
JOURNAL OF MODERN MANUFACTURING SYSTEMS AND TECHNOLOGY 01 (2018) 001-014 

  1 
 

ABSTRACT 

In this paper, five variants of Differential Evolution (DE) algorithms are proposed to solve 

the multi-echelon supply chain network optimization problem. Supply chain network 

composed of different stages which involves products, services and information flow 

between suppliers and customers, is a value-added chain that provides customers products 

with the quickest delivery and the most competitive price. Hence, there is a need to optimize 

the supply chain by finding the optimum configuration of the network in order to get a good 

compromise between several objectives. The supply chain problem utilized in this study is 

taken from literature which incorporates demand, capacity, raw-material availability, and 

sequencing constraints in order to maximize total profitability. The performance of DE 

variants has been investigated by solving three stage multi-echelon supply chain network 

optimization problems for twenty demand scenarios with each supply chain settings. The 

objective is to find the optimal alignment of procurement, production, and distribution while 

aiming towards maximizing profit. The results show that the proposed DE algorithm is able 

to achieve better performance on a set of supply chain problem with different scenarios 

those obtained by well-known classical GA and PSO. 
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INTRODUCTION 
 
 In today’s global competition in manufacturing and distribution, the successes of an industry are 
depended on cost-effective supply chain management under various markets, logistics and production 
uncertainties. Uncertainties in the supply chain usually decrease profit, i.e. increase total supply chain cost 
[1]. The key issues in supply chain management can broadly be divided into main categories: (i) supply 
chain design (ii) supply chain planning and (iii) supply chain control. In a supply chain, the flow of goods 
between a supplier and customer passes through several stages, and each stage may consist of many 
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facilities thus making it difficult to manage its whole integration. One of these critical decisions may involve 
integrating the supply chain in which the companies participate to enable the ability to make business 
decisions jointly. These strategic decisions lead to costly, time-consuming investment as the facilities 
located today, are expected to remain in operation for a long time. Hence, it is very important to design an 
efficient supply chain to facilitate the movements of goods to increase the competitiveness introduced by 
the market globalization [2]. 
 A supply chain network (SCN) typically comprised of suppliers, producers, distributors, and 
customers. SCN establish the distribution channels, and the number of materials and items to consume, 
produce, and ship from suppliers to customers. The SCN design problem is one of the most comprehensive 
strategic decision problems that need to be optimized for long-term efficient operation of a whole supply 
chain. It determines the number, location, capacity and type of plants, warehouses, and distribution centers 
to be used. These problems typically increase as the number of supply chain layers increase, the time period 
increases, and the number of products and purchase orders increase. These cause the network search space 
and time required to obtain a solution to increase markedly. Therefore, the SCN design problem is an NP-
complete problem [3]. According to the findings of Ebikake et al [4], finding the best solution for supply 
chain management is NP-hard problem, so it must be strategically dealt with, on a case to case basis 
developing an efficient methodology that can find out the optimal or near-optimal solution in minimum 
computational time. It is intractable to solve this kind of problem in the real world as it often incurs 
expensive computational efforts. 
 Meta-heuristics are kind of near-optimal algorithms that were proposed in the two recent decades 
to integrate basic heuristic methods in higher-level structures in order to effectively and efficiently search 
a solution space. Nowadays, these algorithms have a large number of applications in an optimization of 
different hard-to-solve problems. In this paper, we use DE variants for solving constrained multi-echelon 
supply chain network problems of Kadadevaramath [1]. The performance of the DE variants used in this 
paper has been compared with genetic algorithm and particle swarm optimization algorithm. The results 
indicated that the DE method can obtain a better quality solution compared to classical GA and PSO. 
 Rest of the paper is organized as follows. Section 2 deals with the work that is done previously in 
the related field. Section 3 explains problem description and mathematical formulation of three stage multi-
echelon supply chain network model. The implementation of DE algorithm is given in section 4 followed by 
numerical illustration given in section 5. The results are given in section 6 and finally, conclusions are given 
in section 7. 
 

