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INTRODUCTION 

 Thin copper layers are commonly deposited as copper (Cu) traces on the printed wiring boards, and as a filler metal 

in Through-Silicon Vias (TSV)s. The conductive Cu traces and fillings function is to provide the current path for the 

microelectronic device. However, the temperature excursions during the reliability tests and operating conditions of the 

device induce stresses due to the mismatches of the coefficient of thermal expansions within the Cu/substrate bonded 

structure. Such a reliability concern over the failure of the copper layer has been addressed through experimental and 

computational studies e.g. [1,2]. Yielding and fracture of the copper layer has been identified as a cause of failure of the 

TSVs [3-6]. The failure processes of the TSV are dictated, to a large extent, by the deformation response of the conductive 

copper layer under the operating load conditions. Thus, the prediction of the device reliability and mechanical 

performance necessitates the deformation mechanics of the copper layer to be thoroughly understood and quantified.  

Mechanical properties of Cu in the bulk material form are determined through tensile and fracture toughness tests on 

the samples of the metal. However, microtensile tests of freestanding Cu thin film specimen, and nanoscale cantilever 

beam tests for the Cu film have been performed to establish the properties of the material [6,7]. The Young’s modulus, 

hardness and fracture toughness of Cu in the form of a coating layer is very different from the bulk properties. The yield 

stress of the 20 nm-thick Cu film is ten times higher than its bulk counterpart [7]. The yield stress and elastic modulus 

are reported to be 765 MPa and 129 GPa, respectively, while the typical corresponding properties of bulk copper are 

much lower at 70 MPa and 117 Gpa, respectively. The observed difference in the mechanical properties is likely attributed 

to the different microstructures of the bulk and thin coating, as derived from the processing of the materials. Although 

the thin Cu coating layer produced by electroless plating and displayed similar grain size with that of sputtered coating 

layer, the latter exhibits diffused grain morphology [8]. 

Nanoindentation tests have also been performed on the coating layers to establish the load-displacement response, and 

extract the elastic modulus and hardness value of the materials [8-14]. During the test, the elastic-plastic response is 

measured during the loading of the hard indenter into the surface of the relatively softer coating layer. The peak load level 

is used to define the hardness value of the layer material. The Young’s modulus is extracted from the initial unloading 

part of the load-displacement curve, assuming a purely elastic response. The influence of nanoindentation test variables, 

including the depth of the indent, the degree of the orthogonality of the indenter to the coating surface, and the coefficient 

of friction between the indenter and the coating material, on the extracted property values has been examined [15]. The 

true hardening behavior of the layer could be obtained using the loading portion of the measured load-displacement curve, 

through the inverse analysis approach [16-19]. When the sample shows the sign of a crack, the fracture toughness of the 

material could also be established [20].     

This paper examines the deformation response of the sputtered Cu coating layer during the nanoindentation test. The 

effect of different probe speeds on the resulting hardness and modulus properties of the layer is examined. The strain rate-

dependent hardening behavior of the Cu coating layer is described.  

 

 

 

ABSTRACT – The mechanical properties of the thin sputtered copper layer on the SiO2-coated 
silicon substrate is needed as part of the requirements in quantifying the reliability of the Through-
Silicon Via (TSV) interconnects. In this respect, two different Cu coating layers, each from the 
different sputtering process, are examined. A series of nanoindentation tests are performed on the 
Cu coating layer samples with indenter speeds ranging from 80 to 400 nm/s, and the indentation 
depths of 320 nm. The properties of elastic modulus, hardness and the hardening behavior of the 
Cu coating layers have been quantified. Results show that the coating with higher contamination 
of C at 8.41 wt. % displays a significant hardening and a peak load level, as reflected in the 
measured nanoindentation load-displacement curves. However, insignificant effect of the applied 
probe displacement speeds up to 400 nm/s on the resulting properties of the coating is registered. 
The Johnson-Cook constitutive equation adequately describes the strain rate-dependent 
hardening behavior of the Cu coating layer.  
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MATERIAL AND EXPERIMENTAL PROCEDURES 

Sputtered Copper Coating Layer 

Copper is sputtered onto the SiO2-coated silicon (Si) substrate. The Si wafer with the orientation of [1 0 0] has a 

thickness of 525 µm, while the SiO2 coating is 300 nm-thick. The wafer is diced into square-shaped substrates measured 

10x10 mm2 for the sputtering process. Two different sets of Cu-sputtered specimens are produced by different magnetron 

sputtering machines and processing parameters. The first set, labeled SP1 are sputter-coated using the Model TF450 PVD 

system. The other set of specimens, labeled SP2 are sputtered using the Evatec Clusterline CLC200 Metal Sputter. The 

substrate is maintained at room temperature during the sputtering process. The process parameters used are listed in Table 

1.  

