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INTRODUCTION 
In Malaysia, a dual banking and financial system have been implemented concurrently since 1963 comprising Islamic 

and conventional banking systems. In the Islamic banking system, the Overnight Policy Rate (OPR) framework provides 
a significant influence on the Islamic Interbank Money Market (IIMM) rate or called as Islamic Interbank Rate (IIR). 
According to IIMM on its official website, IIR is known as the weighted average rate of the Mudharabah interbank 
investment in a day at the IIMM in Kuala Lumpur, which of the individual rates being weighted correspondingly by the 
volume transactions at those rates. The IIR has been recognized in compliance with the Shariah principle to ensure Islamic 
and conventional financial institutions perform the transactions of fund surplus and deficit to be in accordance with 
Islamic Law. Any advice and approvals regarding the governance, methodology and calculation of IIR are done by two 
independent committees that are the Islamic Benchmark Committee and Shariah Committee [1]. 

In this study, the Malaysian overnight Islamic interbank rates are recorded daily throughout January 2001 until 
December 2020. The time series analysis on the overnight IIR time series is performed to portray its components in terms 
of its trend performance, cycles, seasonality and volatility level to provide an appropriate forecasting analysis [2]. 
Therefore, understanding the pattern of the IIR data is crucial for Bank Negara Malaysia (BNM) to ascertain whether the 
stress on the rate arises from demand, supply or other external elements and whether the intervention by the government 
is needed to alleviate the rate particularly in the money market. 

Now, Malaysia is attentively containing the COVID-19 outbreak and the government has taken several measures to 
accommodate the monetary policy by cutting the OPR to revive the economy. More leniency in monetary policy given 
during COVID-19 containment would safeguard people incomes as well as ensure businesses are afloat. But, there is a 
concern that arises on the banks’ profitability level due to they earn lower interest or profit incomes during this period. 
By evaluating and forecasting the IIR performance, it alerts the banks to strategise upfront so that they can control costs 
of funding very well and to charge proper base and deposit rates to ensure they to remain profitable. Thus, the requirement 
to provide an appropriate model that can predict the future pattern of the Malaysian IIR is very imperative in this study. 

Note that, the nature of IIR data is a univariate financial time series data. One of the well-known time series methods 
in various research practices is the Box-Jenkins model [3]. The Box-Jenkins model is usually applied in research practices 
related to the interest rate in a country either as the forecasting, the benchmark or as the integrated model [4-7]. Generally, 
the previous studies focus on forecasting the domestic or conventional interest rate of a nation, without particularly 
focusing on the Islamic interbank rate. Hence, by looking at this angle and narrowing the gap, the main issue in this study 
is to construct a forecasting model of Malaysian IIR performance using the Box-Jenkins model. One issue related to the 
Box-Jenkins model is its fixture that involves one-step-ahead forecast, which is not very impactful for real data due to its 
constraint of the forecast period. Therefore, the next issue that has been deliberated in this study is evaluating multistep 
ahead forecast on the IIR data using the Box-Jenkins model. Hence, this study proposes extensive forecasting of 
Malaysian overnight IIR using the Box-Jenkins model. 

ABSTRACT – Modelling the overnight Islamic interbank rate (IIR) is imperative to define the IIR 
performance as it would help the Islamic banks to adjust its costs of funding effectively and facilitate 
the policy makers to regulate a comprehensive monetary policy in Malaysia. The IIR framework 
which has been regulated by Bank Negara Malaysia under dual banking and financial system has 
always been overlooked in most previous studies in modelling the financial instruments rates. 
Therefore, it is vital to select the appropriate model as it resembles with the features of the IIR. The 
study assesses the forecasting performance of overnight IIR using the Box-Jenkins model. The 
suggested Box-Jenkins model has been applied to the Malaysian overnight IIR (in percentage) 
from 02/01/2001 to 31/12/2020. The empirical results determine that ARIMA (0,1,1) is the most 
appropriate model in forecasting overnight IIR as the model provides the smallest Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). In 
multistep ahead forecasting, it can be summarised that ARIMA (0,1,1) model is able to trail the 
actual data trend of daily Malaysian overnight IIR up to 5-day ahead within 95% prediction intervals. 
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LITERATURE REVIEW 
The study of economics and finance data for modelling and forecasting purposes using the Box-Jenkins model is 

supported by many researchers. Some of the recent studies are detailed out in Table 1. 

Table 1. Selected studies in economics and finance using Box-Jenkins models. 
Researcher Data Model Methods/Procedure 

Mallick and 
Mishra, 2019 

• Monthly data of different 
interest rates in India
(treasury bills of up to 14
days/15-91 days/92-182
days/183-364 days, call
money rates, 1-year/2-
year/4-year/5-year/10-
year/15-year
government dated
security)

• Data over 219 months
(Jan 2000 to March
2018)

Autoregressive 
Integrated Moving 
Average 
(ARIMA) 

• Variable reduction technique: PCA
• Descriptive statistics (mean, variance, skewness,

kurtosis, JB Test and correlation analysis
• Stationarity and Seasonality test: x2 goodness-of-

fit test, ADF-test, PP, KPSS
• Parameter estimation: AIC, BIC, OLS, MLE
• Forecasting: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and

13-step ahead, RMSE, MSE, MAPE,
RMSE/Standard Deviation

• Stress period selection: rolling average method
on Indian volatility index (VIX)

Rossetti et al., 
2017 

• Annual daily overnight
interbank interest rates
from 11 countries

• Data Jan 2000 - Dec
2011 (for 252 working
days)

• Brazil, India, Russia,
China, South, Africa,
Argentina, Chile,
Mexico, USA, Japan,
Germany

ARIMA-ARCH, 
ARIMA-GARCH, 
ARIMA-
EGARCH, 
ARIMA-
TGARCH, 
ARIMA-
PGARCH 

• Series behaviour and descriptive statistics
(kurtosis, skewness and distribution)

• Normality test: JB Test
• Stationarity test: ADF Test, KPSS Test
• All data differenced once, except for South Arica, 

differenced twice
• Parameter estimation: BIC, HQ, AIC, standard

error
• Diagnostic test: ARCH-LM, normal, t-

distribution
• No discussion on forecasting part

Ahmed et al., 
2017 

• 6-month rates of KIBOR
• Data for a period of 2012

– 2015
• 927 observations

ARMA, ARIMA • Graphical analysis, descriptive analysis
• Stationarity test: ADF Test, the first difference
• Parameter estimation: Durbin Watson, AIC, SIC,