LITERATURE REVIEW 
 
 A large amount of literature on supply management places great emphasis on the integration of 
different components of the chain. Most of the research in this area is based on the classic work of Clark 
and Scarf [5-6] more discussion of two-echelon models may be found in [7]. Bora and Grossmann [8] 
formulated the problem as a multistage stochastic program with decision dependent elements where 
investment strategies are considered to reduce uncertainty, and time-varying distributions are used to 
describe uncertainty and proposed a new mixed-integer/disjunctive programming model. 
 Cohen and Moon [9] extend Cohen and Lee [10] developed a constrained optimization model; 
called PILOT, to investigate the effects of various parameters on supply chain cost, and consider the 
additional problem of determining which manufacturing facilities and distribution centers should be open. 
The objective function of the PILOT model is a cost function, consisting of fixed and variable production 
and transportation costs, subject to supply, capacity, assignment, demand, and raw material requirement 
constraints. Based on the results of their example supply chain system, the authors conclude that there are 
a number of factors that may dominate supply chain costs under a variety of situations and that 
transportation costs play a significant role in the overall costs of supply chain operations. 
 Goh et al [11] focused on the operational issues of a Two-echelon Single-Vendor–Multiple-Buyers 
Supply chain problem under vendor managed inventory mode of operation and proposed PSO and hybrid 
GA to solve this problem. Che [12] developed a decision methodology for the production and distribution 
planning of a multi-echelon unbalanced supply chain problem. He proposed a mathematical model to 
determine the best pattern of the supply chain system by integrating cost and time criteria and 
simultaneously considering multiple products, production loss, transportation loss, quantity discount, 
production capacity, and starting-operation quantity. 
 Ishii et al. [13] develop a deterministic model for determining the base stock levels and lead times 
associated with the lowest cost solution for an integrated supply chain on a finite horizon. The stock levels 
and lead times are determined in such a way as to prevent stock out, and to minimize the amount of 
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obsolete (“dead”) inventory at each stock point. Their model utilizes a pull-type ordering system, which is 
driven by, in this case, linear (and known) demand processes. 
 Pyke and Cohen [14] develop a mathematical programming model for an integrated supply chain, 
using stochastic sub-models to calculate the values of the included random variables included in the 
mathematical program. The authors consider a -level supply chain, consisting of one product, one 
manufacturing facility, one warehousing facility, and one retailer. The model minimizes total cost, subject 
to a service level constraint, and holds the setup times, processing times, and replenishment lead times 
constant. The model yields the approximate economic (minimum cost) reorder interval, replenishment 
batch sizes, and the order-up-to product levels (for the retailer) for a particular production network. 
 Work of Babu and Gujarathi [15] focused on solving three stage supply chain problems using multi-
objective differential evolution (MODE) algorithm. In their study, three cases of objective functions were 
considered and Pareto-optimal solutions were obtained for each case. The results were compared with 
those reported using a non-dominated sorting genetic algorithm (NSGA-II) in the literature. Minimizing 
total cost has been the primitive objective in most of the SCN design models [16-17]. But for a supply chain, 
producing products at minimum cost is not the only objective, a satisfying customer is also equally 
important. Later some researchers started incorporating more than one competing objectives such as 
improving customer service and reducing cost in their models. 
 Many of the aforementioned articles use Lagrangian relaxations or heuristic methods to solve the 
model. Recently, Atamtürk et al. [18] have shown how to formulate different variants of the joint inventory-
location problems in a supply chain comprising of a distribution center and retailers as conic mixed-integer 
problems. Mehrdad et al [19] extend the work by providing a novel conic integer reformulation for a joint 
inventory-location problem in a four echelon supply chain. Nowadays, as the use of a computer is rapidly 
increasing, many evolutionary computation methods for solving optimization problems have been 
introduced. Probably, among them, Differential Evolution (DE) is the most well-known class of evolutionary 
algorithms. It has taken a lot of attention of researchers in the several years. In this paper, the performance 
of five DE variants are examined for solving constrained multi echelon supply chain network problems of 
Kadadevaramath [1].  
 

MATHEMATICAL MODEL FORMULATION FOR THREE STAGE SINGLE PRODUCT, 
SINGLE PERIOD SUPPLY CHAIN NETWORK  

    This section develops a mathematical model to quantify the relationship among all the decision 
variables involved in three stage multi-echelon supply chain network. Problem description, the notations, 
assumptions, decision variables used in this formulation are given below. 

 
PROBLEM DESCRIPTION 

A three echelon two-stage supply chain network considered in this paper is as shown in Fig.1. The 
first level consists of three suppliers which are suppliers of raw materials to plants for the manufacturing 
of products. The second level consists of two plants where products are manufactured and shipped to 
distribution centers. The third level consists of six distribution centers where products are sold to retailers. 
A product is manufactured from three different components can be supplied from any supplier to any of 
two plants. Plants may produce any product limited by its production and delivery capacity or decided by 
its strategy for each product. The final products are shipped to distribution centers based on demands. For 
the given cost data set the problem is to find the optimal alignment of procurement, production, and 
distribution while aiming at maximizing profit throughout the supply chain. 
Assumptions 

 A single product (made up of three components) flows through the supply chain network 
 Distribution centers face random customer demand and demand distribution is assumed to be 

uniform 
 The Quantity of goods at any installation takes integer values 
 Linear holding cost rates exist only for manufacturing plants in the supply chain 
 Shortages are not permitted (no shortage cost) 
 Transportation costs are directly proportional to the quantity shipped 
 Manufacturing costs are directly proportional to the number of products produced 
 All installations have a finite capacity 
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Figure 1.  Three echelon supply chain network  

 
Sets 
Let C be the set of components  𝑐 = 1,2,3, … … . . 𝐶 
Let S be the set of suppliers 𝑠 = 1,2,3, … … . . 𝑆 
Let P be the set of plants 𝑝 = 1,2,3, … … . . 𝑃 
Let D be the set of distribution centers 𝑑 = 1,2,3, … … . . 𝐷 
 
Parameters 
Lc,s           be the capacity of supplier s for component c 
CSc,s       be the cost of making a component c by supplier s 
STCc,s,p be the transportation cost of a component c from supplier s to plant p /unit 
Up             be the capacity of plant p 
MCp     be the manufacturing cost of plant p /unit 
ICp        be the inventory cost at plant p /unit/period 
PTCp.d  be the plant transportation cost from plant p to distribution centre d  
Dd        be the demand at distribution centre d 
SPd       be the selling price at distribution centre d /unit 
 
Decision variables  
Xc,s,p        be the amount of component shipped c from supplier s to plant p 
Yp,d       be the amount of product shipped from plant p to distribution centre d 
 
Mathematical model 
The objective function aims at maximizing the profit of overall supply chain distribution network which 
implies maximize the revenue and minimize the total supply chain cost 
 