Table 1. Process parameter settings for the sputtering of Cu on the substrates. 

Equipment/ 

Process Parameters 
SP1 SP2 

Sputtering Machine TF450 Sputtering System, 

SG Control Engineering 

Evatec Clusterline 

CLC200 Metal Sputter 

Deposition Time (S) 3600 240 

Base Vacuum Pressure (Mbar) 3.5 x 10-5 1.25 x 10-3 

Argon Flow Rate (Cm3/Min) 15 24 

Dc Voltage (V) 430 720 

Dc Power (Kw) 0.103 12 

Dc Current (A) 0.24 16.7 

 

The thickness of the sputtered Cu coating samples is 8 m. The samples are etched in a mixture of 25 ml HCl, 5 g 

ferric chloride and 100 ml distilled water to better reveal the microstructure. The resulting microstructures of the Cu 

coating layer for the SP1 and SP2 samples are shown in the micrographs Figure 1 and Figure 2, respectively. The 

microstructure of the sputtered copper sample SP1 shows a square-like shapes with sides measuring ranging from 13 to 

20 µm. In contrast, the SP2 microstructure displays a smoother surface with randomly distributed fine sputtered copper 

particles. The relatively longer deposition time will likely cause the grains to grow and even recrystallize [21].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Surface structure of the Cu coating layer, SP1. 
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Figure 2. Surface structure of Cu coating layer, SP2.  

 

The corresponding composition analysis of the SP1 and SP2 sample, as represented by the EDX elemental spectrums, 

are compared in Figure 3(a) and (b), respectively. The primary constituents of the sputtered Cu coating layer are compared 

in Table 2. A higher carbon content of 8.41 wt. % is detected in the Cu-coating for SP1 sample, possibly due to 

contamination induced from either Cu-target poisoning or through the incorporation of the residual gas [22]. The excess 

carbon would likely result in higher strength of the Cu coating material. However, due to increase in carbon percentage, 

the brittleness of the material is also increased. The carbon will act as a barrier to dislocation mobility, where the 

movement is related to the ductility of materials. Metals with less carbon content are relatively ductile because the 

dislocations can easily glide on crystallographic planes during the deformation. 

 

Table 2. Chemical composition (wt. %) of the sputtered Cu coating layer. 

Element SP1 SP2 

Carbon 8.41 2.08 

Oxygen 0.45 0.33 

Copper 91.14 97.58 

 

 

 

(a) 
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(b) 

Figure 3. EDX elemental spectrum of the Cu coating layer of (a) sample SP1 and   

(b) sample SP2. 

 

The resulting surface morphology of the Cu coatings is compared in Figure 4 (a) and (b) for the sample SP1 and SP2, 

respectively. These micrographs are obtained using the scanning probe microscope. Based on the sampling area of 10x10 

m2, sample SP1 exhibits a relatively flat surface with a low number of peaks and valleys. Although the highest peak, at 

135 nm is found on sample SP1, a larger number of peaks at 93 nm describe the morphology of sample SP2, as shown in 

Figure 4 (b). The three deep valleys, as indicated in each micrograph, are the permanent indentation marks left by the 

nanoindentation tests to the specified depth of 320 nm, and at the probe speed of 80 nm/s. The measured peaks and 

valleys, however, are much less than the magnitude of the indentation depth (320 nm). The morphology of the sputtered 

Cu coating surface could significantly affect the measured properties through non-orthogonality of the axis of the indenter 

with the local surface during the test, as discussed in the next section. 

 

 

(a) 
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Figure 4. Scanning Probe Microscopy of the surface morphology of the (a) SP1 and (b) SP2 copper layer with 

Berkovich indentation marks (h = 320 nm, 80 nm/s). 