HQ criterion, log-likelihood
• Forecasting:1-step, RMSE, MAE, MAPE, TIC

Omekara et 
al., 2016 

• Monthly commercial
banks interest rate data
on time deposits in 
Nigeria

• Data for 2005 – 2015
• In-sample: 2005 – 2014
• Out-of-sample: 2015

ARIMA, 
Intervention 
ARIMA, State 
Space 

• Model identification: Differencing & ADF test
• Parameter estimation: MLE, AIC
• Diagnostic checking: ACF, PACF
• Forecasting: Up to 12-step ahead, RMSE
• Intervention ARIMA: Abrupt / Permanent

change – duration and nature of impact
observation

Gough et al., 
2014 

• Monthly and weekly
UK, Germany, Japan and 
the US interest rates

• UK data: 15, 20 and 25-
year Treasury yield
spreads relative to the 1-
month yield

Discrete time 
ARMA, ARFIMA 

• Stationarity test: First difference, standard
deviations, ADF Test, PP Test, KPSS

• Parameter estimation: Discrete model, Gaussian
likelihood function, MLE, AIC, BIC

• Forecasting: 1-step ahead forecast, mean and
variance of forecast errors, MAPE, RMSE,
CDIR, application of Vasicek and Merton
Models

Dinh, 2020 • Annual Vietnam and
China’s credit growth
to Gross Domestic
Product (GDP)

• Data for a period 1996
– 2017

• 44 observations
• Out-of-sample: GDP

ratio of 2018

ARIMA • Financial ratio analysis – basis Gap analysis
(credit –to-GDP ratio)

• Trend and seasonality-exponential smoothing
• Model identification: Correlation diagrams, the

linear dependence of time-lag values, random
errors

• Stationarity test: 3-degree difference
• Parameter estimation: R-squared, BIC, RMSE
• Forecasting: Up to 5-step ahead, RMSE
• Johansen Co-Integration, Error Correction model
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Table 1. Selected studies in economics and finance using Box-Jenkins models (continued). 
Researcher Data Model Methods/Procedure 

Nyoni, 2019 • Annual Indian
Rupee/USD exchange
rate

• Data 1960 – 2017
• Out-of-sample forecast:

2018 – 2027

ARIMA • Descriptive statistics: mean, median, maximum,
minimum, standard deviation, skewness, kurtosis

• Stationarity test: graphical, ADF, the first difference 
• Model identification: random walk models
• Parameter estimation and diagnostic checking:

AIC, ADF Test, stability test
• Forecasting: 1 & 10-step ahead, ME, MAE, RMSE,

MAPE, Theil’s U Statistics
Nyoni, 2018 • Annual Naira/USD

exchange rate in
Nigeria

• Data for a period 1960
– 2017

• 57 observations
• Out-of-sample forecast:

2018 – 2022

ARIMA • Descriptive statistic: mean, median, maximum,
minimum, standard deviation, skewness, kurtosis

• Stationarity test: graphical, ADF, the first difference 
• Model identification: ACF, PACF plots
• Parameter estimation and diagnostic checking:

AIC, residuals correlograms and ADF Test
• Forecasting: 1 & 5-step ahead, MSE, RMSE, MAE,

MPE, MAPE, Theil’s U, Confidence Ellipse
Yildiran and 
Fettahoglu, 
2017 

• Daily USDTRY 
exchange rate in Turkey 

• Data 3/1/2005- 
8/3/2017 

• 3,069 observations

ARIMA • Descriptive statistics: minimum, Q1, median, mean, 
Q3, maximum, time series plots

• Stationarity test: hypothesis testing, difference
• Diagnostic checking: ADF Test
• Forecasting: 1, 6 & 12-step ahead, absolute means,

average absolute deviations

There are many forecast models in dealing with interest rates or interbank rates data such as the state-space model [7-
8], Cox-Ingersoll-Ross model [9-10] and Nelson-Siegel model [5] and [11]. The three-factor Nelson-Siegel model is 
widely practised by central banks and monetary policy makers due to its great performance, however, the model causes 
many estimation issues due to its extreme non-linear results [5] and [12]. Although, these models achieve certain effects 
in modelling and forecasting the interest rates or interbank rates data, many studies in recent years applied the Box-
Jenkins model due to its good performance in signifying various possible models to be considered to provide adequate 
insights to the series [4], [6], [7] and [13]. Therefore, this study proposes a univariate model and evaluates multistep ahead 
forecasting performance of the Malaysian overnight IIR data using the Box-Jenkins model by employing the Maximum 
Likelihood Estimation (MLE) method to get more robust parameter estimates as elaborated further in next chapter.  

METHODOLOGY 
This chapter theoretically describes the concepts and methodologies used in the study to develop a univariate 

forecasting model for Malaysian overnight IIR data. 

Box Jenkins models 
Box-Jenkins model consists of five types of models which are divided into two categories that are stationary models 

and nonstationary models [14]. The stationarity in time series models involves a special class of stochastic processes of 
which is centred on the assumption that the process remains in a state of statistical equilibrium. The models are classified 
as stationary when their probabilistic properties do not show any trend or seasonality and the models have reached a 
constant mean and variance [14]. 

Therefore, the stationary model comprises of three models namely autoregressive (AR), moving average (MA) and 
autoregressive moving average (ARMA). Whereas the nonstationary model comprises two models are autoregressive 
integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA). The stationary 
models (AR, MA and ARMA) will be applied to time series data that have stationary behaviours in-mean and in-variance 
and do not show any seasonal pattern in the series. Otherwise, the nonstationary models will be applied in modelling time 
series data which showing some trends (ARIMA) or seasonality (SARIMA) in the series.  

