ
β

γ µ σ µ µ µ σ µ

 ∂ Γ − + − −    = − <    ∂ ∂ + + +    
 ∂ Γ − + − −   = − <   ∂ ∂ + + +   

( )2 *
2 0 1 3 2

2 3
3

,
0.

h h h

f v wv w
x

β γ γ
β γ µ σ µ µ

∂ Γ    Ω
= >  ∂ ∂ + +  

These results imply 

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( )

2 * * * *5 0 1 1 1 2 2 3 2 *3 2
1

, , 1

* * *
1 1 2 2 3 2 *3 2

1

2
0 1

, 1 1 1

1 1 1

0,

,

k v
k i j

i j h h v h hk i j

v

h h h v h

k
k i

f u S u S u wv wa v w w
x x

u S u S u wv w

f
a v w

β β µ β α γγ γ
β

γ µ µ µ σ µ σ µ

β µ β α γγ γ
β

γ µ σ µ µ µ σ µ

β

=

 ∂ Γ − + − −    = = −    ∂ ∂ + + +    
 − + − −   −   + + +   

<

∂ Γ
=

∑

( )*5
3 2

, , 1

0.
i h h hk i j

v w
x

γ γ
β γ µ σ µ µ=

   Ω
= >  ∂ ∂ + +  

∑

1Based on Theorem 4.1 in [24], forward bifurcation occurs at β * which is equivalent to R0 = 1 . Therefore, it is proved 
that Γ1 is locally asymptotically stable if R0 > 1 .  

OPTIMAL CONTROL PROBLEM AND COST-EFFECTIVENESS ANALYSIS 
In this section, we study optimal control stategy with u u1 2, ,u3  as the control parameters. Our optimal control 

model is system (1). Our objective is to minimize the number of linfected humans (latent human + infectious human) 
and the number of SARS-CoV-2 on the surface of objects. Furthermore, we also want to minimize the intervention 
cost related to mask-wearing, handwashing, and social distancing. Therefore, we choose the following objective 
function. 
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( )1 2 3
0

, , , , , ,
T

F L I V u u u G dt= ∫  

where 2 2 2
1 2 3 4 1 5 2 6 3 .G D L D I D V D u D u D u= + + + + + + 1D , 2D , and 3D  are balancing cost factor for handling latent 

human, infectious human, and SARS-CoV-2 on the sufrace of objects, respectively. Meanwhile, 4D , 5D , 6D are costs 
of implementing control 1u , 2u , and 3u , respectively. 
The hamiltonian function is given by 

( )

( ) ( )( )
( ) ( )( )
( )
( )
( )( )

1 2 3 1 2 3 4 5

2 2 2
1 2 3 4 1 5 2 6 3

1 1 1 2 2

2 1 1 2 2

3

4

5 3

, , , , , , ,

1 1

1 1

1 .

h

h

h

h

v

dS dL dI dR dVS L I R V u u u G k k k k k
dt dt dt dt dt

D L D I D V D u D u D u

k u SI u SV S

k u SI u SV L L

k L I I

k I R

k u I V

β β µ

β β γ µ

γ σ µ

σ µ

α µ

Η = +

= + + + + + +

+ Ω− − − − −

+ − + − − −

+ − −

+ −

+ − −

 

Thus, the control system is given by (1), while the adjoint system is as follows 

( )( ) ( )( )

( )

( ) ( ) ( ) ( )

( ) ( )

1
1 2 1 1 1 2 2 2 1

2
1 2 3

3
2 1 1 1 2 1 1 3 5 3

4
4

5
3 1 2 2 2 2 2 5

1 1 ,

,

1 1 1 ,

,

1 1 ,

h

h

h

h

v

dk k k u I k k u V k
dt S
dk D k k
dt L

dk
D k u S k u S k k u

dt I
dk k
dt R

dk
D k u S k u S k

dt V

β β µ

γ µ γ

β β σ µ α

µ

β β µ

∂Η
= − = − − + − − +

∂
∂Η

= − = − + + −
∂
∂Η

= − = − + − − − + + − −
∂
∂Η

= − =
∂
∂Η

= − = − + − − − +
∂

 

where ( ) 0ik T =  for 1, 2,3, 4,5i = . Suppose max0,j ju u ∈    for 1, 2,3j = . Solving 0
ju

∂Η
=

∂
gives the optimal value of 

control paramters as follows 

( )

( )

2 1 1* max
1 1

4

2 1 2* max
2 2

5

* max5
3 3

6

min max 0, , ,
2

min max 0, , ,
2

min max 0, , .
2

k k SI
u u

D

k k SV
u u

D

k I
u u

D

β

β

α

 −    =    
    

 −    =    
    

   =    
   

Following[25], in this article, we use E to measure the effectiveness of each intervention strategy. 