 

Nanoindentation Test 

Nanoindentation tests were performed on the sputtered copper coating samples using the Hysitron TI 750 Ubi Tribo-

indenter. The indenter used is a Berkovich diamond indenter tip with a radius of 100 nm. The inclination of the three 

surfaces of the pyramid-shaped indenter to the horizontal plane would produce an indentation mark of an equilateral 

triangle. The load and probe displacement resolution of the system is 1 nN and 0.04 nm, respectively. The tests conformed 

to the ASTM E2546-07 standard [8]. A valid nanoindentation test requires the penetration depth not to exceed 10 % of 

the thickness of the coating layer.  

The tests on samples SP1 were initially conducted at 80 nm/s to determine the valid minimum indentation depth [23]. 

The indentation depths range from 80 to 320 nm and limited by the upper range of the load cell at 12 mN. Then, samples 

SP2 were tested at different specified probe speeds from 80 to 400 nm/s. The indenter is held for a period of 2 seconds at 

the maximum load followed by unloading, during each test. A minimum of three nanoindentation tests were repeated for 

each probe speed to establish the repeatability of the load-displacement (depth) response. The load-displacement data are 

recorded during the loading-unloading part of the nanoindentation cycle. 

 During the indentation process, the Berkovich indenter tip is driven into the surface of the Cu coating layer to the 

maximum specified depth, followed by unloading. A typical load-displacement curve is shown in Figure 5. The nonlinear 

loading part of the curve consists of the elastic-plastic deformation in forming the indent on the Cu coating surface, while 

the initial unloading part from the peak load level is assumed to be purely elastic. The residual displacement at zero load 

following the unloading process reflects the extent of the plastic deformation. The area enclosed by the curve represents 

the energy dissipated during the nanoindentation process.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Typical load-depth curve of nanoindentation test. 
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The mechanics of materials-based equations have been established to extract the hardness and elastic modulus of the 

material. The derivation of these equations is summarized here for convenience. The hardness measure, H that quantifies 

the resistance of the material to plastic deformation is defined as [24]: 

 

𝐻 = 𝑃𝑚𝑎𝑥/𝐴𝑝 (1) 

 

where Pmax is the measured peak load and Ap is the projected area between the Berkovich indenter and the Cu layer, 

defined as [25]: 

𝐴𝑝 = 24.5ℎ𝑐
2 (2) 

 

In Equation. (2), the contact depth, hc = hmax corresponds to the peak load, Pmax. The effect of the indenter shape on 

the calculated property values is represented by the coefficient of 24.5 for the Berkovich type indenter in Equation. (2). 

The radius of the indenter tip need to be considered to ensure the correct determination of the projected contact area at 

the nanoscale [26]. 

The Young’s modulus of the copper layer, Ec is determined as: 

 

 

 

(3) 

 

where I = 0.07 and c = 0.30 is the Poisson ratio of the diamond indenter, and Cu coating layer, respectively. The 

Young’s modulus of the diamond indenter, Ei = 1140 GPa. The reduced modulus, Er is determined as: 

 

 

(4) 

 

where 𝑆 =  𝑑𝑃 𝑑ℎ⁄  is the initial slope of the unloading line at the peak load. The Berkovich constant =1.034.  

RESULTS AND DISCUSSION 

The deformation response of the Cu coating layer on the SiO2-coated Si substrate is presented and discussed in terms 

of the load-displacement curve from the nanoindentation test, the resulting elastic modulus and hardness measure, and 

the hardening curves of the coating layer. 

