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INTRODUCTION 
There are many papers that have studied integral and integro-differential equations by several types of numerical 

methods in order to introduce an approximate numerical solutions for such type of equations. The author in [1] used 
Bernstein Polynomials method for solving Volterra-Fredholm integral equations of the second kind. While, in [2] 
Boubaker polynomials method has been applied to introduce an approximate solution for Volterra-Fredholm integral 
equation of the second kind. The same method has been used in [3] to find an approximate solution for the second kind 
Volterra and Fredholm integral equatins. In [4] proposed the variation formulation by using the basis Boubaker 
polynomials for approximate the solution of Volterra-Fredholm integro-differential equation via variational formulation 
method. Furthermore, new collocation method, which is based on Boubaker polynomials was introduced in [5] for 
approximate solutions of mixed linear integro-differential-difference equations under the mixed conditions. While, in [6] 
Boubaker polynomials collocation approach has been used for solving a system of nonlinear Volterra-Fredholm integral 
equations of the second kind. However, Boubaker polynomials method has been used in [7] to find an approximate 
solution for the initial value problem of the nonlinear high order Volterra and Fredholm integro-differental equations of 
the second kind. In addition, Bernstein polynomials method was applied in [8] for solving Volterra-Fredholm integro-
differential equations of the second kind. Then, in [9] integral collocation approximation methods which are power series, 
Chebyshev polynomials and Legendre's polynomials have been applied to solve high order linear Volterra-Fredholm 
integro-differential equations. The Least-Squares method and Laguerre polynomials have been used in [10] to present 
numerical solution for mixed integro-differential equations. On the other hand, a comparsion between the Variational 
Iteration method and Trapezoidal Rule for solving the linear Volterra and Fredholm integro-differential equations have 
been presented in [11]. While, a comparison between Touchard polynomials method and Bernstein polynomials method 
for solving nonlinear Volterra integral equation are presented in [12]. In the same year, the comparison between Touchard 
polynomials method and Bernstein polynomials method has been presented in [13] for solving the linear Fredholm 
integral equation of the second kind. Moreover, a comparison among the Finite difference method (FDM), Spectral 
method and Wavelet Galerkin method (WGM) has been presented in [14] for solving Partial differential equations 
(PDEs).  In this paper, we studied the numerical comparison among several numerical methods for solving special orders 
Volterra-Fredholm integro-differential equations of the second kind. This paper is organized as follows: Boubaker 
polynomials method has been presented in section 2. While the matrix representation of the Boubaker polynomials 
method has been stated in section 3. Section 4 is illustrated by Laguerre polynomials method. Section 5 followed by some 
numerical examples. The comparison among the numerical methods has been presented in section 6 to section 9. Finally, 
the conclusion and future research scope of this paper are drown in section 10.       

ABSTRACT – The Volterra-Fredholm integro-differential equations (VFIDEs) are complicated to 
solve analyticlly. In many cases, they required to obtain the approximate solutions. Therefore, the 
numerical methods are used to introduce approximate solutions for this types of equations. In this 
paper, we studied the  comparison among several numerical methods for solving special orders of 
such types of equations. The comparison showed that, these numerical methods are acceptable 
and reliable numerical techniques VFIDEs of the second kind.    
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BOUBAKER POLYNOMIALS METHOD 
The Boubaker Polynomials method has been initially defined with the physical study in order to get an analytical 

solution for the heat equation [15]. The Boubaker polynomials have been defined in [16] as follows: 
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The first eight members of Boubaker polynomials are: 
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The three-term recurrence relation is given by 

1 2( ) ( ) ( ),   2.l l l lρ ρ ρ ρ− −Ψ = Ψ −Ψ ≥  

MATRIX FORMULATION FOR BOUBAKER POLYNOMIALS METHOD 
In this section, we presented the matrix formulation for the Boubaker polynomials method. The Boubaker polynomial 

can be written as a linear combination of Boubaker basis functions as: 