( )
( )

0

( ) ( )
1 ,

( ) ( )

T L t I t
E dt

L t I t

 +
 = −
 + 
∫

 

(3) 

where L t( ) and I t( ) represent the number of latent humans and the number of infectious humans at time t , 
respectively, when the intervention strategy is applied. On the other hand, L t( ) and  I t( )  denote the number of latent 
humans and the number of infectious humans at time t , respectively, when no intervention is 
involved. Therefore, 

(L t( )  I+ t( )) (− L t( )I+ t( )) is the number of infected humans that have been avoided because of the intervention. From
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the objective function to be minimized, 2 2 2
4 1 5 2 6 3D u D u D u+ + + is the cost of the intervention. According to [26], average 

cost-effectiveness ratio of intervention can be determined using the following formula. 

Cost of interventionACER
The number of infected human averted

= (4) 

Therefore, following [27], we use the following equation to measure the ACER of intervention. 

( )

( ) ( )

2 2 2
4 1 5 2 6 3

0

0

ACER .

( ) ( ) ( ) ( )

T

T

D u D u D u dt

L t I t L t I t dt

+ + +

=

+ − +

∫

∫  

 (5) 

NUMERICAL SIMULATIONS 
We perform some numerical simulations using the parameter values given in the Table 1. The initial conditions used 

are ( )0 10000, (0) 1000, (0) 500, (0) 0, (0) 100000S L I R V= = = = = . 

Table 1. Parameter values. 
Symbol Values Unit Source 

Ω
510

70 365×
1person day−×  

Estimation 

1β  72.79 10−× 1 1person day− −×  [28] 

2β 114.3 10−× 1 1virus day− −×  [28] 

hµ
1

70 365×
1day−  

Estimation 

γ  1
2 7×

1day−  
Estimation 

σ  1
2 7×

1day−  
Assumption 

α  10000 1 1virus human day− −× ×  [29] 

vµ  1
5

1day−  
[28] 

The first simulation is performed using 1 2 3 0.2u u u= = = . The reproduction number obtained is 2.2364 1> . Further 

we get ** 19.4297L = and ** 19.4191I = . Based on Theorem 2 and Theorem 3, the disease-free equilibrium point is 
unstable and the endemic equilibrium point is locally asymptotically stable. This result suggests that ( , )L I tend to 
( , )19.4297 19.4191 . The numerical simulation result is given in Figure 2(a). Notice that the solution curve of L I+ tend 
to positive value, i.e., 38.8487 . Therefore, our theoretical and numerical simulation result are alike. 

For the second simulation, we perform the simulation using 1 2 3 0.8u u u= = = . The reproduction number obtained is 
0.1983 1< . Based on Theorem 2, the disease-free equilibrium point is locally asymptotically stable. This result implies 
that ( ),L I  tend to (0,0) . Notice that the solution curve L I+ shown in Figure 2(b) tend to zero. Therefore, our theoretical 
and numerical simulation result are alike. These results imply that non pharmaceutical approach can be used to control 
the spread of covid-19. We should use medical mask, keep our distance and wash our hands regularly. 
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(a). 0 1R >  (b) 0 1R <
Figure 2. Dynamics of infected human when 0 1R >  and 0 1R < . 

We now illustrate the forward bifurcation that occurs at *
1β . By using the set of parameter value used in the second 

simulation, we obtain * 6
1 3.1453 10β −= × . We set 6 6

1 1.5726 10 ,4.7180 10β − − ∈ × ×  . The result can be seen in Figure

3. Clearly, when *
1 1β β< , hI  tend to zero which implies that 0Γ  is asymptotically stable . On the other hand, hI  

converge to positive equilibrium which suggests that 1Γ  is asymptotically stable if *
1 1β β> . Furthermore, 0Γ  becomes 

unstable when *
1 1β β> . 

1Figure 3. Forward bifurcation diagram of system (1) at β * . 

