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ABSTRACT 

 

This paper presents a new statistical-based method of cutting tool wear progression in a 

milling process called Z-rotation method in association with tool wear progression. The 

method is a kurtosis-based that calculates the signal element variance from its mean as a 

measurement index. The measurement index can be implicated to determine the severity of 

wear. The study was conducted to strengthen the shortage in past studies notably considering 

signal feature extraction for the disintegration of non-deterministic signals. The Cutting force 

and vibration signals were measured as a tool of sensing element to study wear on the cutting 

tool edge at the discrete machining conditions. The monitored flank wear progression by the 

value of the RZ index, which then outlined in the model data pattern concerning wear and 

number of samples. Throughout the experimental studies, the index shows a significant 

degree of nonlinearity that appears in the measured impact. For that reason, the accretion of 

force components by Z-rotation method has successfully determined the abnormality existed 

in the signal data for both force and vibration. It corresponds to the number of cutting 

specifies a strong correlation over wear evolution with the highest correlation coefficient of 

R2 = 0.8702 and the average value of R2 = 0.8147. The index is more sensitive towards the 

end of the wear stage compared to the previous methods. Thus, it can be utilised to be the 

alternative experimental findings for monitoring tool wear progression by using threshold 

values on certain cutting condition.  

 

Keywords: Statistical analysis; tool condition monitoring; force signal; flank wear; I-kazTM. 

 

 

INTRODUCTION 

 

Most signals in nature are exhibit random and non-deterministic characteristics which require 

challenge techniques for researchers to analysis and processing it. The rth order of moment, 

Mr is frequently set forth for classification of the random signals. The generated cutting force 

signal from the metal cutting process consists of several features extracting from time domain 

and frequency domain [1]. The acceptable elements of any time domain signal, including the 
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average value, standard deviation, variance, skewness, kurtosis and root mean square (RMS) 

[2,3]. At the same time, a signal can also be from frequency or time-frequency domain such 

as fast Fourier transform or wavelet transform.  

Many contributions regarding the detection of tool wear levels have been proposed, 

developed, and tested to take a meaningful decision, useful and important features. But most 

research absence the robustness which is essential for industrial applications primarily 

because of limited scope regarding machining conditions, and deficient signal processing or 

poor feature selection [4]. The present study focuses on feature extraction methods based on 

the time domain, frequency domain, WT, EMD, and multi-domain analysis [5]. This process 

is the second stage of tool condition monitoring. Available feature analysis such a 

mathematical model is considered the oldest used technique while methods based on the time 

domain extract feature information related to the tool state from the time dimension of the 

signal using time series analyses in conjunction with several statistical parameters. Time 

series analysis includes methods such as the autoregressive (AR) process, the AR moving 

average (ARMA) process, and time domain averaging (TDA) [6]. Methods based on the 

frequency domain extract feature information related to the tool state from the frequency 

dimension of the signal based on the frequency structure and harmonic components of the 

signal. These methods first convert sensor signals from the time domain into the frequency 

domain using the fast Fourier transform (FFT) and then extract feature parameters such as 

the power spectrum, peak-to-peak amplitude, and tooth frequency [7]. Both methods based 

on the time and frequency domains can only provide feature information from a single 

perspective, and both assume that the signal is stationary, which is not suitable for non-

stationary signals obtained in milling processes [5]. Multi domain-based methods have 

received considerable attention in tool condition monitoring (TCM) research for milling 

processes [5]. Multi-domain-based methods select feature parameters from more than a 

single domain, including the time domain, frequency domain, and time-frequency domain, 

to compose candidate feature parameters set, and also apply feature selection or dimensional 

reduction methods to obtain feature parameters that are strongly related to the tool state. 

Usually, time-frequency features consist of a high dimensional vector of data that can 

complicate the computations [8]. Hence dimension reduction seems to be vital for the 

simplification of the implementation [8]. Sophisticated techniques are slow and require a 

larger processor and speed [9]. 

The statistical model is also an often experimented approach in TCM systems. 

Statistical parameters include the root-mean-square, maximum/minimum, average, standard 

deviation, and kurtosis of time series data [10,11]. Earlier, statistical analysis in fault 

detection using skewness and kurtosis was vastly prominent. From systematic experimental 

data, a relationship functions between the amount of tool wear and signal data is constructed. 