0 0 1 1 2 2( ) ( ) ( ) ( ) ( ),j j jρ π ρ π ρ π ρ π ρΨ = Ψ + Ψ + Ψ + + Ψ            (2) 

where , 0,1, 2,...,r r jπ = are the unknown cofficients. Equation (2) can be written as a dot scalar of two vectors: 
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Equation (3) can also be written: 
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where 'β s are the cofficients of the power basis that can be used to determine the respective Boubaker polynomial. 
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LAGUERRE POLYNOMIALS METHOD 
     The Laguerre polynomials is defined as follow [17]: 
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where k is the degree and e is the index of the Laguerre polynomials. The first five Laguerre polynomials from equation 
(5) are defined as:

0 ( ) 1,H µ =  

1( ) 1 ,H µ µ= −  
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The Laguerre polynomials can be written as a linear combination of Laguerre basis functions in the form: 

0 0 1 1 2 2( ) ( ) ( ) ( ) ( ),k k kH s H s H s H s Hµ µ µ µ µ= + + + +                       (6) 

where 0 1 2, , ,..., ks s s s are the unknown coefficients. Equation (6) can be written as a dot scalar of two vectors: 
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Equation (7) can also written as: 
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where 'γ s are the cofficients of the power basis that can be used to determine the respective Laguerre polynomial. 

Next, to solve Volterra-Fredholm integro-differential equations of the second kind (VFIDE2K) by using Boubaker 
polynomials method or Laguerre polynomials method, we apply the following proceduers. Considere the VFIDE2K given 
in equation (9) as: 

1 1 2 2
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where the initial condition ( ) ,k
kF a F=  1,2,...,k m= , for each

 
1 2, , ,a b Rη η ∈ , 1 2( ),   ( , ),   ( , )z w z t w z tφ  and  ( ),k zσ  

1, 2,...,k m= are known functions that have derivative on the interval [0,1]  and ( )F z  is the unknown function which 

will be determined. We note that ( ) 0.k zσ ≠   
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, then( ) ( )jF z ρ= ΨSuppose that 

0 0 1 1 2 2( ) ( ) ( ) ( ) ( ),j jF z π ρ π ρ π ρ π ρ= Ψ + Ψ + Ψ + + Ψ       (10) 

coefficients which will be  are the Boubaker0 1 2, , , , jπ π π πand  is the Boubaker basis polynomial( )j ρΨwhere 

determined. 

Equation (10) can be written as a dot product: 
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Equation (11) can be further written as: 

00 01 02 0 0

11 12 1 1
2

222 2

0

( ) 1            .0 0

0 0 0

j

j
j

j

jjj

F z

β β β β π
β β β π

πρ ρ ρ β β

πβ

   
   
   
    =      
   
   

   





 

    



           (12) 

Substituting equation (12) into equation (9) we get: 

0

1

20 1 2
0

( ) ( )   ( )   ( )        ( ) ( )

k

m

k j
k

j

z z

π
π
πσ ρ ρ ρ ρ φ

π

=

  
  
  
   Ψ Ψ Ψ Ψ =   
  
  

  

∑ 



 

0

1

21 1 0 1 2( , ) ( )   ( )   ( )        ( )
z

j
a

j

w z t dt

π
π
πη ρ ρ ρ ρ

π

 
 
 
  + Ψ Ψ Ψ Ψ   
 
 
 

∫ 



0

1

22 2 0 1 2( , ) ( )   ( )   ( )        ( )
b

j
a

j

w z t dt

π
π
πη ρ ρ ρ ρ

π

 
 
 
  + Ψ Ψ Ψ Ψ   
 
 
 

∫ 



      (13) 

Now, applying equation (12) into equation (13) we get: 



Shahoodh │ Data Analytics and Applied Mathematics │ Vol. 3, Issue 1 (2022) 

5 journal.ump.edu.my/daam ◄ 

0

1

20 1 2
0

( ) ( )   ( )   ( )        ( ) ( )

k

m

k j
k

j

z z

π
π
πσ ρ ρ ρ ρ φ

π

=

  
  
  
   Ψ Ψ Ψ Ψ =   
  
  

  

