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ABSTRACT - Hybrid nanofluid has a vast potential of applications in the cooling system due 
to the high thermal conductivity. This study emphasizes on the impact of the convective 
boundary condition and viscous dissipation to the heat transfer of Ag-Cu hybrid nanofluid. A 
suitable similarity transformation is used to transform the partial differential equations of mass, 
momentum and energy into the ordinary differential equations. A finite difference code known 
as bvp4c in Matlab is employed to generate the numerical solutions. Stability analysis is 
conducted since dual solutions are generated in this study and the first solution exhibits the 
stability properties. The influence of variations in the suction parameter, viscous dissipation, 
nanoparticles concentration and Biot number on the on the temperature and velocity profiles 
of the hybrid nanofluid are portrayed. The rate of heat transfer is prominently higher with the 
augmentation of the Biot number and Ag nanoparticles concentration. 
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1. INTRODUCTION 
Since decades ago, researchers and scientists have explored various methodologies and techniques to boost the heat 

transfer capability of fluid. The intensified coolant has been an urgent need nowadays to support the advance technological 
appliances, transportation system and diverse industries. This led to the discovery of nanofluids which are the fluids that 
contain nano sized solid particles by Choi and Eastman [1]. They found that nanofluids exhibit higher thermal 
conductivity then the conventional fluids. Afterwards, thriving research was done to investigate the mechanisms of heat 
transfer in nanofluids. Saidur et al. [2] reported that heat transfer process in nanofluid is more promising since it has 
higher dispersion stability and wider surface area between fluids and nanoparticles. In the cooling system of an electronic 
liquid, Nguyen et al. [3] experimentally proved that the heat transfer coefficient for Al2O3-water nanofluid increased 40% 
with 6.8% volume fraction nanoparticles. Khoshvaght-Aliabadi and Alizadeh [4] conducted an experiment of Cu-water 
nanofluid flow inside serpentine tubes. and found that the thermal–hydraulic performance of the serpentine tubes 
enhanced about 10%. Later, Koca et al. [5] scrutinized the performance of Ag-water nanofluid in the single phase 
circulation loop. An outstanding result had been obtained with 1% concentration of Ag nanoparticles where the 
effectiveness of the heat transfer is increased up to 11%.  This specialty of nanofluid contributes to the plentiful 
applications such as in the microchips cooling system, thermal energy storage, optical devices, delivery of transdermal 
drug, geothermal power extraction, cancer therapeutics, braking system, solar collectors, automotive lubrication, sensing 
and imaging system, nuclear reactor, nanocryosurgery and heat exchanging fluid system [6]–[9]. Besides, researchers 
also analysed the properties of nanofluid mathematically and provided some meaningful numerical results by using the 
shooting method, homotopy analysis method and Keller box method [10]–[16].  

Nowadays, researchers extending the potential of nanofluids by considering two different types of nanoparticles 
suspension in the base fluid. Specifically, this new type of fluid is called as hybrid nanofluid. The nanoparticles are 
including the carbon nanotubes (CNT), stable metals like silver (Ag) and copper (Cu), and metal oxides such as ZnO, 
TiO2, SiO2, Al2O3 and Fe3O4 [17]. The invention of utilizing hybrid nanofluids is to enhance the heat transfer capability 
of the single type nanoparticle fluid. Devi and Devi [18] found that with the existence of magnetic field, the rate of heat 
transfer involving Cu-Al2O3/water hybrid nanofluid is higher than Cu/water nanofluid.  After that, Minea [19] studied 
the hybrid nanofluids based on TiO2, SiO2 and SiO2 and discovered at least 12% increment of thermal conductivity with 
nanoparticles addition. Radiation and slip effects on the rotating flow of Ag-Cuo/water hybrid nanofluid had been studied 
by Hayat et al. [20]. They noticed that rotation and radiation increased the hybrid nanofluids temperature. Other than that, 
researchers also consider various types of physical parameters and flow configuration of hybrid nanofluids to explore 
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their full heat transfer potential [21]–[26]. Recently, an interesting finding has been obtained by Chahregh and Dinarvand 
[27] where they found that TiO2-Ag/blood hybrid nanofluid can be a promising medium for drug delivery in the 
respiratory system. 

