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ABSTRACT - There is currently no antiviral medication for dengue, a highly fatal tropical 
infectious disease spread by the Aedes aegypti and Aedes albopictus mosquitoes. The 
most conserved of the four Dengue serotypes and an essential element in viral replication, 
Dengue NS5 MTase is a promising therapeutic target. Applying in-silico techniques such 
as molecular docking, pharmacokinetics, and pharmacophore analysis, we intend to 
discover novel inhibitors against Dengue NS5 MTase from Usnic acid. In the end, the 
docking results indicated that usnic acid had satisfactory docking values of -9.3 kcal/mol. 
We were able to confirm that the usnic acid had higher potential scores in docking and 
bound amino acids than the reference compound during our in-silico evaluation. Molecular 
docking, pharmacokinetics, and pharmacophore evaluations revealed that usnic acid has 
high pharmacological potential. Additionally, we anticipate that the testing in vitro and in 
vivo of usnic acid would indicate potential medicinal benefits.  
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1.0 INTRODUCTION 
Over four billion people are in danger from dengue, a mosquito-borne virus illness carried by Aedes aegypti and Aedes 

albopictus that is now present in over 128 tropical and subtropical regions. Every year, the dengue virus (DENV) affects 
390 million individuals and causes about 20,000 fatalities [1]. According to Jarerattanachat et al., this might result in 
hospitalization and life-threatening symptoms such as dengue hemorrhagic fever (DHF) and dengue shock syndrome 
(DSS) [2]. Dengue virus (DENV) has four serotypes (DENV-1, DENV-2, DENV-3, and DENV4) and is a member of the 
Flaviviradae family. Each serotype contains 65-70% of the same genome sequence [1, 3]. Prevention efforts and methods 
must be increased in light of these depressing numbers. Unfortunately, supportive care and symptomatic therapy are still 
the only options available for treating dengue today. Except for Dengvaxia, which the FDA has licensedlicensed for use 
solely in seropositive patients, there is no anti-dengue medication or vaccine. 

The DENV genome is 10–11 KB in size and codes for a polyprotein that contains three structural and 
seven nonstructural proteins [4]. Core/capsid protein, membrane-associated protein, and envelope protein are the three 
proteins that make up structural proteins. Seven proteins are classified as nonstructural proteins: NS, NS2A, NS2B, NS3, 
NS4A, NS4B, and NS5. They are arranged in the following order: 5-CprM (M) -E-NS1- NS2A-NS2B-NS3-NS4A-NS4B-
NS5-3. According to Qamar et al., nonstructural proteins are crucial for viral replication and other cellular processes, 
while structural proteins are crucial for the structural organization of viruses and their entry into host cells [5].  

The NS5 protein is the biggest among structural and non-structural proteins and is crucial for viral replication [2]. The 
RNA-dependent RNA-polymerase (RdRp) is located close to the N-terminal area of the NS5 protein, while the 
methyltransferase (MTase) is located close to the C-terminal region [6]. The RNA capping site, which is a Guanosine  
5′-Triphosphate (GTP) binding pocket, and the AdoMet binding site are the two active sites that make up the MTase 
domain. S-Adenosyl methionine (SAM or AdoMet), a small molecule methylating agent, is the natural ligand at the 
AdoMet binding site. The ribonucleotide of the viral RNA chain that is located at the RNA capping site can get a methyl 
group from SAM. When the methyl group is lost after methylation, SAM is changed to S-Adenosyl-l-homocysteine (SAH 
or AdoHcy) [2]. All four Dengue serotypes and all Flaviviruses share the NS5 protein, which makes it an attractive target 
for the development of broad-spectrum antiviral drugs [7]. Many organizations have experimentally or virtually screened 
numerous chemical databases against the enzyme due to the interest in NS5 MTase as a therapeutic target.  
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Figure 1. 2D Structure of Usnic Acid (UA) 

Usnic acid (UA), a dibenzofuran that was first discovered in lichens, is a member of the secondary metabolites and 
exhibits a wide range of biological activities [8]. It possesses antiviral [9], anti-inflammatory [10], antitumor [11], 
antimitotic [12], insecticidal [13], antineoplastic [14], antibacterial [15], fungicidal [16] and antimycotic [12] agent. In 
addition, UA has a strong larvicidal activity against A. aegypti [17]. We used a variety of in-silico techniques, including 
as molecular docking, and pharmacokinetic and pharmacophore investigations to evaluate the antiviral efficacy of 
UA against DENV-3 MTase based on the antiviral activity and larvicidal activity against A. aegypti. 