An AR model is related to a value from a time series 𝑦𝑦𝑡𝑡  which has been regressed on previous values 
�𝑦𝑦𝑡𝑡−1, 𝑦𝑦𝑡𝑡−2, … ,𝑦𝑦𝑡𝑡−𝑝𝑝� from that same time series. In general, the AR (p) model is defined by Equation 1, 

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1 + 𝜑𝜑2𝑦𝑦𝑡𝑡−2 + ⋯+ 𝜑𝜑𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝑎𝑎𝑡𝑡 , |𝜑𝜑𝑖𝑖| < 1, 𝑖𝑖 = 1,2, … , 𝑝𝑝 (1) 
where 𝑦𝑦𝑡𝑡 and 𝑎𝑎𝑡𝑡 are the observed value and random error at time t, 𝑦𝑦𝑡𝑡−1,𝑦𝑦𝑡𝑡−2, … , 𝑦𝑦𝑡𝑡−𝑝𝑝 are the predictors up to lag p, p is 
the autoregression order, 𝑐𝑐 = 𝜇𝜇�1 − 𝜑𝜑1 − 𝜑𝜑2 −⋯− 𝜑𝜑𝑝𝑝� is a constant and 𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑝𝑝 are the p orders of autoregressive 
parameters. AR (p) model uses past values of the forecast variable in a regression.  

A MA model uses past forecast errors�𝑎𝑎𝑡𝑡−1, 𝑎𝑎𝑡𝑡−2, … ,𝑎𝑎𝑡𝑡−𝑞𝑞� in a regression-like model. The MA (q) model of order q 
is given by Equation 2, 

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝑎𝑎𝑡𝑡−1 − 𝜃𝜃2𝑎𝑎𝑡𝑡−2 − ⋯− 𝜃𝜃𝑝𝑝𝑎𝑎𝑡𝑡−𝑞𝑞 , �𝜃𝜃𝑗𝑗� < 1, 𝑗𝑗 = 1,2, … , 𝑞𝑞 (2) 
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where 𝑦𝑦𝑡𝑡 and 𝑎𝑎𝑡𝑡 are the observed value and random error at time t, µ is the mean of the MA model, 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑞𝑞  are the 
MA (q) parameters of order q and 𝑎𝑎𝑡𝑡−1, 𝑎𝑎𝑡𝑡−2, … , 𝑎𝑎𝑡𝑡−𝑞𝑞 are the error predictors up to lag q (previous values).  

An ARMA with order p and q model is the combination between AR (p) and MA (q) models. The ARMA (p,q) model 
is given by Equation 3, where 𝑐𝑐 = 𝜇𝜇�1 − 𝜑𝜑1 − 𝜑𝜑2 −⋯− 𝜑𝜑𝑝𝑝�.  

𝑦𝑦𝑡𝑡 = 𝑐𝑐 + 𝜑𝜑1𝑦𝑦𝑡𝑡−1 + 𝜑𝜑2𝑦𝑦𝑡𝑡−2 + ⋯+ 𝜑𝜑𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝑎𝑎𝑡𝑡−1 − 𝜃𝜃2𝑎𝑎𝑡𝑡−2 −⋯− 𝜃𝜃𝑝𝑝𝑎𝑎𝑡𝑡−𝑞𝑞 (3) 
An autoregressive integrated moving average of order p and q with the order of differencing, d, is written as ARIMA 

(p,d,q) model. The ARIMA (p,d,q) model using backshift operator is given by Equation 4, 
𝜑𝜑𝑝𝑝(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑦𝑦𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝑎𝑎𝑡𝑡  (4) 

for |𝜑𝜑𝑖𝑖| < 1, 𝑖𝑖 = 1,2, … , 𝑝𝑝 and �𝜃𝜃𝑗𝑗� < 1, 𝑗𝑗 = 1,2, … , 𝑞𝑞 and 𝑑𝑑 ≠ 0 and ∇ = (1 − 𝐵𝐵); where 𝑦𝑦𝑡𝑡  and 𝑎𝑎𝑡𝑡 are the observed value 
and random error at time t, p and q are the order of AR and MA models respectively, d is the order of differencing, B is 
the backshift operator and which 𝜑𝜑𝑝𝑝(𝐵𝐵) = 1 − ∑ 𝜑𝜑𝑖𝑖𝐵𝐵𝑖𝑖

𝑝𝑝
𝑖𝑖=1  for AR model and 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − ∑ 𝜃𝜃𝑗𝑗𝐵𝐵𝑗𝑗

𝑞𝑞
𝑗𝑗=1  for MA model. 

Seasonal autoregressive integrated moving average, SARIMA (p,d,q)(P,D,Q)S model is an extension of the ARIMA 
model to handle seasonal trend of time series data. The equation of the SARIMA model is given by Equation 5, 

Φ𝑃𝑃(𝐵𝐵𝑆𝑆)𝜑𝜑𝑝𝑝(𝐵𝐵)(1 − 𝐵𝐵𝑆𝑆)𝐷𝐷(1 − 𝐵𝐵)𝑑𝑑𝑦𝑦𝑡𝑡 = Θ𝑄𝑄(𝐵𝐵𝑆𝑆)𝜃𝜃𝑞𝑞(𝐵𝐵)𝑎𝑎𝑡𝑡  (5) 
where 𝑦𝑦𝑡𝑡 and 𝑎𝑎𝑡𝑡 are the observed value and random error at time t, Φ𝑃𝑃(𝐵𝐵𝑆𝑆) and 𝜑𝜑𝑝𝑝(𝐵𝐵) are the AR for seasonal and 
nonseasonal, (1 − 𝐵𝐵𝑆𝑆)𝐷𝐷 and (1 − 𝐵𝐵)𝑑𝑑 are the difference operators for seasonal and nonseasonal, Θ𝑄𝑄(𝐵𝐵𝑆𝑆) and 𝜃𝜃𝑞𝑞(𝐵𝐵) are 
the MA for seasonal and nonseasonal, p, d and q are the orders for nonseasonal AR terms, differencing and MA terms 
respectively. Then, P, D and Q are the orders of seasonal AR terms, differencing and MA terms respectively. S refers to 
the number of time steps for a single seasonal period. Note that, the random errors, 𝑎𝑎𝑡𝑡 for all the aforementioned equations 
are assumed as independent identically distributed (iid) sequences taken from a continuous distribution with zero mean 
and constant variance of 𝜎𝜎2 which can be denoted as 𝑎𝑎𝑡𝑡~𝑖𝑖𝑖𝑖𝑑𝑑(0,𝜎𝜎2). 