Maximize Profit = Revenue – Total supply chain cost (TSCC) 
Maximize Revenue =∑ (𝐷𝑑  × 𝑆𝑃𝑑)𝑑       
Minimize TSCC = TSMC+TMC+TTC  
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Three components of total supply chain cost (TSCC) are: 
(a)Total supplier material cost (TSMC) = ∑ ∑ ∑ (𝐶𝑆𝑐, 𝑠 × 𝑋𝑐, 𝑠, 𝑝)𝑝𝑠𝑐      

(b)Total manufacturing cost (TMC) = ∑ {(𝑀𝐶𝑝) × (∑ 𝑌𝑝, 𝑑𝑑 )} +  ∑ {(𝐼𝐶𝑝) × (∑ 𝐼𝑐, 𝑝)𝑑 }𝑝𝑝                    

(c)Total transport cost (TTC) = ∑ ∑ ∑ (𝑋𝑐, 𝑠, 𝑝 × 𝑆𝑇𝐶𝑐, 𝑠, 𝑝) + ∑ ∑ (𝑌𝑝, 𝑑 × 𝑃𝑇𝐶𝑝, 𝑑)𝑑𝑝𝑝𝑠𝑐   

                  
The objective function is given by 

Maximize Profit =∑ (𝐷𝑑  × 𝑆𝑃𝑑)𝑑 − {∑ ∑ ∑ (𝐶𝑆𝑐, 𝑠 × 𝑋𝑐, 𝑠, 𝑝)𝑝𝑠𝑐 + ∑ {(𝑀𝐶𝑝) × (∑ 𝑌𝑝, 𝑑𝑑 )} +𝑝

 ∑ {(𝐼𝐶𝑝) × (∑ 𝐼𝑐, 𝑝)𝑑 }𝑝 + ∑ ∑ ∑ (𝑋𝑐, 𝑠, 𝑝 × 𝑆𝑇𝐶𝑐, 𝑠, 𝑝) + ∑ ∑ (𝑌𝑝, 𝑑 × 𝑃𝑇𝐶𝑝, 𝑑)𝑑𝑝𝑝𝑠𝑐 }  (1) 

 
Subject to 

 
Supplier capacity constraint 

∑ 𝑋𝑐, 𝑠, 𝑝 𝑃 ≤ 𝐿𝑐, 𝑠    ∀ 𝑐, 𝑠                                    (2) 
Plant capacity constraint 

∑ 𝑌𝑝, 𝑑 𝑃 ≤ 𝑈𝑝   ∀ 𝑝     (3) 
Demand constraint 

∑ 𝑌𝑝, 𝑑 𝑃 = 𝐷𝑑    ∀ 𝑑     (4) 
Inventory balancing constraint 

∑ 𝑋𝑐, 𝑠, 𝑝𝑣 −  3 ∑ 𝑌𝑝, 𝑑𝑑 = 0   ∀ 𝑐, 𝑠    (5) 
 

The objective function (1) maximizes the profit by minimizing the overall supply chain operating 
cost.  Constraint (2) ensures that the total amount of any of the three components shipped from a supplier 
cannot exceed the supplier’s capacity for that component. Constraint (3) specifies that the total production 
quantities do not exceed plant capacities individually. Constraint (4) ensures the products shifted from 
plant to distribution centers should be more than or equal to the demand raised by the distribution centers. 
Constraint (5) ensures that the components moved from the suppliers should be more than the products 
to be manufactured to meet the required demand. 

 
IMPLEMENTATION OF DIFFERENTIAL ALGORITHM 
 

Differential evolution (DE) was first proposed by Storn and Price in 1995 [20] as a powerful 
heuristic method for solving non-linear, non-differentiable and multimodal optimization problems. This 
technique has been structured based upon a combination of simple arithmetic operators, the classical 
crossover, mutation, and selection operators. In this method, the purpose of mutation and crossover is to 
generate new vectors, and the vectors will survive to the next generation are determined upon selection 
operator [21]. 

The theoretical framework of DE is very simple and DE is computationally inexpensive in terms of 
memory requirements and CPU times. Thus, nowadays, DE has gained much attention and wide application 
in a variety of fields [22-23]. Due to its simplicity, easy implementation, fast convergence, and robustness, 
the programming and operation of DE are also quite easy because it requires the settings of only three 
control parameters: population size, scaling factor, and crossover constant rate in crossover operator. 
These advantages facilitate the wide usage of DE. DE is a population-based search technique which utilizes 
NP variables as a population of D dimensional parameter vectors for each generation. Four main steps are 
involved in DE known as, initialization, mutation, recombination, and selection. DE produces an initial 
population by randomly sampling several points (each point is called a target vector) from the search space. 