2.0 METHODS AND MATERIAL 
2.1 Ligand Selection and Preparation 

Based on the antiviral and high larvicidal activity against A. aegypti and anti-viral activity, we selected the UA as a 
ligand to docked with the target protein. The structures of UA and the reference compound (Quercetin) were constructed 
using the ChemSketch software and saved in .mol format. 

2.2 Target Protein Selection and Preparation 

The crystal structure of DENV-3 methyltransferase was selected from the literature [2] and downloaded in PDB format 
(PDB ID: 4R8S) from the RCSB Protein Data Bank [18]. 

2.3 Active Site Prediction 

This site exploration is crucial to the docking process since it aids in locating the protein's ligand binding pocket. The 
produced protein was used for the analysis. The protein has a huge number of binding sites, but without this analysis, not 
all of them could be recognised as good docking sites. Therefore, a suitable location was chosen utilizing the DrugRep 
online tool for the docking of the phytochemicals with this protein after a comprehensive investigation [19]. 

2.4 Molecular Docking 

The above-described methodologies were used to determine the molecular docking analysis using the online CB-Dock 
(cavity-detection-guided blind docking) application [20]. The interaction between UA and the DENV-3 methyltransferase 
(PDB ID: 4R8S) [18] was examined. Using the ChemSketch program, the structure of the compound and the reference 
drug were created and saved in .mol format. The 3D structure of the target protein was obtained from the Protein Data 
Bank and saved in .pdb format. 

2.5 Pharmacokinetics Analysis 

The online tool pkCSM software was used to forecast the characteristics for absorption, distribution, metabolism, and 
toxicity of the selected compound and the reference compound [21]. Furthermore, using the online platform 
Molinspiration (https://www.molinspiration.com), the drug-like qualities were evaluated of the compounds [22]. In this 
software, the SMILES or SD file structures of the compounds are needed for preparation; knowledge of the active site or 
binding mechanism is not necessary. 

2.6 E-Pharmacophore Analysis 

The energetic (e)-pharmacophore technique now incorporates both structure- and ligand-based approaches. The 
pharmacophore sites of UA, such as hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic group (H), 
positively ionizable (P), negatively ionizable (N), and aromatic ring (R), were identified using the phase v 3.4 module in 
Schrödinger [23, 24]. 

3.0 RESULTS AND DISCUSSION 
3.1 Active Site prediction 

The proper putative binding pocket in the target molecules is identified at this crucial stage of the docking process. 
One site might be utilized to a potential ligand binding pocket despite the protein having a huge number of binding sites 
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[24]. Nearly five drug-grade pockets were found in this binding pocket detection to be acceptable ligand binding sites. 
Later, a single docking point was selected based on measurements for the site values (Figure 2 and Table 1). 

 
Figure 2. Ligand binding pocket in the DENV-3 methyltransferase protein (4R8S) 

 

Table 1. Active binding pocket of DENV-3 methyltransferase protein (4R8S) 
Pocket 

Number Volume Center (X,Y,Z) Size 
(X,Y,Z) Chain Ligand binding pocket residues 

1 1277 -16.8,5.6,21.3 18,18,22 A, B A: Cys140, Glu138, Trp171, Pro170, Leu135, 
Asn175, Tyr103, Lys173, Pro137, Pro136, 
Lys139, Lys130 and Cys140, Hsd200, GLu74, 
Glu138, Trp171, Asp141, Pro170, Asn174, 
Asn175, Lys139, Lys173, Pro137, Gln176, 
Glu169, Leu172, Lys199 

2 632 -13.3,-15.3,5.2 18,19,19 B Asp146, Trp87, Val164, Gly86, Cys82, Lys130, 
Gly83, Arg84, Gly81, Lys105, Ser56, Glu111, 
Hsd110, Lys61, Ile147, Phe133, Asp131, 
Thr104, Gly148, Gly106, Gu149, Gly85, 
Arg160, Arg163, Val132, Gly58, Asp79 

3 549 -9.4,-8.6,29.3 17,14,15 A, B A: Phe133, Arg163, Pro136, Leu135, Tyr134, 
Asp131, Lys130 and B: Met203, Arg68, Val205, 
Asn222, Gly223, Ile72, Met70, Gln176, Asn69, 
Ile220, Thr224 

4 358 -2.3,11.8,20.8 16,18,16 A, B A: Gly202, Asn174, Hsd200, Ser221, Arg195, 
Phe177, Leu196, Asn175, Lys199, Glu169, 
Leu172, Lys173 and B: Arg195, Arg198, 
Lys199 