Stages in modelling and forecasting using Box-Jenkins models 
Box-Jenkins modelling encompasses a four-stage iterative procedure of time series namely model identification, 

parameter estimation, diagnostic checking and lastly forecasting. The procedures of the Box-Jenkins modelling have been 
graphically visualised by Figure 1 of which Box-Jenkins is abbreviated as BJ. Meanwhile, the time series cross-validation 
is applied in the Malaysian overnight IIR data by using a typical ratio of estimation to forecast that is 90 to 10 [15]. 

Figure 1. Proposed modelling procedures using the Box-Jenkins model. 
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Stage I: Model identification 
The first step in model identification is involving data transformation and differencing. The Box-Cox transformation 

is employed to stationary the data in-variance. The plots of the autocorrelation function (ACF) and partial ACF (PACF) 
of the in-sample data are used as the basic tools in checking the stationarity in-mean as well as in identifying the order of 
the time series model. The ACF plot reflects the linear relationship between the time series observations separated by lag 
k and representing the order of q for the MA model, while the PACF plot represents the order of p for the AR model. 
Then, the in-sample data are differenced to achieve stationary in-mean. The unit-root test known as Augmented Dickey-
Fuller (ADF) test is used to prove the stationarity of the differenced time series data. The null hypothesis of the ADF test 
is the time series data is nonstationary in-mean. Tsay and Tiao (1984) suggested a new approach using the extended 
autocorrelation function (EACF) to determine the p and q orders. The EACF output is a two-way table in which the rows 
represent order p (AR) and the columns represent order q (MA) [2]. The EACF main attribute for an ARMA model is the 
triangle of “O” has an upper left vertex at the (p,q) position. The EACF Table denotes the symbols of “X” and “O” of 
which “X” means the absolute value of the corresponding EACF is greater than or equal to two times its standard error. 
Meanwhile, “O” means the corresponding EACF is less than two times its standard error in modulus. The EACF standard 
error can be calculated as 2/√𝑇𝑇, where T is the number of in-sample time series data. 

Stage II: Parameter estimation 
The MLE method is widely applied in the Box-Jenkins modelling to find the parameter values that optimize the 

probability of obtaining the data that have been studied. In MLE, it minimizes the sum of squared errors (SSE) given by 
𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∈𝑡𝑡2𝑇𝑇

𝑡𝑡=1 . The application of the model estimation in selecting the best significant Box-Jenkins model must fulfil 
the following conditions: two times the value of standard error < value of model coefficient and the p-value ≤ α. Then, 
the model is selected in Information Criterion (IC) test measured by Akaike’s Information Criterion (AIC) and Schwarz’s 
Bayesian Information Criterion (BIC/SIC) values. In the model selection criteria, the model that has the smallest value of 
the AIC/BIC are the most preferred. 

Stage III: Diagnostic checking 
In the diagnostic checking stage, the chosen models are tested in the aspects of serial correlation, heteroscedasticity 

or ARCH effect and zero mean in the residuals time series data. The chosen model is considered well fitted if the residuals 
values, 𝑎𝑎�𝑡𝑡, are relatively small, no ARCH effect or constant and finite variance and zero mean. If the model does not meet 
the assumptions of the white noise criteria, the process of Stage I to Stage III is repeated by using a new selected model 
until a satisfactory model can be identified. 

Stage IV: Forecasting 
The forecasting stage is continued once the satisfactory model is identified. The out-of-sample time series data are 

employed in the model to obtain the forecast results. In this study, the method of one-step and multistep ahead are used 
in the forecasting evaluation. In this stage, the minimum mean absolute error (MAE), root mean squared error (RMSE) 
and mean absolute percentage error (MAPE) are measured for the cross-validation purpose as given by Equation 6-8, 
respectively, where 𝑦𝑦𝑡𝑡  and 𝑦𝑦�𝑡𝑡 are the observed and forecast values at time t and n is the number of time t. 

𝑀𝑀𝑀𝑀𝑆𝑆 =
1
𝑛𝑛
� |𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡|

𝑛𝑛

𝑡𝑡=1
 (6) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆 = �∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2𝑛𝑛
𝑡𝑡=1

𝑛𝑛
(7) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆 =
100%
𝑛𝑛

� �
𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡
𝑦𝑦𝑡𝑡

�
𝑛𝑛

𝑡𝑡=1
 (8) 

The accuracy of the forecasts can be expressed by calculating probability limits on either side of each forecast or also 
known as prediction intervals (PIs). Computing prediction intervals (PIs) is an important part of the forecasting process 
as it is useful to quantify the accuracy of the forecast data [15]. These limits may be calculated for any convenient set of 
probabilities, such as 95%. A 95% PIs for one-step-ahead forecast of 𝑦𝑦𝑇𝑇+1 for the random errors at the time t period, 𝑎𝑎𝑡𝑡 
normally distributed, is given by Equation 9, where 𝑉𝑉𝑎𝑎𝑉𝑉[𝑒𝑒𝑇𝑇(1)] is the variance of the one-step-ahead forecast error that 
is defined as Equation 10. The 𝑎𝑎𝑇𝑇+1 is referred to as the shock to the series at 𝑇𝑇 + 1, which is also known as the one-step 
ahead forecast error at the forecast origin T. In practice, the estimated value of 𝑉𝑉𝑎𝑎𝑉𝑉[𝑒𝑒𝑇𝑇(1)] can be obtained from the 
variance of the one-step-ahead forecast residuals of the model considered. The PIs in Equation 9 are also applicable to 
multistep ahead forecasting, i.e. ℎ = 2,3, … ,𝑛𝑛, where h and n are the forecasting horizon and the number of out-of-sample 
time series data. Therefore, the forecasting horizons that have been applied in the study are 2, 3, 4, 5, 7, 10, 15, 20, 25, 
30 and 45-days ahead of the overnight IIR [6-7] and [16-19]. Consequently, a (1 − 𝛼𝛼)100% PIs for h-step ahead 
forecasting and 𝑎𝑎𝑡𝑡 follows normal distribution is given by Equation 11. The procedure in evaluating the multistep ahead 
forecasting performance as proposed by Yaziz, Zakaria and Boland (2020) is given in Figure 2. 