 

𝑥
→

𝑖,0
= (𝑥𝑖,1,0 , 𝑥𝑖,2,0 , … . . , 𝑥𝑖,𝐷,0 ),              𝑖 = 1,2, … . . , 𝑁𝑃 

 
Where NP denotes the population size and D denotes the number of variables. At each generation G, a 

mutant vector 
𝑣
→

𝑖,0
= (𝑣𝑖,1,𝐺 , 𝑣𝑖,2,𝐺 , … . . , 𝑣𝑖,𝐷,𝐺)(𝑖 ∈ 1,2, … . . , 𝑁𝑃) is produced by the mutation operator for 

each target vector 
𝑥
→

𝑖,𝐺
. Afterward, the crossover operator is implemented on the mutant vector and the 

target vector to generate a trial vector 
𝑢
→

𝑖,𝐺
= (𝑢𝑖,1,𝐺 , 𝑢𝑖,2,𝐺 , … . . , 𝑢𝑖,𝐷,𝐺)(𝑖 ∈ 1,2, … . . , 𝑁𝑃). The crossover 

operator and the mutation operator together are called a trial vector generation strategy.  In the selection 
phase, the function value of the trial vector is compared to the function value of the target vector and the 
target vector for the next generation is updated using equation (11). If the resulting vector yields a lower 
objective function value than a predetermined population member, the newly generated vector replaces 



JOURNAL OF MODERN MANUFACTURING SYSTEMS AND TECHNOLOGY 01 (2018) 001-014 

  6 
 

the vector with which it was compared. In addition, the best parameter vector is evaluated for every 
generation in order to keep track of the progress that is made during the optimization process. 
 
The DE algorithm adopted in this paper is presented below, 
Initialize variable: NP = 30, D = 30, F = 0.5, CR = 0.9, g = 1000 
Initialize randomly generated population of Np target vector (Xig), each with length D 
While g  ≤ 1000 

// Mutation operation to generate donor vector (Vig) based on random selected target vector 
for i = 1 to NP 

//Select different mutation relations depending upon the variant. For Example, DE/Rand/E 
is included in this algorithm. 

Randomly choose 3 distinct vectors Xr1,g , Xr2,g, Xr3,g 
Vi,g = Xip, g + F * (Xiq, g – Xir, g)  

 end  

// Crossover operation to generate trial vectors (  𝑦 𝑖,𝑘
𝑗

), consisting of both target and donor 

elements 
for i = 1 to Np 
Generate a randomly distributed number Ri (0,1) 
 for j = 1 to D 

 if Ri ≤ CR 

   𝑦 𝑖,𝑘
𝑗

 = Vi,j,g 

 else 

   𝑦 𝑖,𝑘
𝑗

 = Xi,j,g 

 end 
 end 
end 
// Evaluation of target and trial vectors 
// Selection operation to detect target vector for next generation (Xi,g+1) 
for i = 1 to Np 

 if  𝑓(  𝑦 𝑖,𝑘
𝑗

) >  𝑓(𝑋𝑖,𝑔) 

 Xi,g+1  =   𝑦 𝑖,𝑘
𝑗

 

 else 
 Xi,g+1  = Xi,g 

end 
g = g+1; 

end 
 
Mutation operation 
The mutation operation is based on the difference of different individuals (solutions), to produce a mutant 
vector Vi,G with respect to each individual Xi,G, in the current population. This main operation is founded on 
the differences between randomly sampled pairs of solutions in the population. For each target vector Xi,G, 
i =1, 2,…, NP, a mutant vector Vi,G can be made by the following mutation operators. In all types, the scale 
factor F is a positive control parameter for scaling the difference vector. Mutation is carried out by the 
mutation scheme. For each vector xi at any time or generation g, three randomly chosen vectors Xp, Xq andXr, 
and then resulting donor vector generated by any one of the following mutation strategies. 
 
Strategy 1: DE/Rand/1/Bin  

𝑉𝑖
𝑔+1

= 𝑋𝑝
𝑔

+  𝐹(𝑋𝑞
𝑔

− 𝑋𝑟
𝑔

)                                                                  (6) 

Strategy 2: DE/Best/1/Bin  

𝑣𝑖
𝑔+1

= 𝑋𝑏𝑒𝑠𝑡
𝑔

+  𝐹(𝑋𝑞
𝑔

− 𝑋𝑟
𝑔

)                                     (7) 

 
Strategy 3: DE/Rand-to-Best/1/bin 

𝑉𝑖
𝑔+1

= 𝑋𝑝
𝑔

+  𝐹(𝑋𝑏𝑒𝑠𝑡
𝑔

− 𝑋𝑝
𝑔

) + 𝐹(𝑋𝑞
𝑔

− 𝑋𝑟
𝑔

)           (8) 

 
Strategy 4: DE/Rand/2/bin 

𝑉𝑖
𝑔+1

= 𝑋𝑝
𝑔

+  𝐹(𝑋𝑞
𝑔

− 𝑋𝑟
𝑔

) + 𝐹(𝑋𝑠
𝑔

− 𝑋𝑡
𝑔

)             (9) 
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Strategy 5: DE/Current-to-Best/1/bin.  

𝑉𝑖
𝑔+1

= 𝑋𝑝
𝑔

+  𝐹(𝑋𝑏𝑒𝑠𝑡
𝑔

− 𝑋𝑝
𝑔

) + 𝐹(𝑋𝑞
𝑔

− 𝑋𝑟
𝑔

)           (10) 

 
Here, F is the scale factor used to scale differential vector. X best is the solution with the best fitness value 
in the current population. 
 