∑ 



 

00 01 02 0 0

11 12 1 1
2

21 1 22 2

0

( , ) 1              0 0

0 0 0

j

jz
j

j
a

jjj

w z t dt

β β β β π
β β β π

πη ρ ρ ρ β β

πβ

   
   
   
    +      
   
   

   

∫





 

    



00 01 02 0 0

11 12 1 1
2

22 2 22 2

0

( , ) 1              0 0

0 0 0

j

jb
j

j
a

jjj

w z t dt

β β β β π
β β β π

πη ρ ρ ρ β β

πβ

   
   
   
    +      
   
   

   

∫





 

    



  (14) 

     After computing the integrations on the right hand side of equation (14), the unknown coefficients 0 1 2, , , , jπ π π π  

are found by selecting iz  in the interval [0,1]  which can be calculated in terms of the formula iz a id= +  where 

,  0,1, 2,b ad j
j
−

= =  .  After that, a system of algebraic equations which can be solved by using Gauss Elimination to

determine the values of these unknown coefficients. 

The above procedure can be applied to Laguerre polynomials method. 

                                
                        

NUMERICAL EXAMPLES 
In this section, three examples are solved by using Boubaker polynomials method. The computations associated with 

the examples were performed by using MATLAB. Before we starte introducing the results, we presented the following 
observations:  

Yapp =  Approximate solution, 
    n    =  Degree of the polynomials, 
L-Ps   =  Laguerre polynomials method,
T-Ps   = Touchard polynomials method,

L.S.E = Least Square Error, Error = ( )2
1

( ) ( ) .
m

Exact Approximation
k

y z y z
=

−∑  

Example 1[8] Consider the following VFIDE2K given as: 

1

0 0

( ) 2 2 ( ) ( ) ,
z

zF z e F t dt F t dt′ = − + +∫ ∫ with the initial condition (0) 0F =  and the exact solution is ( ) .zF z ze=
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Figure 1. Exact and approximate solutions for Example 1 using Boubaker polynomials method. 

Table 1. Numerical results for Example 1 using Boubaker polynomials method. 

 z           Exact      Yapp(n=2)  Error(n=2) Yapp(n=3)  Error(n=3)  Yapp(n=5)    Error(n=5) 
   Solution      

    0.0        0.0000  0.0000  0.0000   0.0000         0.0000         0.0000     0.0000 
    0.1    0.1105  0.1976  0.0076   0.1070         0.0000      0.1105     0.0000 
    0.2      0.2443   0.4467  0.0410   0.2344    0.0001       0.2442   0.0000 
    0.3    0.4050  0.7474  0.1173    0.3882         0.0003       0.4049   0.0000 
    0.4         0.5967   1.0997  0.2529   0.5742         0.0005      0.5966     0.0000 
    0.5         0.8244  1.5035  0.4612    0.7984         0.0007       0.8242     0.0000 
    0.6         1.0933  1.9588  0.7492  1.0668    0.0007         1.0931     0.0000 
    0.7    1.4096  2.4657  1.1153     1.3852         0.0006       1.4095    0.0000 
    0.8    1.7804   3.0241  1.5468    1.7596     0.0004         1.7803   0.0000 
    0.9    2.2136  3.6341  2.0178   2.1959       0.0003         2.2135   0.0000 
    1.0    2.7183  4.2957  2.4882   2.7002       0.0003       2.7181     0.0000 

Example 2[9] Consider the following VFID2K given as: 

1
2 3

0 1

( ) 8 6 3 ( ) (1 2 ) ( ) , 1 1
z

F z z z z F t dt zt F t dt z
−

′′ = − + − + + + − − ≤ ≤∫ ∫ , with the initial conditions (0) 2F = and  

(0) 6.F ′ =  The exact solution is 2( ) 2 6 3 .F z z z= + −  

Figure 2. Exact and approximate solutions for Example 2 using Boubaker polynomials method. 
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Table 2. Numerical results for Example 2 using Boubaker polynomials method. 

    z          Exact Solution  Yapp(n=4)     Error(n=4)         Yapp(n=6)     Error(n=6) 