𝑦𝑦�𝑇𝑇(1) ± 𝑍𝑍0.025�𝑉𝑉𝑎𝑎𝑉𝑉[𝑒𝑒𝑇𝑇(1)] (9) 
𝑉𝑉𝑎𝑎𝑉𝑉[𝑒𝑒𝑇𝑇(1)] = 𝑉𝑉𝑎𝑎𝑉𝑉(𝑎𝑎𝑇𝑇+1) = 𝜎𝜎𝑎𝑎2 (10) 
𝑦𝑦�𝑇𝑇(ℎ) ± 𝑍𝑍𝛼𝛼

2�
�𝑉𝑉𝑎𝑎𝑉𝑉[𝑒𝑒𝑇𝑇(ℎ)] (11)
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RESULTS AND DISCUSSION 
The dataset 

A total of 4,305 Malaysian overnight IIR data starting from 2 January 2001 to 31 December 2020 which covering for 
20-year performance period are used in this study. The data are represented in percentage (%). The data refer to the daily
weighted average rate of the Mudharabah interbank investment at the IIMM in Kuala Lumpur of which each rate is being
duly weighted by the transactions of volume at respective rates. The Malaysian overnight IIR data are retrieved from
IIMM’s official website1. The estimation ratio for in-sample data to forecast out-of-sample data used in this study is
90:10. The in-sample period used to determine the Box-Jenkins model is from 2 January 2001 to 25 March 2019, covering
3,875 daily overnight IIR data and resulting in 3,875 daily return values. Meanwhile, the out-of-sample period used to
validate the forecast is from 27 March 2019 to 31 December 2020, covers 430 daily overnight IIR data and resulting in
430 daily return values.

Stage I: Box-Jenkins model identification 
Figure 3 shows the time series plot of the in-sample Malaysian overnight IIR from 2 January 2001 to 25 March 2019. 

The figure shows that there are random, irregular and nonseasonal patterns of the series in the whole period selected in 
this study. From the early period of the series performance, the series are likely stable until it surpasses the 1,000th day 
(around January 2005) whereby the series started to show low and high fluctuation trends. A drastic drop in the series 
was recorded after 2,000 days which occurred in early 2009 due to the impact of the 2008 Financial Crisis. After that, the 
series are showing a moderate upward trend before it goes back to a significant downward trend because of the COVID-
19 outbreaks in 2020. 

Table 2 presents the descriptive statistics for the in-sample data. As shown in the table, the mean of the series is 
positive. The twofold difference between the maximum and minimum values confirms the volatility in Malaysian 
overnight IIRs which is likely to have been triggered by the economic instability and other unprecedented events that 
characterized the rates over the years. The skewness is in negative value which implying that the distribution of the series 
is non-symmetric and skewed to the left, as shown in Figure 3. The positive kurtosis of 0.5870 specifies that the 
distribution has heavier tails and a sharper peak than a normal distribution. 

https://iimm.bnm.gov.my/
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Table 2. Descriptive statistics of in-sample data. 
Description Statistics 

No. of Observations 3,875 
Minimum 1.7500 
Maximum 3.5000 
Mean 2.8832 
Standard Deviation 0.3783 
Skewness -0.5859
Kurtosis 0.5870 

In the hypothesis testing on mean for the in-sample data, the test statistics generated is 474.43 with a p-value equals 
to 0. Since, (𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒 = 0) < (𝛼𝛼 = 0.05), then the null hypothesis of zero mean is rejected at a 5% significance level. 
Therefore, the mean is not equal to zero. Meanwhile, for hypothesis testing on the data skewness, the test statistics 
generated is 14.8896 with a p-value equals to 0. Since, (𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒 = 0) < (𝛼𝛼 = 0.05), then the null hypothesis of zero 
skewness is rejected at a 5% significance level. Therefore, the skewness is not equal to zero and the distribution of the 
series is non-symmetric and negatively skewed. In the testing of the data kurtosis, the test statistics generated is equal to 
7.4588 with a p-value equals to 0. Since, (𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒 = 0) < (𝛼𝛼 = 0.05), then the null hypothesis of zero kurtosis is 
rejected at a 5% significance level. Therefore, the kurtosis is not equal to zero and the positive or leptokurtic kurtosis 
indicates that the data distribution has heavier tails and a sharper peak than the normal distribution of the data. The 
findings of negatively skewed and leptokurtic kurtosis of the in-sample data have been proved by Figure 4. 

Figure 4. Histogram of Malaysian overnight Islamic interbank rates. 

The Jarque Bera (JB) Test is employed to test the normality of the series. The p-value generated is equal to 0 and 
since, (𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒 = 0) < (𝛼𝛼 = 0.05), then the null hypothesis of the series are normally distributed is rejected at a 5% 
significance level. Therefore, the distribution of the overnight IIR does not follow a normal distribution. 

Figure 5 shows the time series plot of the in-sample Malaysian overnight IIR after went through the first-order 
differencing. The differencing method has made the series become stationary in-mean as the series are situated closely 
with one another, and the trend of the series are showing in the same line and static. Again, the ACF and PACF plots have 
been constructed by using the differenced series to check on the stationarity in-mean, as presented in Figure 6. 

Figure 5. The plot of first-order differenced series of Malaysian overnight Islamic interbank rates. 
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Figure 6. ACF and PACF plots for first-order differenced series. 

Figure 6 illustrates that the series approach zero rapidly and most of the lags are within the correlograms or confidence 
interval lines. Thus, the series is stationary in-mean. The ADF test is conducted to confirm the stationarity. The p-value 
of the test equals to 0.01. As (𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒 = 0) < (𝛼𝛼 = 0.05), it indicates the null hypothesis of the differenced overnight 
IIR time series data is not stationary in-mean is rejected at a 5% significance level. Therefore, the ADF test provides the 
same results as ACF-PACF plots after differencing of which the series by now is stationary in-mean. 

Table 3 presents the descriptive statistics of the stationarity in-sample data. It illustrates that the mean of the stationary 
series is positive. The skewness is maintained in negative value which implying that the distribution of the series is 
asymmetric and skewed to the left. In other words, the tail of the distribution is longer on the left. The high positive 
kurtosis value of 212.5994 specifies that the distribution has heavier tails and a sharper peak than a normal distribution. 