Global sensitivity analysis 
A global sensitivity analysis is conducted using the method described in [19]. We generate latin hypercube sampling 

(LHS) matrix and determine partial rank correlation coefficient (PRCC) of each parameter. The number of simulations 
used is 20000. Figure 4 shows that parameter µ  , ,γ σ ,h vµ  ,u u,1 2 ,u3 have negative relationtionship with basic reproduction 
number, while Ω, ,β β1 2 ,α  have positive relationship. Notice that σ is the parameter that has the most influence on R0 
among the parameters that have negative relationship. Furthermore, it is clear that among the control parameters, u3 is 
the parameter that has the most influence on R0 followed by u2 . 
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Figure 4. PRCC values when measured against basic reproduction number. 

Optimal control and cost-effectiveness analysis 
In this subsection, we present the numerical solution of optimal cotrol problem and cost effectiveness analysis. We 

investigate seven intervention schemes as follows 

 Strategy 1: social distancing intervention only. In this strategy, we set 1 2 30, 0, 0u u u≥ = = .

 Strategy 2: handwashing intervention only. In this strategy, we set 1 2 30, 0, 0u u u= ≥ = .

 Strategy 3: mask-wearing intervention only. In this strategy, we set 1 2 30, 0, 0u u u= = ≥ .

 Strategy 4: social distancing and handwashing intervention.  In this strategy, we set 1 2 30, 0, 0u u u≥ ≥ = .

 Strategy 5: social distancing and mask-wearing intervention. In this strategy, we set 1 2 30, 0, 0u u u≥ = ≥ .

 Strategy 6: handwashing and mask-wearing intervention. In this strategy, we set 1 2 30, 0, 0u u u= ≥ ≥ .
 Strategy 7: social distancing, handwashing, and mask-wearing intervention. In this strategy, we set

1 2 30, 0, 0u u u≥ ≥ ≥ .

For the numerical simulations of optimal control problem, we choose 1 2 3 4 5 61, 3, 1, 5, 1, 1D D D D D D= = = = = = . 

Strategy 1 
The first simulation of the optimal control problem is performed to investigate the dynamics of the spread of covid-

19 when there is an intervention, namely social distancing. Figures 5(a) and 5(b) show the dynamics of infected human 
and virus on the surface of object, respectively. As we can see, the difference between the solution curves of the model 
involving control and the model not involving control is not meaningful even though 1u is at its maximum value as shown 
in Figure 5(c). When strategy 1 is applied, the number of infectious and latent humans on day 100 is 31 and 52, 
respectively. Meanwhile, the number of viruses is 3094869. It is smaller than  the number of infectious humans, latent 
humans, and viruses when no intervention is practiced. 

(a). ( ) ( )L t I t+  (b). ( )V t  (c). 1( )u t  
Figure 5. Dynamics of infected humans, viruses, and control profile when strategy 1 is applied. 
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Strategy 2 
To study the dynamics of the spread of covid-19 when only handwashing intervention is applied, we conduct 

numerical simulations. The dynamic of infected human and viruses can be seen in Figure 6(a) and 6(b). If strategy 2 is 
used with u2 at its highest value during the simulation period as seen in Figure 6(c), the number of latent humans, 
infectious humans, and viruses at the end of the simulation are 5, 14, and 954453, respectively. It is clear that there is a 
significant decrease in the number of infected humans  and viruses when strategy 2 is implemented. This is different from 
the results when strategy 1 is applied.  

(a). ( ) ( )L t I t+  (b). ( )V t  (c). 2 ( )u t  
Figure 6. Dynamics of infected humans, viruses, and control profile when strategy 2 is applied. 

Strategy 3 
The third simulation of optimal control problem is carried out to study the impact of implementing strategy 3 on the 

spread of covid-19. As we can observe in Figure 7(a), the dynamics of infected humans are similar to Figure 6(a). 
However, a significant difference is seen in the dynamics of the viruses as can be seen in Figure 7(b). The numerical 
simulation results show that the number of latent humans, infectious humans, and viruses on day 100 are 5, 14, 191095, 
respectively. It is clear that there is a very extreme decline in the number of viruses when compared to the number of 
viruses when strategy 1 or strategy 2 is involved. This happens because 80% of infected humans use masks during the 
simulation period as shown in figure 7(c). 

(a). ( ) ( )L t I t+  (b). ( )V t  (c). 3 ( )u t  
Figure 7. Dynamics of infected humans, viruses, and control profile when strategy 3 is applied. 