      0.0     2.0000         2.0000      0.0000         2.0000  0.0000   
      0.1     2.5700        2.5699      0.0000      2.5700    0.0000   
      0.2       3.0800        3.0794      0.0000  3.0800  0.0000   
      0.3      3.5300        3.5280      0.0000         3.5300   0.0000   
      0.4       3.9200        3.9152      0.0000    3.9201     0.0000   
      0.5       4.2500        4.2407     0.0001  4.2501     0.0000   
      0.6       4.5200        4.5039      0.0003    4.5202     0.0000   
      0.7     4.7300        4.7044      0.0007     4.7303  0.0000   
      0.8     4.8800             4.8417      0.0015  4.8804     0.0000   
      0.9  4.9700             4.9154      0.0030       4.9705  0.0000   
      1.0     5.0000        4.9249      0.0056       5.0006  0.0000   

Example 3[9] Consider the following VFIDE2K given as: 

2

0

( ) ( ) ( ) ,
2

z
zF z F t dt zF t dt

π

π−

′′′ = + +∫ ∫ with the initial conditions (0) (0) (0) 1.F F F′ ′′= = − =  The exact solution is 

( ) cos( ).F z z z= +  

Figure 3. Exact and approximate solutions for Example 3 using Boubaker polynomials method. 

Table 3. Numerical results for Example 3 using Boubaker polynomials method. 

    z           Exact Solution      Yapp (n=6)    Error (n=6)  Yapp (n=7)         Error (n=7) 
      0.0       1.0000     1.0000 0.0000        1.0000    0.0000  
      0.1      1.0950        1.0948 0.0000        1.0950    0.0000  
      0.2       1.1801    1.1793 0.0000        1.1801     0.0000  
      0.3      1.2553      1.2534 0.0000       1.2554    0.0000  
      0.4   1.3211          1.3172 0.0000       1.3213    0.0000  
      0.5   1.3776      1.3710 0.0000        1.3782   0.0000  
      0.6   1.4253        1.4148 0.0001        1.4269    0.0000  
      0.7   1.4648             1.4490 0.0003       1.4682   0.0000  
      0.8     1.4967  1.4741 0.0005      1.5031    0.0000  
      0.9    1.5216        1.4907 0.0010       1.5329    0.0001  
      1.0    1.5403        1.4997 0.0016        1.5591     0.0004 

Example 1 has been solved agian using Laguerre polynomials method and the results are presented in Figure 4 and Table 
4. 
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Figure 4. Exact and approximate solutions for Example 1 using Laguerre polynomials method. 

Table 4. Numerical results for Example 1 using Laguerre polynomials method. 
Error (n=3) Yapp (n=3)  Error (n=2)   Yapp (n=2) Exact Solution z 
   0.0000    0.0000     0.0000 0.0000       0.0000         0.0 
   0.0001    0.1192     0.0016 0.0705       0.1105         0.1 
   0.0002    0.2572     0.0038 0.1824       0.2443         0.2 
   0.0002    0.4200     0.0048 0.3358       0.4050         0.3 
   0.0003    0.6134     0.0044 0.5305       0.5967         0.4 
   0.0004    0.8431     0.0033 0.7667       0.8244         0.5 
   0.0005    1.1150     0.0024 1.0443       1.0933         0.6 
   0.0006    1.4349     0.0021 1.3633       1.4096         0.7 
   0.0008    1.8087     0.0032 1.7237       1.7804         0.8 
   0.0008    2.2421     0.0078 2.1255       2.2136         0.9 
   0.0005    2.7409     0.0224 2.5688       2.7183         1.0 

Example 3 has been solved again using Laguerre polynomials method and the results are given in Figure 5 and Table 5. 