One of the physical parameter that captivates the researchers’ attention is the viscous dissipation effect since it is 
related to some physical phenomena. For instance, in the polymer processing flows and aerodynamic heating where the 
viscous dissipation is significant in enhancing the surface temperature [28-29]. Bataller [30] stated that the inclusion of 
viscous dissipation in the energy equation is vital due to the importance of temperature distribution ascertainment in the 
unavoidable internal friction condition. Usually, this situation occurs in the bio-engineering industry, chemical and food 
processing and oil-exploitation. Mabood et al. [31] explained that the element of viscous stress drives the viscous 
dissipation to act as an internal heat source and consequently boosts the dimensionless temperature. Numerous articles 
flooded the field of boundary layer flow with viscous dissipation impact [30–33]. Currently, Lund et al. [36] considered 
viscous dissipation in the flow of Cu-Al2O3/H2O hybrid nanofluid over a shrinking surface. They concluded that the 
temperature profiles increase with the increment in viscous dissipation. 

In addition, convective boundary condition also part of the interest in the boundary layer flow research. Sometimes, 
it is also known as the Robin condition. Physically, it can be described as a condition where the heat conduction at the 
surface equals to the heat convection. Heat exchange performance is affected by the interaction between the thermal 
boundary layer formation in the hot fluid and the axial wall conduction. Convective heat transfers also involve in 
procedures with high temperature. Such situation arise in the nuclear plant, haemodialysis, oxygenation, laser therapy, 
sanitary fluid transport, gas turbines and material drying [37-38]. Ibrahim and Ul-Haq [39] considered convective 
boundary condition in the stagnation point flow of nanofluid. They concluded that the higher convection which 
represented by the higher Biot number contributed to the enhancement of heat transfer. The same  result was obtained by 
Rosali et al. [40]  where they found a rise in the values of Nusselt number with an increment in the convective heat transfer 
parameter. Furthermore, several researchers also analysed the impact of convective boundary condition to the process of 
heat exchange in hybrid nanofluids [41-43].  

The aforementioned researches motivate the authors to investigate the coupling influence of viscous dissipation and 
convective boundary condition to the Ag-Cu hybrid nanofluid. Combination of Ag and Cu nanoparticles are chosen in 
this study because these nanoparticles have high thermal conductivity. In addition, these nanoparticles also had been 
proven give more improvements on the Nusselt number scientifically [44]. Besides using water, we also generate the 
temperature profile for Ag-Cu hybrid nanofluid with methanol and kerosene as the base fluid. We have solved the 
mathematical model of Ag-Cu hybrid nanofluid numerically and presented dual solutions for some values of the 
governing parameters. Stability analysis also has been conducted to intent on which solution is stable. It is worth 
mentioning that this study is purely original and the numerical results have never been published by any other researchers 
before. The presented mathematical analysis and numerical results will contribute to the further understanding of the heat 
transfer mechanism in hybrid nanofluids.   

2. MATHEMATICAL FORMULATION 
A steady two dimensional Ag-Cu hybrid nanofluid flow is considered in this study. Figure 1 shows the physical 

configuration of the hybrid nanofluid flow.  The surface is positioned at 0y =  and permeably stretched/shrunk in x-axis 
with the velocity ( )wu u x axλ λ= =  where specifically, a is a constant and 0λ <  describes the shrinking sheet while the 
stretching sheet is defined by 0λ > . The mass flux velocity is assumed as wv v= . Besides, convective boundary condition 
also has been considered in this model where the hot fluid of uniform temperature Tf with the heat transfer coefficient hf 
is heating up the surface convectively and T∞  represents the ambient fluid temperature. 

 
Figure 1. Physical diagram of the hybrid nanofluid flow over the stretching/shrinking surface with convective boundary 

condition 
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By complying the above mentioned assumptions, the governing boundary layer flow equations for Ag-Cu hybrid 
nanofluid are specified as follows: 
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where u is the velocity component in x direction whereas v is the velocity component in y direction and the hybrid 
nanofluid temperature is denoted by T., The other parameters for hybrid nanofluid are the dynamic viscosity, density, 
thermal diffusivity, thermal conductivity and heat capacity which represented by hnfµ , hnfρ , hnfα  , hnfk  and ( ) ,p hnfCρ
respectively. The formula of the thermophysical properties for hybrid nanofluid are provided in Table 1. In this table, 
subscript s1 and s2 are used to represent two different types of nanoparticles, f for the base fluid, nf for nanofluid and hnf 
for hybrid nanofluid. Table 2 provides the values of thermophysical properties for the nanoparticles (Ag and Cu) while 
Table 3 for the base fluids (water, methanol and kerosene). 