Strategy 4 
Now we discuss the results of the numerical simulation of the optimal control problem when implementing strategy 

4. It seems that the dynamics of infected humans and viruses as shown in Figures 8(a) and 8(b) are very similar to those
of Figures 6(a) and 6(b). Nevertheless, the numerical solution shows the number of  latent humans, infectious humans,
and viruses at the end of the simulation course is 3, 11, and 782673, respectively. It is clear that the difference in the
outcomes of implementing strategy 2 and strategy 4 is not significant even though 1u and 2u are at their maximum values 
during the simulation period as seen in Figure 8(c). 
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(a). ( ) ( )L t I t+  (b). ( )V t  (c). 1 2( ), ( )u t u t  
Figure 8. Dynamics of infected humans, viruses, and control profile when strategy 4 is practiced. 

Strategy 5 
Figure 9 shows the results of the numerical simulation of the optimal control problem when the intervention employed 

is social distancing and handwashing. Notice that the dynamics of infected humans (Figure 9a) and viruses (Figure 9b) 
are very similar to the results of the third numerical simulation as shown in Figure 7. However, if strategy 5 is applied, 
the number of latent humans, infectious humans, and viruses on day 100 are 3, 11, and 156712, respectively. Obviously, 
the prevalence of covid-19 is smaller than when strategy 3 is applied. Figure 9(c) shows that we have to keep control 3u  
at its maximum bound longer than 1u . 

(a). ( ) ( )L t I t+  (b). ( )V t  (c). 1 3( ), ( )u t u t  
Figure 9. Dynamics of infected humans, viruses, and control profile when strategy 5 is practiced. 

Strategy 6 
The sixth simulation is performed to see the impact of implementing strategy 6. As shown in Figures 10(a) and 10(b), 

the dynamics of the spread of covid-19 are very similar to those shown in Figures 9(a) and 9(b). If strategy 6 is applied, 
the number of latent humans, infected humans, and virus at day 100 are 2, 9, and 130252, respectively. It is clear that the 
number of infected humans and viruses when strategy 6 is applied is the smallest compared to the previous simulations. 
Figure 10(c) tells us that we should lower the control 2u first than 3u . 

(a). L t( ) + I ( )t  (b). (V t ) (c). u ( ),t u2 3 ( )t  

Figure 10. Dynamicss of infected humans, viruses, and control profile when strategy 6 is practiced. 

Strategy 7 
The last simulation of the optimal control problem is carried out to examine the dynamics of the spread of covid-19 

when strategy 7 is implemented. The dynamic of infected human and virus can be seen in Figure 11(a) and Figure 
11(b), 
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respectively. The number of latent human, infectious human, and virus are 1, 7, and 102878, respectively. Figure 11(c) 
shows that we should keep cotrol u3 at its maximum bound longer than u1 and u2 . Clearly, strategy 7 provides the best 
results compared to other strategies when viewed from the prevalence of covid-19. 

(a). ( ) ( )L t I t+  (b). ( )V t (c). 1 2 3( ), ( ), ( )u t u t u t  
Figure 11. Dynamics of infected humans, viruses, and control profile when strategy 7 is practiced. 

Cost-effectiveness analysis 
Table 2. ACER and Effectiveness of each strategy. 

Strategy ACER E
1 66.9972 10−× 0.0314 
2 72.1241 10−× 0.2076 
3 85.2684 10−×  0.8397 
4 61.1438 10−× 0.2312 
5 73.1291 10−× 0.8444 
6 71.0423 10−× 0.8468 
7 73.6212 10−× 0.8512 

Cost-effectiveness analysis is carried out by determining the ACER of each strategy using (5). In addition, we also 
determine the effectiveness of each strategy in reducing the infected humans by using (3). The results are given in the 
Table 2. Obviously, strategy 7 has the highest effectiveness, which is 0.8512. Based on Table 2, the most effective strategy 
in reducing the number of infected humans is strategy 7 followed by strategy 6. According to [25], the most cost-effective 
strategy is the strategy that has the smallest ACER. Therefore, we conclude that strategy 3 is the most cost-effective 
strategy followed by strategy 6.  

CONCLUSION 
In this paper, we propose covid-19 model considering non-pharmaceutical intervention and indirect transmission. The 

model has two equilibrium points. The existence and local stability condition of all equilibrium points are given and 
proved. Our results show that non-pharmaceutical approach can be used to control the covid-19 spread. Our results show 
that combination of social distancing, handwashing, and mask-wearing is the most effective strategy to control covid-19 
spread. Based on the ACER values, the most cost-effective strategy is mask-wearing. Furthermore, global sensitivity 
analysis result shows that parameter related to mask-wearing is the most influential parameter on basic reproduction 
number compared to parameter related to social distancing and handwashing. 
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