Figure 5. Exact and approximate solutions for Example 3 using Laguerre polynomials method. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

3

x-axis

y-
ax

is

yexact
yapp,n=2
yapp,n=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

x-axis

y-
ax

is

 

yexact
yapp,n=4
yapp,n=5



Shahoodh │ Data Analytics and Applied Mathematics │ Vol. 3, Issue 1 (2022) 

9 journal.ump.edu.my/daam ◄ 

Table 5. Numerical results for Example 3 using Laguerre polynomials method. 
  Error (n=5)    Yapp (n=5)    Error (n=4)   Yapp (n=4) Exact Solution z 

0.0000 1.0000 0.0000 1.0000 1.0000         0.0 
0.0000 1.0950 0.0000 1.0950 1.0950         0.1 
0.0000 1.1800 0.0000 1.1799 1.1801         0.2 
0.0000 1.2552 0.0000 1.2547 1.2553         0.3 
0.0000 1.3208 0.0000 1.3195 1.3211         0.4 
0.0000 1.3771 0.0000 1.3742 1.3776         0.5 
0.0000 1.4245 0.0000 1.4192 1.4253         0.6 
0.0000 1.4638 0.0001 1.4546 1.4648         0.7 
0.0000 1.4957 0.0003 1.4806 1.4967         0.8 
0.0000 1.5211 0.0006 1.4976 1.5216         0.9 
0.0000 1.5413 0.0012 1.5060 1.5403         1.0 

  Next, the comparsions among several numerical methods have been studied and presented in the following sections. 

COMPARISON BETWEEN BOUBAKER POLYNOMIALS METHOD, BERNSTEIN POLYNOMIALS METHOD AND 
LAGUERRE POLYNOMIALS METHOD 
      In this section, the comparsion have done for Example 1 between Boubaker polynomials method, Bernstein 
polynomials method and Laguerre polynomials method and presented in Table 6. The comparsion showed that the results 
are approximatly the same between Boubaker polynomials method and Bernstein polynomials method. However, for the 
results of Laguerre polynomials method, there is a little difference with the results of the other methods and with the exact 
solution while that its degree is equal to 3. Therefore, these numerical methods are efficient and accurate to estimate the 
solution of Example 1. 

Table 6. Comparison of the numerical results for Example 1. 
  Laguerre 
Polynomials 

(n=3) 

  Bernestein 
polynomials 

(n=5) [8] 

  Boubaker 
polynomials 

(n=5) 

       Exact   
    Solution        z 

0.0000 0.0000 0.0000 0.0000      0.0 
0.1192 0.1105 0.1105 0.1105      0.1 
0.2572 0.2443      0.2442 0.2443      0.2 
0.4200 0.4050      0.4049 0.4050      0.3 
0.6134 0.5968      0.5966 0.5967      0.4 
0.8431 0.8244 0.8242 0.8244      0.5 
1.1150 1.0933 1.0931 1.0933      0.6 
1.4349 1.4097 1.4095 1.4096      0.7 
1.8087 1.7805 1.7803 1.7804      0.8 
2.2421 2.2137 2.2135 2.2136      0.9 
2.7409 2.7184 2.7181 2.7183      1.0 

COMPARISON BETWEEN BOUBAKER POLYNOIALS METHOD, TOUCHARD POLYNOMAILS METHOD AND 
LAGUERRE POLYNOMIALS METHOD 
     In this section, the comparsion has been studied for Example 3 and presented in Table 7. The comparison showed that 
when the degree of the Touchard polynomials method is five, then the approximate solution is converged to the exact 
solution approximately, while in the Boubaker polynomials method converges to the exact solution when its degree is 
seven. Furthermore, the Laguerre polynomials method had converged when its degree is equale to 3. Therefore, the results 
of these numerical methods are approximatly the same with the exact solution and between each other even with their 
degrees are different. 
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Table 7. Comparison of the numerical results for Example 3. 
Laguerre 

polynomials 
(n=3) 

 Touchard 
polynomials 
    (n=5) [18] 

 Boubaker 
Polynomials 
     (n=7) 