Table 1. Formula of thermophysical properties for nanofluid and hybrid nanofluid 
Properties Nanofluid Hybrid nanofluid 
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Table 1. Thermophysical properties of the nanoparticles [45][46] 

Properties ( )3kgmρ −  ( )1 1
pC Jkg K− −  ( )1 1k Wm K− −  

Cu (Copper) 8933 385 401 
Ag (Silver) 10500 235 429 

 

Table 2. Thermophysical properties of the base fluids [47][48] 
Properties Water (H2O) Methanol Kerosene 

( )3kgmρ −

 
997.1 792 783 

( )1 1
pC Jkg K− −

 
4179 2545 2090 

( )1 1k Wm K− −

 
0.613 0.2035 0.15 

Pr 6.2 7.38 21 
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Further, the following similarity transformations are employed to solve Eqs. (1) – (3) together with boundary condition 
(4): 
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where the prime signifies differentiation with respect to η  . Then, the replacement of the above similarity transformation 
yields the following ordinary differential equations: 
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and the boundary conditions turn into 
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=  is Prandtl number and 
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dissipation. In addition, w
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= −  denotes the mass flux parameter where the positive value of s is representing the 

suction while the negative value of s is demonstrating injection. Another parameter is Biot number which can be defined 
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Applying the similarity transformation (5), we get 
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where Re /x w fxu v=   is the local Reynolds number. 

3. STABILITY ANALYSIS 
Apparently, dual solutions exist within the shrinking/stretching surface. Therefore, stability analysis is required to 

ensure both solutions have the correct physical sense. By referring to Merkin [49] and Weidman [50], we start the stability 
analysis with consideration of the unsteady form of the momentum and energy equations as follows: 

2

2 ,hnf

hnf

u u u uu v
t x y y

µ
ρ

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂  
(11) 

  

( )
22

2 .hnf
hnf

p hnf

T T T T uu v
t x y yy C

µ
α

ρ
 ∂ ∂ ∂ ∂ ∂

+ + = +  ∂ ∂ ∂ ∂∂  
 (12) 

We also implement a new dimensionless time variable τ in the following similarity variables: 
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Then with the usage of equation (13), equations (11) and (12) turn out to be  
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and the boundary conditions (8) turn into 
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Further, we determine the stability behaviour of both solutions by using the following representations:  
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where ( )F η  and ( )G η  are relatively small to ( )0f η  and ( )0θ η , respectively. Here, γ  is the unknown eigenvalue 
parameter. Then, the substitution of equation (17) into equation (14) – (16) produces the following linearized equations: 
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correspond to the boundary conditions 
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After that, a normalizing boundary condition ( )0 1F ′′ =  is used to replace ( ) 0F ′ ∞ → . This method also has been 
implemented by Harris et al. [51], Naganthran et al. [52] and Jamaludin et al. [24] to find the infinite range of eigenvalues 

1 2 3 ...γ γ γ< < <  where the stabilizing property of the solution can be decided by the smallest eigenvalue 1γ . 

4. RESULTS AND DISCUSSION 
In this study, equations (6) – (8) are numerically solved by using the finite difference code (bvp4c) in Matlab. The 

programming code is executed with the relative error tolerance of 510 .−  The dual solutions were obtained by setting 
different initial guesses for the values of ( ) ( )0 , 0f g′′ ′′  and ( )0θ ′  in which all the profiles must satisfy the conditions (8) 
asymptotically.  This study is conducted with 1φ  denotes the volume fraction of Cu nanoparticles and 2φ  represents the 
volume fraction of Ag nanoparticles. Since the base fluid is water, thus the value of Prandtl number is set to 6.2 which is 
in accordance with room temperature of nearly 295.15K.  

The accuracy of the numerical results has been validated through comparison with the previous studies. As depicted 
in Table 4, the values of the reduced Nusselt number ( )0θ ′−  in the present study similar with those obtained by Gorla 
and Sidawi [53] and Khan and Pop [54] which were generated by using the shooting method and implicit finite difference 
method, respectively. Therefore, this proves that the numerical results produced by the bvp4c function are as precise as 
the other methods. In addition, we also compare the present result with Waini et al. [43] who also used the bvp4c function 
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to ensure that the constructed algorithms and programming code in this study are correct and highly accurate. Besides, 
the result in Table 4 also clarifies that the higher values of Pradtl number enhances the rate of heat transfer. 