Load-Displacement Response 

The deformation responses of the sputtered Cu coating layer during the nanoindentation test at the probe speed of the 

80 nm/s and to the indentation depth of 320 nm are compared in Figure 6. The loading stage to the peak load is nonlinear 

with increasing slope of the load-displacement curve, indicating the hardening of the Cu layer due to the localized plastic 

deformation. The more gradual change in the slope of the loading curve for the coating layer sample SP2 suggests a lower 

hardening rate, while the lower peak load achieved reflects a relatively softer material than the coating sample SP1. The 

observed “blunt” peak of the curves at the loading-unloading transition could possibly be due to the inherent strain rate-

dependent deformation process, particularly in the vicinity of the indenter tip region. However, the initial unloading 

response for both samples is linear, reflecting an elastic behavior. The displacement at zero-load denotes the residual 

depth of the indent. The relatively softer Cu coating layer (SP2) experienced a deeper residual indent than that of the 

sample SP1. The larger magnitude of the total dissipated energy during the nanoindentation process is associated with the 

sample SP1, as shown by the greater area bounded by the load-displacement curve, than that for the sample SP2. The 

observed difference in the mechanical responses is closely related to the different microstructure of the sputtered Cu 

coating layers. 
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Figure 6. Load-displacement responses of the Cu coating samples during the nanoindentation test to the depth of 320 

nm, at 80 nm/s. 

 

Hardness Measure and Elastic Modulus  

A previous experimental study by the authors has indicated that a minimum indentation depth corresponding to 3 % 

of the thickness of the coating is required to eliminate the effect of surface morphology on the measured properties of the 

coating layer [23]. The extracted properties of hardness and Young’s modulus of the Cu coating layer, at different applied 

probe displacement rates, are shown in Figure 7 and 8, respectively. Each symbol represents three repeats of the 

measurements. Repeatability of the extracted data is excellent, as indicated by the small uncertainty range of the data.  

The hardness of the sample SP1 with an average value of 3.0 GPa is higher than that of sample SP2 at 1.3 GPa. This 

is likely due to the relatively higher contaminated C content in the sample, as deliberated earlier (see Table 2). The 

insignificant effect of the higher applied probe displacement rates of up to 400 nm/s on the hardness measure is observed. 

The Young’s modulus of the sample SP1 at an average value of 95 GPa is only slightly lower than that of the sample SP2 

at 107 GPa. These measured values are comparable to the reported Young’s moduli of thin Cu layers that range from 125 

to 170 GPa, and significantly higher than that of the bulk copper at 70 GPa [27, 28]. In addition, the modulus property 

values are independent of the probe displacement rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Hardness measure of the Cu coating samples at different applied probe displacement rates, h = 320 nm. 
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Figure 8. Young’s modulus of the Cu coating samples at different applied probe. 

 

Stress-Strain Response 

The load-displacement curve for the loading stage of the nanoindentation test contains information on the hardening 

behavior of the Cu coating layer. However, the deformation is described by the 3-D stress and strain state. Nevertheless, 

the uniaxial true stress-plastic strain curve of the material could be extracted through the inverse analysis method. Details 

of the inverse analysis approach that employed the measured load-displacement curve from the nanoindentation test and 

the finite element simulation of the nanoindentation process is discussed elsewhere [19]. The resulting stress-plastic strain 

curves for the Cu coating layer, based on the sample SP2, for two different strain rates are compared in Figure 9. The 

quasi-static initial yield strength of the Cu coating layer is 279 MPa. The higher strain rate of 0.608/s results in higher 

level of the initial yield strength of 520 MPa. In addition, the strain rate-dependent hardening behavior of the sputtered 

Cu coating layer could be represented by the Johnson-Cook constitutive equation as [19, 29]: 

 

𝜎 = [279 + (2633)𝜀(0.66)][1 + (0.275)𝑙𝑛𝜀∗]̇  (5) 

 

The first term on the RHS of Equation. (5) represents the hardening behavior while the second term represents the 

strain rate effects.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. True stress-plastic strain curves of the sputtered Cu coating layer. 
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CONCLUSIONS 

The deformation response of the sputtered Cu coating on SiO2-coated Si substrate during the nanoindentation test has 

been established. The resulting properties of hardness, Young’s modulus and hardening behavior have been quantified 

for two different microstructures of the coatings. Results show that: 

(1) The Cu coating with higher contaminated C content of 8.41 wt. % displays a significant hardening and a peak load 

level, as reflected in the measured nanoindentation load-displacement curves.  

(2) The insignificant effect of the applied probe displacement speeds up to 400 nm/s on the resulting properties of the 

coating is registered. 

(3) The hardening behavior of the Cu coating layer is adequately described by a strain rate-dependent stress-plastic 

strain curves through the Johnson-Cook constitutive equation.  
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