5 229 -21.9,-33.0,18.9 14,12,11 B Ala54, Ala41, Asp37, Lys253, Val255, Asp256, 
Hsd53, Hsd52, Asp254, Glu40 

3.2 Molecular Docking 

The compatibility of UA with the DENV-3 methyltransferase was investigated using the current in-silico method. 
Because it had improved docking metrics for the bound dengue protein, such as docking score, hydrogen, and hydrophobic 
bonding, this studied ligand eventually became a potential medication. The docking scores showed that it contains 
potential therapeutic benefits to fight this infection. The affinities of this protein to the tested chemical, including hydrogen 
bonds, hydrophobic interactions, ionic, and π-cation, served as supplementary evidence. 

The DENV-3 methyltransferase protein and UA have the best docking score of -9.3 kcal/mol (Table 2). Asp131, 
Glu149, Gly148, Asp146, His110, Thr104, Tyr103, Cys82, and Gly83 were discovered to form hydrogen bond 
connections with UA, whereas Phe133, Arg160, Ile147, Val132, Lys105, and Tyr103 were shown to establish 
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hydrophobic interactions. Additionally, UA displayed ionic connections with the residues Arg160 and Lys180 as well as 
π-cation contacts with Lys105, His110, and Arg163 residues (Figure 3A). 

Table 2. Molecular docking results analysis of (A) UA and (B) Reference compound (Quercetin) with DENV-3 
methyltransferase (PDB ID: 4R8S) 

Compound Name Vina 
Score Number of H-B Bound amino acids 

UA -9.3 9 Asp131, Glu149, Gly148, Asp146, His110, Thr104, 
Tyr103, Cys82, Gly83 (H-B), Phe133, Arg160, Ile147, 
Val132, Lys105, Tyr103 (C-H), Arg160, Lys180 (ionic), 
Lys105, His110, Arg163 (pi-cation) 

Quercetin -8.8 10 Asp131, Lys130, His110, Gly148, Asp146, Glu111, 
Thr104, Gly83, Cys82, Tyr103 (H-B), Lys105, Val132, 
Tyr103, Ile147 (C-H), Arg84, Lys180 (ionic), Lys105 (pi-
cation) 

The DENV-3 methyltransferase protein and the reference substance (quercetin) have a docking score of -8.8 
kcal/mol (Table 2). Lys105, Val132, Tyr103, and Ile147 were discovered to interact hydrophobically with quercetin, 
whereas Asp131, Lys130, His110, Gly148, Asp146, Glu111, Thr104, Gly83, Cys82, and Tyr103 were shown to form 
hydrogen bond connections with quercetin. As seen in Figure 3B, quercetin also demonstrated ionic interactions with the 
residues Arg84 and Lys180 as well as a π-cation with Lys105. 

In this study, we used CB-Dock software to run the blind docking of the reference compound (Quercetin) and the 
selected compound (UA) with the target protein. UA or its derivatives are novel compounds to the DENV. In our previous 
work, we studied for the first time the anti-DENV activity of UA through the in-silico approaches [25]. In this study, we 
used blind docking to predict the UA binding site to the MTase protein to discover UA as a competitive or non-competitive 
compound as anti-DENV. Both compounds have been found to have interaction in the binding pocket 2 (Table 1; Figure 
2) which indicated that these compounds bound in the active site of the target protein. The docking data reveal that the 
UA has good docking values and remarkable hydrogen bonding interactions. UA will be a therapeutic chemical to build 
anti-viral drugs against DENV based on the interaction in the active site of the target protein, bound amino acids, and 
binding energy as well as compared to the reference compound (Quercetin). 

 
Figure 3. Molecular docking results of (A) UA and (B) Reference compound (Quercetin) with DENV-3 

methyltransferase (PDB ID: 4R8S) 