Table 4. The comparison of the reduced Nusselt number ( )0θ ′−  for 1,λ = Γ →∞  and 1 2 0s Ec φ φ= = = =  

Pr Gorla and Sidawi 
[53] 

Khan and Pop 
[54] Waini et al. [43] Present 

0.20 0.16912 0.1691  0.169090 
2.00 0.91142 0.9113 0.911357 0.911358 
6.13   1.759682 1.759685 
6.20    1.770948 
7.00 1.89046 1.8954 1.895400 1.895403 
7.38    1.952017 

20.00 3.35391  3.353893 3.353905 
21.00    3.442071 
70.00 6.46220 6.4621  6.462200 

Dual solutions exist when the sheet is stretched ( )0λ >  and also in the shrinking sheet ( )0 .λ <  However, there is a 
unique solution at the critical point cλ  and no solution can be found when cλ λ< . It means that the boundary layer 
separation occurs when cλ λ< . The smallest eigenvalue 1γ  indicates the stability characteristic of the dual solutions. The 
negative value of 1γ  is specifying the development of disturbances in the solution, and hence showing that the solution 
is unstable. On the contrary, the solution is complying the stabilizing property when 1γ  is positive. Therefore, since Table 
5 shows the result of 1γ  is positive for the first solution and negative for the second solution, thus the first solution is 
stable while the second solution is unstable. 

Table 5. Smallest eigenvalue 1γ  for cλ λ→  

λ  
1γ  

(1st Solution) 
1γ  

(2nd Solution) 
-5 1.6556 -2.0185 

-5.7 0.8398 -0.7859 
-5.78 0.2165 -0.2130 

-5.785 0.0837 -0.0833 
-5.7859 0.0266 -0.0267 

Viscous dissipation effect which represented by the Eckert number has been included in the energy equation (7). 
Obviously, viscous dissipation is highly related to the conversion process of kinetic energy to the internal heat energy. 
Figure 2 illustrates that the increment of Eckert number enhances the temperature profile. This means the viscous 
dissipation affects the thickness of the thermal boundary layer. The higher viscous dissipation aggravates the thermal 
boundary layer thickness due to the occurrence of frictional heating and thermal reversal adjacent to the surface [55]. 
Nusselt number is the physical quantity that represents the rate of heat transfer. As depicted in Figure 3, the Nusselt 
number decreases with a rise in Ec. It is worth mentioning that the negative sign of the Nusselt number means a reversal 
in the direction of heat transfer on the surface. Physically, as the viscous dissipation increases, the internal heat energy 
also increases which leading to the deterioration of the process of heat transfer. 

Figure 4(a) shows the influence of Biot number, Γ  on the temperature profile without the presence of viscous 
dissipation ( )0Ec = while Figure 4(b) portrays the effect of Biot number when 1.Ec =  In Figure 4(a), an increase of Γ  
contributes to the higher thermal boundary layer thickness. On the other hand, Figure 4(b) shows a decreasing trend of 
the thermal boundary layer thickness since the presence of viscous dissipation causes the thermal reversal. However, the 
surface temperature shown in Figure 4(b) is higher compared to the Figure 4(a). Figure 5 shows the dual solutions in 
temperature profile for some values of Biot number. As we can see the thermal boundary layer thickness lessen for both 
solutions. Biot number is inversely proportional the thermal resistance since it has direct proportionality to the heat 
transfer coefficient hf. Therefore, the heat resistance declines when Γ getting higher, which consequently increases the 
surface heat transfer. This is in accordance with the results shown in Figure 6 where 1/2Rex xNu −  is increasing with an 
increase in Γ. The value of critical point cλ  remain the same in Figures 3 and 6 which means that the variances in the 
Eckert number and Biot number have no effect to cλ . 
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Figure 2. The influence of viscous dissipation on ( )θ η  

 

 
Figure 3. Variations of 1/2Rex xNu −  with λ  for some values of Ec 

 

 
Figure 4. The influence of Biot number on ( )θ η without and with the presence of viscous dissipation 
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Figure 5. The Dual solutions in temperature profile for some values of Biot number when s = 2.25, Pr = 6.2, Ec = 1.0, 

1.0,λ =  1 0.02φ =  and 2 0.04φ =  
 

 
Figure 6. Variations of 1/2Rex xNu −  with λ  for some values of Γ 

The surface becomes permeable with the existence of suction. Therefore, suction gives a prominent impact to the 
velocity profile and the skin friction coefficient. Figure 7 shows that the increasing values of suction reduces the 
momentum boundary layer thickness. This is owing to the fact that suction acts as a deceleration factor for the fluid flow 
and deploys a drag force. This statement is also reflected by the results shown in Figure 8 where the magnitude of the 
skin friction coefficient ( )0f ′′  increases with a rise in the suction parameter. Besides, the critical point cλ  is getting 
larger as the suction increases which shows that the boundary layer separation is retarded. 