Crossover operation 
 
In order to increase the diversity of the perturbed parameter vectors, a crossover is introduced after the 
mutation operation. Crossover operation is employed to generate a temporary or trial vector by replacing 
certain parameters of the target vector by the corresponding parameters of a randomly generated donor 
vector. To get each individual's trial vector, Ui,,G+1, crossover operation is performed between each 
individual and its corresponding mutant vector. The crossover operator is applied to obtain the trial vector 

 𝑦 𝑖,𝑘
𝑗

from 𝑉𝑖,𝑔and 𝑋𝑖,𝑔.  The crossover is defined by 

 

  y i,k
j

= { 
Vi,g if Rj ≤ CR or j = i

   Xi,g if Rj > CR and j ≠ i 
     (11) 

 
where i is a randomly chosen integer in the seti, i.e., i ∈I = {1,2,..., D}; the superscript j represents the j-th 
component of respective vectors;𝑅𝑗∈ (0,1), drawn randomly for each j. The ultimate aim of the crossover 

rule is to obtain the trial vector  𝑦 𝑖,𝑘
𝑗

with components coming from the components of the target vector 𝑋𝑖,𝑔 

and the mutated vector𝑉𝑖,𝑔. This is ensured by introducing𝐶𝑅 and the set I. Notice that for 𝐶𝑅 = 1 the trial 

vector   𝑦 𝑖,𝑘
𝑗

 is the replica of the donor vector 𝑉𝑖,𝑔. The targeting process (mutation and crossover) 

continues until all members of 𝑋𝑖,𝑔 are considered.𝐶𝑅 assumed to be 0.9. 

 
Selection operation 
 
The selection operator of DE adopts a one-to-one competition between the target vector 𝑋𝑖,𝑔 and the trial 

vector_𝑈𝑖,𝑔. If the objective function value of the trial vector is less than or equal to that of the target vector, 

then the trial vector will survive into the next generation, otherwise, the target vector will enter the next 
generation: To generate the new individual for the next generation, selection operation is performed based 
on equation (12) between each individual and its corresponding trial vector. 
 

𝑋𝑖,𝑔+1  =  {
  𝑦 𝑖,𝑘

𝑗
, 𝑖𝑓 𝑓(  𝑦 𝑖,𝑘

𝑗
) >  𝑓(𝑋𝑖,𝑔)

𝑋𝑖,𝑔 , 𝑖𝑓 𝑓(  𝑦 𝑖,𝑘
𝑗

) ≤  𝑓(𝑋𝑖,𝑔)
     (12) 

 
Termination criteria 
 
DE algorithm will give the final objective value after the number of iteration has been chosen for a problem. 
In this study, the number of iteration assumed as 1000 generation and results published in the next section 
are based on 1000 generation. 
 
NUMERICAL ILLUSTRATION 

The DE starts the search by generating a population of candidate solutions. In our implementation, this 
population is randomly generated according to uniform distributions. That is, the parameters (gene values) 
Ri is randomly generated according to uniform distributions U [Rimin,Rimax] where Rimin and Rimax are the 
minimum and the maximum possible values of Ri. In DE algorithm, a solution can be represented as a vector 
of decision variables. The number of vectors representing the SCN is called population size (NP). In this 
study, each vector consists of 30 variables in a population size of 30.  

Fig. 2 shows representation of a solution vector consists of two sets of decision variables Xcvp and YPd. Xcsp 

represents the number of component ‘c’ shipped from supplier ‘s’ to plant ‘p’, and YPd represent the number 
of product shipped from plant ‘p’ to distribution centre ‘d’. For example, X232 represent the number of 
component 2 shipped from supplier 3 to plant 2.  
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 Fig. 2 Vector representation in DE algorithm for multi stage SCN architecture 

 
Step 1: Initialization 
Assume a population of five vectors, which are generated randomly and provided in Table 1. 
 

 
 

 
 

Step 2: Mutation 
Once the initial population is generated, mutation operation is done to generate donor vectors. As explained 
in section 4.1, five different mutations are used to have five variants of DE. Among the five variants, 
DE/Rand/1/Bin is performing better. Hence, this section explains the implementation of DE/Rand/1/Bin 
mutation strategy using equation 6. 
First, randomly select three vectors from the population. For example, vectors corresponding to row 5, 1 
and 3 are selected randomly from Table 1 and F is assumed as 0.5. The selected vectors are given in Table 
2. 
 

 

 

Table 3, Donor vector after mutation 

 

Table 4, Corrected Donor vector 

 
The generated donor vector (𝑉𝑖,𝑔) using DE/Rand/1/Bin mutation strategy is given in Table 3. Since the 

vectors should only contain integer and positive values, each negative value should be replaced by absolute 
value and non-integer values should be replaced by integer using round function. The corrected donor 
vector is given in Table 4. 
 

Table 1, Target vectors representing the initial population 

173 19 155 43 168 1 76 40 40 203 20 166 207 68 104 34 107 64 34 43 65 2 72 10 62 52 2 49 2 45 
5 191 229 2 65 232 34 56 161 127 8 133 287 71 0 126 136 110 28 40 8 25 52 13 68 55 59 26 22 42 

78 54 45 119 112 39 65 13 246 4 59 112 228 24 36 102 57 144 27 48 51 39 43 41 69 47 16 12 31 14 
10 161 135 115 22 176 62 46 313 78 89 18 77 173 46 20 76 145 78 38 67 4 24 28 18 57 0 47 50 27 

110 74 62 132 13 208 20 103 167 62 39 114 342 13 62 57 152 63 51 86 36 22 40 39 45 9 31 29 34 16 

Xp 5 110 74 62 132 13 208 20 103 167 62 39 114 342 13 62 57 152 63 51 86 36 22 40 39 45 9 31 29 34 16 
Xq 1 173 19 155 43 168 1 76 40 40 203 20 166 207 68 104 34 107 64 34 43 65 2 72 10 62 52 2 49 2 45 
Xr 3 78 54 45 119 112 39 65 13 246 4 59 112 228 24 36 102 57 144 27 48 51 39 43 41 69 47 16 12 31 14 