3.3 Pharmacokinetics Analysis 

Based on their physicochemical characteristics, which are displayed in Table 3, the drug-likeness of UA and the 
reference molecule were investigated. The MiLogP value was used to assess the lipophilicity of the drug candidate. 
GB/SA (Generalized-Born and Solvent Accessible) surface area model is used by MiLopP to determine the free solvation 
energies in n-octanol and water [26]. For both compounds, the MiLopP value was acceptable. According to Palm et al., 
the topological polar surface area (TPSA) is made up of all polar atoms, namely oxygen and nitrogen as well as associated 
hydrogen [27]. With TPSA values of 117.97 Å2 and 131.35 Å2, respectively, which are not greater than 140 Å2, the UA 
and Quercetin compounds were well within the permissible range [25]. A substance having a low molecular weight is 
simple to absorb in the human gut. With a few rare exceptions, as molecular weight rises, so does the bulkiness of the 
molecules [28]. In the permissible range (MWT ≤500), the molecular weights of UA and quercetin were 344.32 and 
302.24, respectively.  Additionally, the number of HB-A and HB-D was within an acceptable range and did not violate 
Lipinski's Rule of Five (Ro5) [29]. 
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Table 3. Drug-likeness properties of UA and Reference compound (Quercetin) 
Compound 
Name MiLogP TPSA MW nON nOHNH No. of 

Violation 
No. of 
Rotat Volume 

Reference 
Value 

--- 140 Å2 ≤500 ≤10 ≤5 0 ≤10 --- 

UA 1.01 117.97 344.32 7 2 0 2 290.31 
Quercetin 1.68 131.35 302.24 7 5 0 1 240.08 

Table 4 clearly displayed the pharmacological characteristics of UA and the reference substance. High gastrointestinal 
absorption and a strong blood-brain barrier were demonstrated by the reference substance and the UA. In order to build 
complex molecules, various bodily organs used the absorbed drugs that were provided by blood vessels [30]. Different 
xenobiotics must be biotransformed in the human body using CYP450 enzymes. More than fifty isoforms of this family 
of enzymes exist, although CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 are usually regarded as 
crucial CYP450 enzymes since they metabolise 90% of medications [31]. The predictions of pkCSM program showed 
that the UA could not interact with CYP450 as a substrate or an inhibitor, whereas the reference substance may interact 
with CYP1A2 inhibitor. According to predictions, neither substance is a probable substrate of renal organic cation 
transporter 2 (Renal OCT2), which means Renal OCT2 is unlikely to be involved in their renal clearance and disposal 
[32]. The human ether-á-go-go related gene (hERG) creates a potassium ion receptor that takes part in electrical heart 
activity by repolarizing the cardiac action potential [33]. Drugs that block this channel may cause an arrhythmia, which 
can result in potentially fatal symptoms [34]. None of the substances examined by the hERG inhibitor predictor showed 
the ability to block this channel, which suggests their potential as a therapeutic alternative. The chosen molecule had a 
hepatotoxic profile, which suggested that it may be able to harm the liver [20]. 

Table 4. Physicochemical properties of UA and Reference compound (Quercetin) 

 Absorption Distri-
bution Metabolism Ex-

cretion Toxicity 

C/Name AS HIA BBB CYP2D CYP
3A4 

CYP
1A2 

CYP
2C19 

CYP
2C9 

CYP
2D6 

CYP
3A4 

Renal 
OCT2 

hERG 
I 

hERG 
II HT 

Reference 
Value --- >70 --- No No No No No No No No No No No 

UA -2.80 84.18 -0.53 No No No No No No No No No No Yes 

Quercetin -2.92 77.20 -1.09 No No Yes No No No No No No No No 

3.4 E-Pharmacophore Analysis 

By preserving the activity criterion in the range of 6.5 to 7.9, the data set was split into regions that were actively, 
moderately, and inactively occupied. Due to the UA binding domain's strong survival value, the generic pharmacophore 
hypotheses were added among its four properties, as illustrated in Figure 4. The e-pharmacophore also reveals that the 
UA is composed of seven acquired acceptors (A1 to A7), two obtained donors (D8 and D9), two obtained hydrophobics 
(H10 and H11), and one obtained aromatic ring (R12).  

 
Figure 4. Pharmacophore hypothesis of Usnic acid. A denotes hydrogen bond acceptor in pink color, D denotes 

hydrogen bond donor in blue, H denotes hydrophobic in green color and R denotes aromatic rings in brown color from 
docked phytochemicals 
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4.0 CONCLUSION 
There is currently no FDA-approved antiviral medication to treat dengue virus. On the other hand, individuals all over 

the world frequently employ plant extracts to lessen the problems of viral infections in the human body. As a result, the 
current in-silico investigation using nicotinic acid was chosen to examine the anti-DENV potential. The docked usnic 
acid showed exceptional docking values and bound amino acids compared to the reference chemical, we discovered in 
the end. This docking finding led to an additional investigation into the pharmacological potential of usnic acid utilizing 
pharmacokinetics and pharmacophore, where usnic acid demonstrated promising medicinal potential. 
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