     Exact 
     solution          z 

1.0000 1.0000 1.0000 1.0000        0.0 
1.0950 1.0950 1.0950 1.0950        0.1 
1.1800 1.1800 1.1801 1.1801        0.2 
1.2552 1.2552 1.2554 1.2553        0.3 
1.3208 1.3207 1.3213 1.3211        0.4 
1.3771 1.3770 1.3782 1.3776        0.5 
1.4245 1.4243 1.4269 1.4253        0.6 
1.4638 1.4635 1.4682 1.4648        0.7 
1.4957 1.4951 1.5031 1.4967        0.8 
1.5211 1.5203 1.5329 1.5216        0.9 
1.5413 1.5401 1.5591 1.5403        1.0 

COMPARISON BETWEEN BOUBAKER POLYNOMIALS AND POWER SERIES, CHEBYSHEV POLYNOMIALS AND 
LEGENDER'S POLYNOMIALS 

This section contains the comparsions for Example 2 and Example 3 and presented in Table 8 and Table 9. For 
Example 2, the comparsion showed that, the results are approximatly the same with the exact solution and among the four 
methods when the degree of each method is equal to 6. However, for Example 3 the comparsion showed that, the other 
methods are more accurte than the Boubaker polynomials method. Since, if we notice that the numerical solutions which 
were obtaned from the other methods are approximatly the same with the exact solution when 6n =  except for Boubaker 
polynomials method its still needs degree more than 6 to converged to the exact solution. 

Table 8. Comparison of the numerical results for Example 2. 

 Boubaker      Power          Chebyshev             Legender's 
    z    Exact Sol.     Polynomial           Series [9]      Polynomial [9]       Polynomial[9] 

      (n=6)     L.S.E       (n=6)         Error         (n=6)   Error     (n=6)   Error 
0.0   2.00000     2.00000    0.000000     2.00000   0.00000      2.00016    1.000E-4      2.00251     2.510E-3 
0.1   2.57000      2.57000    0.000000     2.55934   1.066E-3    2.57014    1.400E-4      2.57113     1.130E-3 
0.2   3.08000      3.08001    0.000000       3.07856   1.440E-3    3.08056    5.600E-4      3.08164     1.640E-3 
0.3   3.53000        3.53004    0.000000       3.55621   2.621E-4    3.53027    2.700E-4      3.54712     1.712E-3 
0.4   3.92000        3.92007    0.000000       3.94830   2.830E-3    3.91945    5.500E-4      3.91867     1.400E-3 
0.5   4.25000        4.25012    0.000000       4.28391   3.391E-3    4.24932    6.800E-4      4.24801     1.990E-3 
0.6   4.52000     4.52018    0.000000       4.54167   2.167E-3    4.51814    1.860E-3     4.51772     2.280E-3 
0.7   4.73000     4.73026    0.000000       4.74893   1.893E-3    4.73004    4.000E-5     4.73105     1.050E-3 
0.8   4.88000        4.88035    0.000000       4.89642   1.642E-3    4.88151    1.510E-3      4.88240     2.400E-3 
0.9   4.97000     4.97046    0.000000       4.98341   1.341E-3    4.97793    7.930E-3      4.97806     8.060E-3 
1.0   5.00000      5.00059    0.000000       4.99672   1.280E-3    4.99996    4.000E-5      4.99507     1.930E-3 

Table 9. Comparison of the numerical results for Example 3. 
  Boubaker           Power      Chebyshev           Legender's  

       z       Exact Sol.        Polynomial      Series [9]      Polynomial [9]            Polynomial[9] 
  (n=6)      L.S.E            (n=6)        Error    (n=6)          Error       (n=6)     Error 