Table 2, Vectors undergo mutation 
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158 57 117 94 41 189 26 117 64 162 20 141 332 35 96 23 177 23 55 84 43 4 55 24 42 12 24 48 20 32 
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Step 3: Crossover 
A trial vector is generated using a crossover operator. The binominal crossover is used in this paper. In this 

stage, the trial vector (  𝑦 𝑖,𝑘
𝑗

) is calculated by combining donor vector (𝑉𝑖,𝑔) and target vector (𝑋𝑖,𝑔) based 

on equation (11). 𝐶𝑅 represents the crossover probability. R is a random number between 0 and 1, if R is 
smaller than 𝐶𝑅 the variable of mutation vector will be selected as a variable of the trial vector. Otherwise, 
the variable of a target vector will be selected as the variable of a trial vector. 𝐶𝑅 assumed to be 0.9. For 
example, for the first position of trial vector; if R = 0.1669 the donor vector value, which is 158 copied into 
trail vector in the first position.  For the second position of a trial vector; if R = 0.9351, then target vector 
value, which is 19 copied into trail vector in the second position similar way the whole trial vectors are 
generated and are shown in Table 5. 
 

Table 5, Trial vector after crossover 

158 57 117 94 41 189 26 117 64 162 20 141 332 35 96 23 177 23 55 84 43 4 55 24 42 12 24 48 20 32 
160 17 55 83 185 49 72 10 110 67 25 186 293 29 65 109 73 104 5 51 50 38 67 32 91 45 17 13 7 23 

26 171 144 122 28 261 40 91 274 107 79 19 134 168 59 3 124 105 90 57 60 5 23 27 6 38 8 56 52 28 
63 92 7 170 15 227 15 90 270 38 59 87 353 9 28 91 127 103 48 89 29 41 26 55 49 7 38 11 49 1 
42 134 182 71 100 73 90 15 250 149 80 44 10 201 67 9 54 146 70 17 82 6 40 14 27 79 15 57 34 42 

 
 

Step 4: Selection 

At this stage, trial vector (  y i,k
j

 ), is compared with the target vector (Xi,g) to select vectors for the next 

generation. The selection will be done using equation (12), which is based on objective function value 
comparison. If the objective function value of a trial vector is better than the value of the target vector, the 
trial vector will be chosen as a new trial vector (Xi,g+1  ) for the next generation. Otherwise, the target vector 

will be chosen for the next generation. The target vectors for the next generation are shown in Table 6. The 
mutation, crossover, and selection operations are repeated until the termination condition is satisfied.  
 
 

Table 6, Target vectors for next generation 

 
 

RESULTS AND DISCUSSION 
 
The performance of the DE variants was evaluated by solving the supply chain problems considered by 
Kadadevaramath et al 2012. The DE parameters used in this paper are: number of generations = 1000, 
number of vectors per population = 30, mutation scale factor = 0.5 and crossover rate = 0.9. To assess the 
quality of five DE variants, a series of computational experiments were conducted. The computational 
experiments were done using a PC with Intel Core 2 Duo, 2.6 GHz and 3GB RAM under Mat lab environment.  
 
For all twenty scenarios, demand rates followed the same as previous research for purpose of result 
comparison. All the twenty scenarios are considered to evaluate the performance of five DE variants. In 
order to compare the results of each variant with others, the same termination condition has been used 
which is based on the number of generation. 
 
 

 

 
 
 

173 19 155 43 168 1 76 40 40 203 20 166 207 68 104 34 107 64 34 43 65 2 72 10 62 52 2 49 2 45 
160 17 55 83 185 49 72 10 110 67 25 186 293 29 65 109 73 104 5 51 50 38 67 32 91 45 17 13 7 23 
78 54 45 119 112 39 65 13 246 4 59 112 228 24 36 102 57 144 27 48 51 39 43 41 69 47 16 12 31 14 
10 161 135 115 22 176 62 46 313 78 89 18 77 173 46 20 76 145 78 38 67 4 24 28 18 57 0 47 50 27 

110 74 62 132 13 208 20 103 167 62 39 114 342 13 62 57 152 63 51 86 36 22 40 39 45 9 31 29 34 16 
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Table 7 Optimal profit given by DE variants for all 20 scenarios 

 
Scenario 

  

DE variants 
  

DE/Rand/1/bin   DE/Best/1/bin DE/Rand-to-best/1/bin DE/Rand /2/bin DE/Current-to-Best/1/bin 
1 693821 672086 676171 671019 675129 

2 716444 707093 722314 694190 717853 

3 682453 663375 675756 674255 681772 

4 668867 649099 675036 657576 665509 

5 650618 628437 643188 645505 640557 

6 662956 641070 655714 657326 665230 

7 675353 649113 663800 673513 667640 

8 642256 629189 638198 636307 639562 

9 644235 635217 638419 639312 639725 

10 620780 584334 610262 614915 614153 

11 618662 591943 612987 620885 617209 

12 637072 604984 632456 629973 626318 

13 693816 688345 683107 686424 689643 

14 645156 630811 637692 633012 633621 

15 679268 660562 678428 675553 674401 

16 588173 579418 580990 583522 570255 

17 598663 564032 588137 595366 583811 

18 585288 564770 559161 583529 573938 

19 581227 565709 577483 573947 561016 

20 671595 657652 666832 662277 670745 

 
 
 