Table 3. Descriptive statistics of the stationary data. 
Descriptive Statistics 

No. of Observations 3,874 
Minimum -0.9100
Maximum 0.9100 
Mean 0.0001 
Standard Deviation 0.0396 
Skewness -1.7420
Kurtosis 212.5994 

In the hypothesis testing on mean for the stationary data, the test statistics of 0.1572 with a p-value equals to 0.8751, 
indicates the null hypothesis of zero mean is not rejected at a 5% significance level. Meanwhile, the test statistics of data 
skewness is 44.2642 with a p-value equals to 0, indicates the null hypothesis of zero skewness is rejected at a 5% 
significance level. Therefore, the distribution of the stationary series is non-symmetric and negatively skewed. In the 
testing of the stationary data kurtosis, the test statistics generated 2701.0720 with a p-value equals to 0, then the null 
hypothesis of zero kurtosis is rejected at a 5% significance level. Therefore, the leptokurtic kurtosis indicates that the 
distribution of the stationary data has heavier tails and a sharper peak than the normal distribution of the data as proved 
by Figure 7. 

Figure 7. Histogram of first-order differenced series of Malaysian overnight Islamic interbank rates. 
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The JB Test is employed in the stationary series to support the results of the non-normality of data. The p-value 
generated indicates that the value equals to 0, then the null hypothesis of the stationary series are normally distributed is 
rejected at a 5% significance level. Therefore, the distribution of the stationary overnight IIR does not follow a normal 
distribution.  

The Ljung-Box (LBQ) Test has been used to test the serial correlation of the stationary series. The overnight IIR series 
can only be modelled once the data is stationary in-mean and serially correlated [2]. The p-value generated at lag 10 [20] 
specifies that the value equals to 0, then the null hypothesis of there is no serial correlation in the stationary series is 
rejected at a 5% significance level. This can be concluded that the stationary series of overnight IIR is serially correlated 
between another, and the Box-Jenkins can be applied to the data. 

The previous analysis on the Malaysian IIR series has shown nonseasonal and stationary at the first differenced series. 
Therefore, these results then reflect ARIMA(p,1,q). Based on PACF and ACF plots of the stationary series as illustrated 
in Figure 6, it can be suggested that the values of 𝑝𝑝 = 0,1,2,3,4 and 𝑞𝑞 = 0,1, respectively, of which the standard errors 
for ACF and PACF are 0.0161, respectively. Therefore, there are ten possible ARIMA models that can be identified 
namely ARIMA (0,1,0), ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (3,1,0), ARIMA (4,1,0), ARIMA (0,1,1), ARIMA 
(1,1,1), ARIMA (2,1,1), ARIMA (3,1,1) and ARIMA (4,1,1). Alternatively, the EACF Table has suggested that ARIMA 
(0,1,1) is the possible Box-Jenkins model for the stationary series, as illustrated in Table 4. 

Table 4. The EACF Table for ARIMA (0,1,1) model. 
AR/MA 0 1 2 3 4 5 6 

0 X O O O O O O 
1 X X O O O O O 
2 X X X O O O O 
3 X X X O O O O 
4 X X X O X O O 
5 X X X O X X O 
6 X X X X X X X 

Stage II: Parameter estimation of ARIMA (0,1,1) model 
In the parameter estimation stage of the Box-Jenkins model, the MLE is applied to find the parameter values that 

optimize the probability of obtaining the overnight IIR data that have been studied. The application of the model 
estimation in selecting the best significant IIR model has fulfilled the conditions of two times value of standard error (SE) 
is less than the value of model coefficient and the 𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒 ≤ 𝛼𝛼. The statistics of the parameter estimation using the 
model selection criteria have been summarized in Table 5. 

By using the MLE method to estimate parameters, ARIMA (0,1,1) was found to be significant at 𝛼𝛼 = 0.05 as two 
times standard error values is lower than coefficient value and the model is preferred due to it provides the smallest AIC 
and BIC values of -14,575.45 and -14,556.67, respectively. According to the parsimony principle that simple models are 
preferred as compared to complex models when all things being equal, thus the model of ARIMA (0,1,1) is the most 
preferred for the next stage. On top of that, the results of the EACF Table as given by Table 4 also agreed with ARIMA 
(0,1,1). 

Table 5. Parameter estimation using model selection criteria. 
No Model 2*SE < 

Coefficient 
AIC BIC Significance 

1 ARIMA (0,1,0) No -14,011.38 -13,998.86 Significant 
2 ARIMA (1,1,0) Yes -14,485.20 -14,466.41 Significant 
3 ARIMA (2,1,0) Yes -14,545.88 -14,520.83 Significant 
4 ARIMA (3,1,0) Yes -14,567.74 -14,536.43 Significant 
5 ARIMA (4,1,0) Yes -14,573.31 -14,535.74 Significant 
6 ARIMA (0,1,1) Yes -14,575.45 -14,556.67 Significant 
7 ARIMA (1,1,1) No -14,575.11 -14,550.06 Not Significant 
8 ARIMA (2,1,1) No -14,575.63 -14,544.32 Not Significant 
9 ARIMA (3,1,1) No -14,574.07 -14,536.50 Not Significant 

10 ARIMA (4,1,1) No -14,572.27 -14,528.44 Not Significant 

Stage III: Diagnostic checking of ARIMA (0,1,1) model 
In the Box-Jenkins’ diagnostic checking stage, the chosen model of ARIMA (0,1,1) has been verified and tested in 

the aspects of serial correlation, homoscedasticity and zero mean in the residuals of the IIR series. Table 6 shows the 
descriptive statistics of the IIR series residuals of the ARIMA (0,1,1) model, which shows the zero mean and variance of 
0.0014. The skewness is in positive value which implying that the distribution of the residuals of the series is asymmetric 
and skewed to the right. In other words, the tail of the distribution is longer on the right. The high positive kurtosis value 
of 189.9865 specifies that the distribution of the residuals has heavier tails and a sharper peak than a normal 
distribution. 

46 journal.ump.edu.my/daam ◄ 



Radzi et al. │ Data Analytics and Applied Mathematics │ Vol. 2, Issue 2 (2021) 

47 journal.ump.edu.my/daam ◄ 

Table 6. Descriptive statistics of the series residuals of ARIMA (0,1,1) model. 
Description Statistics 

No. of Observations 3,874 
Minimum -0.7019
Maximum 0.9251 
Mean 0.0000 
Standard Deviation 0.0369 
Skewness 2.7489 
Kurtosis 189.9865 

The residuals plot as shown in Figure 8 has proven that ARIMA (0,1,1) model errors are uncorrelated as the sign of 
the residuals are randomly distributed and correlation is almost close to zero. The LBQ Test has been used to validate and 
test on the serial correlation of the residual series. The 𝑝𝑝 − 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒 = 0.5260 generated at lag 10 [20] indicates that the 
null hypothesis of there is no serial correlation in the series residuals is not rejected at a 5% significance level. Therefore, 
it can be concluded that the series residuals of overnight IIR are independent and randomly distributed. 