0.0  1.000000000  1.000000   0.000000  1.000000000  0.000000   1.000000000 0.000000    1.00000000    0.000000 
0.1  1.099998477  1.094816   0.000000  1.099816320  1.821E-4   1.099981301  1.718E-5    1.099871453  0.270E-3 
0.2  1.199939080  1.179272   0.000000  1.198634511  1.305E-3   1.199947062  7.982E-6    1.199756321  1.828E-4 
0.3  1.299986292  1.253391   0.000003  1.299417352  5.689E-4   1.299941073  4.522E-5    1.299861415  1.249E-4 
0.4  1.399975631  1.317243   0.000014  1.399094514  8.811E-4   1.399949310  2.632E-5    1.399715631  2.600E-4 
0.5  1.499945169  1.370959   0.000043  1.497183216  2.779E-3   1.499960178  1.745E-6    1.499783118  1.788E-4 
0.6  1.599945169  1.414760   0.000111  1.587160052  2.785E-3   1.599945831  4.128E-6    1.598345142  1.600E-3 
0.7  1.699925370  1.448980   0.000251  1.693861451  6.064E-3   1.699951006  2.564E-5    1.699453417  1.472E-3 
0.8  1.799902524  1.474091   0.000511  1.798885324  1.017E-3   1.799960145  5.762E-5    1.799368164  5.344E-4 
0.9  1.899876632  1.490730   0.000953  1.889956321  9.920E-3   1.899916315  3.968E-5    1.898964154  9.125E-4 
1.0  1.999847695  1.499729   0.001646  1.998794562  1.053E-3   1.999970382  1.227E-4    1.995300161  4.550E-3 
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COMPARISON BETWEEN TOUCHARD POLYNOMIALS AND POWER SERIES, CHEBYSHEV POLYNOMIALS AND 
LEGENDER'S POLYNOMIALS 
      In this section, the comparsion for Example 3 has been presented in Table 10. The comparsion showed that, the 
Touchard polynomials method converged faster then the other methods. Therefore, these numerical methods are good to 
estimate the solution of Example 3.  

Table 10. Comparison of the numerical results for Example 3. 
  Touchard      Power         Chebyshev             Legender's 

  z      Exact Sol.     Polynomial [18]    Series [9]       Polynomial [9]       Polynomial [9] 
  (n=5)         Error    (n=6)          Error   (n=6)         Error           (n=6)          Error   

 0.0   1.000000000    1.000000   0.000000    1.000000000  0.000000    1.000000000 0.000000    1.00000000    0.000000   
 0.1   1.099998477    1.095000   0.000000    1.099816320  1.821E-4    1.099981301  1.718E-5    1.099871453  0.270E-3 
 0.2   1.199939080    1.180032   0.000000    1.198634511  1.305E-3    1.199947062  7.982E-6    1.199756321  1.828E-4 
 0.3   1.299986292    1.255206   0.000000    1.299417352  5.689E-4    1.299941073  4.522E-5    1.299861415  1.249E-4 
 0.4   1.399975631    1.320738   0.000000    1.399094514  8.811E-4    1.399949310  2.632E-5    1.399715631  2.600E-4 
 0.5   1.499945169    1.376958   0.000000    1.497183216  2.779E-3    1.499960178  1.745E-6    1.499783118  1.788E-4 
 0.6   1.599945169    1.424330   0.000001    1.587160052  2.785E-3    1.599945831  4.128E-6    1.598345142  1.600E-3 
 0.7   1.699925370   1.463466   0.000001    1.693861451  6.064E-3    1.699951006  2.564E-5    1.699453417  1.472E-3 
 0.8   1.799902524    1.495142   0.000002    1.798885324  1.017E-3    1.799960145  5.762E-5    1.799368164  5.344E-4 
 0.9   1.899876632    1.520308   0.000001    1.889956321  9.920E-3    1.899916315  3.968E-5    1.898964154  9.125E-4 
 1.0   1.999847695    1.540112   0.000000    1.998794562  1.053E-3    1.999970382  1.227E-4    1.995300161  4.550E-3 

CONCLUSION 
As a conclusion, VFIDE2K are required approximate solutions. For this purpose, the numerical methods can be used 

to obtain approximate solutions for such types of equations. Furthrmore, comparsions among several numerical methods 
have been studied. The comparsion showed that these numerical methods are reliable numerical techniques  for the 
solution of such types of equations and they can be calculated easily and gives a good results. Moreover, these numerical 
techniques can be estimate the solution of such equations. For future work, we suggested the study of the comparison 
among several numerical methods for solving non-linear Volterra-Fredholm integro-differential equations of the second 
kind.   
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