Table 8. Best Profit given by DE/Rand/1/Bin and GA Profit comparison 

Scenario DE/Rand/1/Bin profit GA Profit Difference Percentage of improvement 

1 693821 378179 315642 45.49 

2 716444 423343 293101 40.91 

3 682453 456036 226417 33.17 
4 668867 368648 300219 44.88 
5 650618 369655 280963 43.18 

6 662956 349633 313323 47.26 
7 675353 428033 247320 36.62 

8 642256 345236 297020 46.24 
9 644235 326946 317289 49.25 

10 620780 310455 310325 49.98 

11 618662 308154 310508 50.19 
12 637072 321455 315617 49.54 

13 693816 439865 253951 36.60 

14 645156 302345 342811 53.13 
15 679268 416633 262635 38.66 
16 588173 294967 293206 49.85 
17 598663 284643 314020 52.45 
18 585288 301764 283524 48.44 
19 581227 361047 220180 37.88 
20 671595 374955 296640 44.16 

 
The performances of the DE variants are analyzed by the quality of the solution yielded and the 
computational effort required to obtain the best solution. The profit obtained after running each variant 
for 1000 generations are reported in Table 7. The results clearly show that among the variants used in this 
study, the DE/Rand/1/bin gives the best performance within 1000 generations, which means the highest 
profit with lowest TSCC.  
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Table 8-10 compares the best profit gave by DE/Rand/1/bin with GA, NLIWD-PSO best profits reported by 
Cardenas et al 2014 respectively. From Table 8-10 we observe that there is an improvement about 40% 
compared to GA and there is an improvement about 20% compared to NLIW-PSO and about 10% compared 
to optimal solution reported by [24]. Decision variables for best profit obtained by DE/Rand/1/bin variant 
for all 20 scenarios considered in this study are provided in Tables 11.  The optimal procurement of 
component1, component 2, component 3 from supplier 1, supplier 2, supplier 3, and optimal product 
manufacturing and distribution from plant 1 and plant 2 to all six distribution centers to satisfy the demand 
obtained by DE/Rand/1/bin variant for all 20 scenarios are listed in Table 12- 14 respectively. 
 

Table 9.  Best Profit gave by DE/Rand/1/Bin and NLIWD-PSO Profit comparison 

Scenari
o 

DE/Rand/1/Bin 
profit 

NLIWD-PSO 
Profit 

Differenc
e 

Percentage of 
improvement 

1 693821 549973 143848 20.73 
2 716444 577768 138676 19.36 
3 682453 547611 134842 19.76 
4 668867 538945 129922 19.42 
5 650618 519753 130865 20.11 
6 662956 531895 131061 19.77 
7 675353 540576 134777 19.96 
8 642256 512192 130064 20.25 
9 644235 518223 126012 19.56 

10 620780 489435 131345 21.16 
11 618662 491591 127071 20.54 
12 637072 502506 134566 21.12 
13 693816 557971 135845 19.58 
14 645156 512355 132801 20.58 
15 679268 543166 136102 20.04 
16 588173 462378 125795 21.39 
17 598663 473687 124976 20.88 
18 585288 461293 123995 21.19 
19 581227 461254 119973 20.64 
20 671595 535868 135727 20.21 

       

Table 10. Best Profit gave by DE/Rand/1/Bin and Optimal Profit comparison 

Scenario DE/Rand/1/Bin profit Optimal Profit Difference Percentage of improvement 

1 693821 617267 76554 11.03 
2 716444 646013 70431 9.83 
3 682453 613867 68586 10.05 
4 668867 601763 67104 10.03 
5 650618 583815 66803 10.27 
6 662956 598785 64171 9.68 
7 675353 610023 65330 9.67 
8 642256 578901 63355 9.86 
9 644235 582062 62173 9.65 

10 620780 555707 65073 10.48 
11 618662 560013 58649 9.48 
12 637072 571454 65618 10.30 
13 693816 625820 67996 9.80 
14 645156 577047 68109 10.56 
15 679268 613513 65755 9.68 
16 588173 528866 59307 10.08 
17 598663 536631 62032 10.36 
18 585288 526438 58850 10.05 
19 581227 523400 57827 9.95 
20 671595 603272 68323 10.17 
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Table 11. Best values of Decision variables to the 20 scenarios given by DE/Rand/1/Bin 

Scenario X111 X112 X121 X122 X131 X132 X211 X212 X221 X222 X231 X232 X311 X312 X321 X322 X331 X332 Y11 Y12 Y13 Y14 Y15 Y16 Y21 Y22 Y23 Y24 Y25 Y26 

1 3 8 4 5 2 13 42 64 347 2 176 38 222 139 120 17 185 65 60 96 22 28 71 88 23 2 33 29 18 2 

2 6 5 10 2 3 28 11 64 354 30 124 69 53 323 64 80 240 10 66 36 42 53 67 19 30 25 18 28 25 77 

3 11 5 2 14 2 13 84 45 222 164 108 67 343 32 58 39 192 21 63 28 41 77 41 82 25 42 13 5 35 13 

4 7 1 4 1 13 28 38 56 328 47 77 127 281 56 81 18 195 21 58 58 62 73 52 38 10 2 33 20 3 44 

5 17 0 4 7 9 33 101 36 191 92 146 30 313 34 81 14 193 27 29 53 52 87 52 78 35 26 11 11 4 4 

6 4 18 14 5 5 8 8 26 133 182 180 68 393 6 11 106 192 28 56 89 15 73 44 32 5 6 41 16 31 45 