Figure 8. Residuals plot of ARIMA (0,1,1) model. 

Figure 9 shows the standardized residual plot, ACF for residuals and p-values for Ljung-Box statistics. Based on 
Figure 9, the standardised residual plot for ARIMA (0,1,1) of the in-sample stationary series illustrates randomness in the 
residuals with some spikes representing volatility clustering commencing in the middle of the residuals plot. Whereas the 
ACF of the residuals is relatively small and approximately equals to zero up to lag 35 which supports the independence 
in the residuals. The p-value of 0.5260 of the LBQ Test indicates that there is no serial correlation in the residuals up to 
lag 10 at a 5% significance level. This reflects that the mean model of ARIMA (0,1,1) to the IIR series is correctly 
specified up to lag 10. Therefore, the residual series of the model behave as white noise as the series has zero mean, the 
constant variance of 0.0014 and is serially uncorrelated. 

Figure 9. The standardised residual plot, ACF for residuals and p-value for Ljung-Box statistics of ARIMA (0,1,1) 
model. 
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Stage IV: Forecasting using ARIMA (0,1,1) model 
The model of ARIMA (0,1,1) which has been selected from Stage I to Stage III has been used in the forecasting part 

using Box-Jenkins modelling. In this stage, the out-of-sample IIR data has been employed to obtain the forecast results 
as the accuracy of forecasts can only be defined by considering how well a model performs on new data that have not 
been used when fitting the model [17]. ARIMA (0,1,1) model in the stationary form is given by Equation 12, where 
𝑆𝑆𝑡𝑡 ,𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡−1 and 𝑎𝑎𝑡𝑡 are the stationary series, the observed values, the predictor up to lag 1 (or the previous value) and the 
random error at time t, respectively and 𝜎𝜎𝑡𝑡2 is the conditional variance of 𝑆𝑆𝑡𝑡. 

𝑆𝑆𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 (12)𝑆𝑆𝑡𝑡 = 0.0001 + 𝑎𝑎𝑡𝑡 − 0.4046𝑡𝑡−1,           𝜎𝜎𝑡𝑡2 = 0.0014 
Table 7 shows the values of actual and one-step-ahead forecast stationary data for the last 10 days of out-of-sample 

data using the ARIMA (0,1,1) model. The values of MAE and RMSE for stationary data are 0.0162 and 0.0382, 
respectively. No value of MAPE is produced here as there are existences of zero values in the stationary data. Whereas, 
the values of MAE, RMSE and MAPE for the out-of-sample forecast Malaysian IIR data are 0.0162, 0.0382 and 0.6940. 
Based on these values, ARIMA (0,1,1) model is concluded as the appropriate model for modelling overnight IIR using 
the Box-Jenkins model as it generates very small prediction errors with MAPE below 5%. 

Table 7. Actual and one-step ahead forecast stationary IIR data for the last 10 days using ARIMA (0,1,1) model. 
Date Actual Stationary IIR Data Forecast Stationary IIR Data 

17/12/2020 0.0000 0.0026 
18/12/2020 0.0000 0.0025 
21/12/2020 0.0100 0.0025 
22/12/2020 -0.0100 -0.0015
23/12/2020 0.0100 0.0049 
24/12/2020 -0.0100 -0.0006
28/12/2020 0.0100 0.0053 
29/12/2020 -0.0200 -0.0004
30/12/2020 -0.0100 0.0094 
31/12/2020 0.0200 0.0094 

Figure 10 illustrates the time series plot of the actual values of the out-of-sample data versus one-step-ahead forecast 
values of the overnight IIR at one-step-ahead forecasting using the ARIMA (0,1,1) model. Generally, the pattern of the 
out-of-sample IIR data shows a downward trend due to the events of persistent global downside risk for the first half of 
2019 and adverse impact resulted from the emergence of coronavirus pandemic in late 2019. In terms of forecasting, the 
forecast line coloured in red is almost in parallel with the actual line which is coloured in blue. This promising 
performance of the Box-Jenkins model in forecasting Malaysian IIR data is supported numerically by Table 8. Note that, 
there is a one-day lag problem of which the second column (forecast) IIR data can be obtained from the first column 
(actual) IIR data by shifting the first column one row downward or the today’s IIR data is a good forecast for tomorrow 
IIR data. This is generally the efficient market hypothesis at work, and it is a common circumstance for one-step-ahead 
forecast. 

Table 8 summarizes the values of the actual data, forecast data, 95% lower and upper PIs of the overnight IIR for the 
last 10 days using the ARIMA (0,1,1) model. The table points out that all the values of the one-step-ahead forecast data 
are within the 95% PIs which means the preferred ARIMA (0,1,1) model will produce good forecasting results of the 
overnight IIR as illustrated by Figure 11. 

Figure 10. The plot of actual data versus one-step ahead forecast data of the overnight IIR using ARIMA (0,1,1) model. 
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Table 8. Actual and forecast data, 95% lower and 95% upper intervals for the last 10 days using ARIMA (0,1,1) model. 
Date Actual IIR Data 

(%) 
Forecast IIR Data 

(%) 
Lower 95% 

(%) 
Upper 95% 

(%) 
17/12/2020 1.7500 1.7526 1.6526 1.8525 
18/12/2020 1.7500 1.7525 1.6526 1.8525 
21/12/2020 1.7600 1.7525 1.6526 1.8525 
22/12/2020 1.7500 1.7585 1.6585 1.8584 
23/12/2020 1.7600 1.7549 1.6550 1.8549 
24/12/2020 1.7500 1.7594 1.6595 1.8594 
28/12/2020 1.7600 1.7553 1.6554 1.8553 
29/12/2020 1.7400 1.7596 1.6597 1.8595 
30/12/2020 1.7300 1.7494 1.6495 1.8494 
31/12/2020 1.7500 1.7394 1.6394 1.8393 

Figure 11. Plot of ARIMA (0,1,1) model with 95% PIs. 