In addition, different types of nanoparticles and variations of the nanoparticles concentration also affect the 
temperature profiles of the hybrid nanofluid. Figure 9 depicts that the increment of Cu nanoparticles concentration 
increases the thermal boundary layer thickness. In contrast, a different trend is shown in Figure 10 when the Ag 
nanoparticles concentration increases. Since the thermal boundary layer thickness reduces, thus the process of heat 
transfer will be easier. The results are in accordance with the listed values of the Nusselt number in Table 6. It is obviously 
seen that the values of 1/2RexNu −  are lessening when the Cu nanoparticles getting concentrated. However, as the volume 
fraction of Ag nanoparticle increases, the values of 1/2RexNu −  are increasing which shows that the higher concentration 
of Ag nanoparticles enhances the heat transfer rate of the hybrid nanofluid. Perhaps this is due to the fact that the thermal 
conductivity of silver is higher compared to the copper. The insertion of suction also believed to be the causal factor of 
such results. 
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Figure 7. The influence of suction on ( )f η′  

 

 
Figure 8. Variations of Ref xC with λ  for some values of s 

 

 
Figure 9. The influence of variations in Cu nanoparticles concentration on ( )θ η  
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Figure 10. The influence of variations in Ag nanoparticles concentration on ( )θ η  

 
Table 3. The comparison of 1/2RexNu −  with variations in 1φ  (Cu nanoparticles) and 2φ  (Ag nanoparticles) when 

2.25, 0, Pr 6.2, 1s Ec λ= = = =  and Γ →∞  

1φ  
Ag-Cu/Water 
( )2 0.02φ =  

 
2φ  

Ag-Cu/Water 
( )1 0.02φ =  

0.02 15.59855  0.02 15.59855 
0.05 15.54594  0.05 17.62359 
0.07 15.51140  0.07 18.98622 
0.10 15.46054  0.10 21.04027 

Figure 11 elucidates the impact of different base fluid used in the hybrid nanofluid to the temperature profiles. Thermal 
boundary layer thickness in the flow of Ag-Cu/kerosene hybrid nanofluid is the lowest, followed by Ag-Cu/methanol and 
Ag-Cu/water. Indirectly, the heat transfer process involving the kerosene is better than methanol and water. This is also 
related to the higher value of Prandtl number for kerosene as depicted in Table 3. Since the thermal diffusivity is lower 
when the value of Prandtl number increases, thus the rate of heat transfer will be escalated. This result is also in an 
excellent agreement with Reddy et al. [48] where they concluded kerosene exhibited a tremendous heat transfer 
performance. Therefore, the use of kerosene as the base fluid in the hybrid nanofluid can be commercialized for various 
industrial sector. 

 
Figure 11. The influence of different types of base fluids on ( )θ η  

5. CONCLUSIONS 
This study scrutinized the flow and heat transfer of Ag-Cu hybrid nanofluid with consideration of suction, viscous 

dissipation and convective boundary condition. Dual solutions were obtained for a certain range of stretching/shrinking 
parameter. From the stability analysis, the first solution is stable since the generated smallest eigenvalue is positive. The 
variations of Eckert number and Biot number gave different impact to the rate of heat transfer. Conclusively, the heat 
transfer rate enhanced with a rise in the Biot number but deteriorated with an increase in the viscous dissipation. Higher 
volume fraction of Ag nanoparticles also contributed to the higher rate of heat transfer. The existence of suction affected 
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the flow of the Ag-Cu hybrid nanofluid and increased the skin friction coefficient. Besides, the momentum boundary 
layer was thickening as the viscous dissipation and Cu nanoparticles concentration increased. A better heat transfer 
performance can be achieved with the use of kerosene as the base fluid. The advantage of the employed model will help 
the engineers to optimize the utilization of Ag-Cu hybrid nanofluid as a propitious cooling medium in the various 
industrial sector. 
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