7 6 18 5 13 1 2 74 60 229 131 124 109 240 109 87 45 149 33 38 82 19 68 36 56 44 7 71 3 20 26 

8 14 12 6 3 3 9 67 76 302 4 111 19 127 151 120 30 103 133 45 71 61 45 1 61 17 3 2 14 97 12 

9 10 19 1 15 8 16 87 22 144 38 92 119 391 3 122 10 107 142 68 80 43 39 65 25 5 6 22 39 13 33 

10 2 7 1 2 5 0 67 64 307 13 21 81 293 98 139 3 107 88 72 44 63 36 44 51 9 32 6 30 25 7 

11 2 6 12 3 9 5 12 101 348 48 133 73 208 28 83 23 182 25 71 35 65 36 50 71 15 23 28 17 11 1 

12 10 7 5 2 3 6 71 1 198 113 111 30 161 230 88 50 170 80 55 27 46 45 60 37 41 68 21 6 14 18 

13 2 1 6 7 8 57 88 46 217 149 115 41 350 8 42 94 178 12 91 64 61 12 49 57 0 12 11 57 42 16 

14 5 1 1 3 3 1 23 104 225 119 155 61 169 140 89 47 203 21 75 62 14 85 12 43 15 2 40 4 67 11 

15 2 24 1 8 3 9 62 29 150 196 28 159 334 44 64 80 217 13 78 64 28 14 9 87 2 8 33 71 62 9 

16 6 6 8 9 10 3 84 8 145 174 19 15 251 104 128 9 229 13 90 32 29 44 48 46 1 34 35 25 6 10 

17 5 2 2 6 2 6 65 45 223 13 62 63 240 143 67 67 183 55 60 75 43 76 5 19 12 10 10 1 52 44 

18 6 16 6 1 6 7 16 26 321 7 101 34 343 11 83 15 19 197 42 78 49 53 51 25 18 22 19 5 11 27 

19 3 4 0 5 16 5 27 71 96 63 186 50 264 36 28 97 172 55 62 63 15 31 38 55 20 4 43 25 34 2 

20 6 2 2 3 2 8 21 102 188 141 157 72 125 222 67 27 212 8 48 69 15 12 69 47 33 12 80 51 12 7 

Table 12.Optimal procurement of component 1 from suppliers for DE/Rand/1/bin 

Scenario Plant1 supplier1 Plant1 supplier2  Plant1 supplier3 Plant2 supplier1 Plant2 supplier2  Plant2 supplier3 
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Table 13.  Optimal procurement of component 2 from suppliers for DE/Rand/1/bin 

Scenario Plant1 
supplier1 

Plant1 
supplier2 

Plant1 
supplier3 

Plant2 
supplier1 

Plant2 
supplier2 

Plant2 
supplier3 

1 42 64 347 2 176 38 
2 11 64 354 30 124 69 
3 84 45 222 164 108 67 
4 38 56 328 47 77 127 
5 101 36 191 92 146 30 
6 8 26 133 182 180 68 
7 74 60 229 131 124 109 
8 67 76 302 4 111 19 
9 87 22 144 38 92 119 

10 67 64 307 13 21 81 
11 12 101 348 48 133 73 
12 71 1 198 113 111 30 

13 88 46 217 149 115 41 
14 23 104 225 119 155 61 
15 62 29 150 196 28 159 
16 84 8 145 174 19 15 
17 65 45 223 13 62 63 
18 16 26 321 7 101 34 
19 27 71 96 63 186 50 
20 21 102 188 141 157 72 
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Table 14. Optimal procurement of component 3 from suppliers for DE/Rand/1/bin 

 
Scenario      Plant 1 

Supplier 1 
Plant 1 

Supplier 2 
Plant 1 

Supplier 3 
Plant 2 

Supplier 1 
Plant 2 

Supplier 2 
Plant 2 

Supplier 3 

1 222 139 120 17 185 65 
2 53 323 64 80 240 10 
3 343 32 58 39 192 21 

4 281 56 81 18 195 21 

5 313 34 81 14 193 27 

6 393 6 11 106 192 28 
7 240 109 87 45 149 33 
8 127 151 120 30 103 133 
9 391 3 122 10 107 142 

10 293 98 139 3 107 88 
11 208 28 83 23 182 25 
12 161 230 88 50 170 80 
13 350 8 42 94 178 12 
14 169 140 89 47 203 21 
15 334 44 64 80 217 13 
16 251 104 128 9 229 13 
17 240 143 67 67 183 55 
18 343 11 83 15 19 197 
19 264 36 28 97 172 55 
20 125 222 67 27 212 8 

 

CONCLUSION 
 
During the past fifteen years, differential evolution (DE) which is an efficient and robust evolutionary 
algorithm has become a hot spot in the community of evolutionary computation. In this paper, the 
performance of five DE variants has been investigated by solving three stage multi-echelon supply chain 
network optimization problem for twenty demand scenarios with each supply chain settings. Five variants 
of DE are proposed to solve the three echelons SCN architecture and the results were compared with GA, 
PSO and optimal solutions reported by Cardenas et.al,[24]. Computational results demonstrate the 
efficiency of variant DE/Rand/1/bin to solve the SCN problem and superior performance over GA and PSO 
in all the problem instances. Future research can be interesting to build and solve a mathematical model 
for multiple states, multiple products with multi periods. Also, recent local search methods can be extended 
because of their potential to enhance the performance of the proposed solving approach to search the near-
optimal solution in the reasonable time. 
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