In multistep ahead forecasting, the performance of the model has been assessed at multiple horizons of 2, 3, 4, 5, 7, 
10, 15, 20, 25, 30 and 45-day ahead at 95% PIs [6-7] and [16-19]. Table 9 shows 1-step to 45-step ahead forecast 
evaluation results with the number of data that lies within the 95% PIs and forecast errors below 5% using the ARIMA 
(0,1,1) model. From the table, the values of RMSE are increasing not more than the adequate forecast error of 5% which 
are aligned with the addition in forecast horizons up to 45-step ahead. Yet, it is difficult to select the appropriate forecast 
horizon for the preferred model as the value of forecast errors, particularly MAPE is increasing marginally between each 
other. Therefore, by considering the maximum number of 420 out of 430 actual out-of-sample data or 97.67% that lies 
inside the 95% PIs, as highlighted in Table 9, then the results state that the 5-day ahead forecast horizon performs the best 
in Box-Jenkins forecasting as compared to other multistep ahead forecast horizons. It can be concluded that the ARIMA 
(0,1,1) model can be considered for forecast up to 5-step ahead of daily overnight IIR. 

Table 9. Forecast error evaluation at 95% prediction interval for multistep ahead forecasting using ARIMA (0,1,1). 
Forecast 

Horizon (h) 
Forecast Error Evaluation Data Inside 95% PIs 

MAE RMSE MAPE No. of 
Data 

% 

1-day ahead 0.0162 0.0382 0.6940 419 97.4419 
2-day ahead 0.0183 0.0461 0.7904 419 97.4419 
3-day ahead 0.0211 0.0508 0.8874 419 97.4419 
4-day ahead 0.0230 0.0538 0.9884 416 96.7442 
5-day ahead 0.0215 0.0442 0.9126 420 97.6744 
7-day ahead 0.0284 0.0686 1.2495 416 96.7442 

10-day ahead 0.0347 0.0772 1.5518 406 94.4186 
15-day ahead 0.0432 0.0956 1.9268 398 92.5581 
20-day ahead 0.0522 0.0948 2.2388 390 90.6977 
25-day ahead 0.0646 0.0987 2.6767 375 87.2093 
30-day ahead 0.0695 0.1333 3.2783 402 93.4884 
45-day ahead 0.1049 0.1684 4.6875 389 90.4651 

Figure 12 presents the time series plot of actual out-of-sample data and forecast data at 5-step ahead using the proposed 
Box-Jenkins model at 95% PIs. The forecasting performance of the ARIMA(0,1,1) model for up to 5-step ahead forecast 
is proved graphically by the plot as almost all actual data of overnight IIR are within 95% PIs except in several events 
of 
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significant IIR drops. It shows that the trend of the 5-day ahead forecast of overnight IIR imitates the trend of the actual 
overnight IIR for the out-of-sample period. Table 10 compares the actual IIR data in May 2020 derived from out-of-
sample data with the 5-step ahead forecast IIR and it has been associated with its 95% PIs using the ARIMA (0,1,1) 
model. Based on Table 10, there is only 1 out of 15 actual IIR data that is not within 95% PIs. This signifies that the 
preferred Box-Jenkins model is following the trend performance of actual IIR data up to 5-day ahead. 

Figure 12. The plot of actual data versus 5-step ahead forecast using ARIMA (0,1,1) model at 95% PIs. 

Table 10. Actual IIR, 5-step ahead forecast and 95% PIs using ARIMA (0,1,1) model. 
Date Actual IIR 

(%) 
Forecast IIR 

(%) 
95% Prediction Intervals 

Lower Interval Upper Interval 
4/5/2020 2.44 2.4516 2.3640 2.5393 
5/5/2020 2.00 2.4496 2.3619 2.5372 
6/5/2020 1.97 1.9979 1.9103 2.0856 
8/5/2020 1.95 1.9958 1.9082 2.0835 

12/5/2020 1.95 1.9937 1.9061 2.0814 
13/5/2020 1.96 1.9916 1.9040 2.0793 
14/5/2020 1.97 1.9896 1.9019 2.0772 
15/5/2020 1.96 1.9679 1.8803 2.0556 
18/5/2020 1.96 1.9658 1.8782 2.0535 
19/5/2020 1.97 1.9637 1.8761 2.0514 
20/5/2020 1.93 1.9616 1.8740 2.0493 
21/5/2020 1.93 1.9596 1.8719 2.0472 
22/5/2020 1.95 1.9279 1.8403 2.0156 
27/5/2020 1.95 1.9258 1.8382 2.0135 
29/5/2020 1.95 1.9237 1.8361 2.0114 

CONCLUSION 
This study is aimed to examine the performance of the Box-Jenkins model in forecasting the Malaysian overnight IIR 

in daily returns. The overnight IIR in Malaysia is constantly changing over time due to the constant changes in the 
monetary policy set by the government according to certain events that happened in the period. Therefore, the Malaysian 
overnight IIR time series dataset is selected over a 20-year performance period from 2001 to 2020 to get a better 
observation over the impacts of the 2008 financial crisis, COVID-19 outbreak and/or other unprecedented events that 
happened over along the years towards the performance of the Malaysian overnight IIR using the Box-Jenkins model. 

Based on the result findings discussed, it indicates that the ARIMA (0,1,1) model produces the smallest RMSE, MAE 
and MAPE. That means the ARIMA (0,1,1) model is the most appropriate Box-Jenkins model to forecast Malaysian 
overnight IIR as it produces very high forecast accuracy with marginal error of below 5%. The encouraging results from 
one-step-ahead forecasting using the ARIMA (0,1,1) model has directed the study in conducting multistep ahead 
forecasting of the Malaysian overnight IIR. It can be summarized that the ARIMA (0,1,1) model can be considered for 
forecast up to 5-day ahead for 20 years data series of daily overnight IIR in Malaysia. Therefore, the proposed model in 
the study can benefit the beneficial parties particularly the financial institutions to predict the future values of the overnight 
IIR in weekly timeframe. 

There are some recommendations that can be considered for future researches like various frequencies of the overnight 
IIR data sampling (i.e. in weekly, monthly or quarterly) should be measured and compared to provide comprehensive 
forecasting model of the Malaysian overnight IIR. In addition, the researchers can also establish an overnight IIR forecast 
model by testing the model in different time period and partition of in-sample against out-of-sample data as they might 
give tendency on different direction and results. 
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