Previously, researcher applied skewness and kurtosis of force distribution in a fixed 

frequency band [12]. The frequency distribution pattern of force signals is reporting a 

significant impact on cutting conditions and tool wear. The distribution parameters like 

skewness and kurtosis can recognise both stick-slip transitions of chip contact along the tool 

rake face and flank wear progression [13]. In another study, machining on steel bar’s 

investigation, the skewness and kurtosis have indicated the tool failure catastrophic [14]. The 

acoustic emission technique was used to monitor the progress of tool wear during turning of 

silicon carbide up to 0.4 mm, skewness and kurtosis enhanced the monitoring aspect of wear 

beyond that [15]. Kurtosis and angular power to analyses chatter phenomena were used in 
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the investigation on the chatter and tool wear monitoring by the stationary and cylostationary 

tools [16]. They found out that unstable, chaotic motion of the tool and strong anomalous 

fluctuations of cutting force as early faults diagnosed of tool wear and bearing in high-speed 

machining. 

However, the relationship function developed by the statistical way is often a linear 

model. Therefore, it is unable to explain the non-linearity between dependent and 

independent variables [17]. These linear statistical models were developed in conjunction 

with off-process TCM systems. Certain studies used a combination of regression and 

correlation to arrive at an understanding about the degree of wear [18]. The statistical method 

has been used in signal analysis quite sometimes where many of them are striving to emerge, 

unfortunately for tool wear monitoring, no absolute indicator to implicate direct relationship 

over wear itself. Some researchers have composed a new statistical model to develop perfect 

features for decomposition of non-deterministic signals [19]. The I-kazTM method developed 

by Nuawi [20] provides a coefficient and three dimensional (3D) graphical representation of 

the measured signal frequency distribution. The I-kazTM coefficient does not assure 

consistent positive correlation over tool wear, however 3D graphical show scattered data 

become expand towards the wear and failure state. In additional the I-kazTM only applicable 

for time domain analysis but it’s not working for frequency domain analysis. Ismail [21] have 

developed the I-kaz-3D for signal analysis. It is an extension from the I-kazTM version, where 

they integrate a multi-sensor input which has three dimensions of the input vector. 

Nevertheless still less effort to develop seamless features analysis for the 

disintegration of non-deterministic signals [19]. The study was conducted to strengthen the 

shortage in past studies, namely for I-kazTM and I-kaz-3D. This paper is dedicated to present 

a possible technique in signal analysis through a statistical method that has an output index 

that strongly correlates against tool wear progression. The development of the statistical 

model on the generated cutting force signal successfully created during the milling process. 

Nonetheless, the model is expected to be well-working on other types of the input signal and 

machining processes as well as become the alternative consideration in the tool wear 

monitoring study. Wear mechanisms may coincide, or one of them may dominate the process. 

These mechanisms can lead to several types of wear [9,22,23]. However, two types of them 

which called crater and flank wear are most distinguished. This development is not the 

intention to study the wear mechanism, but only to track the wear severity index.  

 

 

EXPERIMENTAL SETUP 

 

An innovative integrated rotating dynamometer was designed and constructed [24] to 

measure the cutting force in a wireless environment system. This dynamometer utilised strain 

gauge that is mounted on legged cross beam transducer to measure three components of 

cutting force based on a rotating cutting force system, namely main cutting force𝐹𝑐, thrust 

force 𝐹𝑡and perpendicular cutting force 𝐹𝑐𝑛. The system also attached to an accelerometer for 

additional signal acquisitions as comparison purposes. The tool wear monitoring was 

prepared during the milling process of P20+Ni tool steel where the end milling type as the 

cutting tool inserts. The inserts were a batch of tungsten carbide with multi-layer physical 

vapour deposition (PVD) TiAlN/AlCrN grade ACP200 (Code: AXMT170504PEER-G). 

Eight sets of milling experiment (see Table. 1) were conducted based on a 23 full factorial 
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design.  Various combinations of cutting speed (200 and 373 m/min), feed rate (0.10 and 0.20 

mm/tooth), radial depth of cut (0.4 and 0.6 mm) and axial depth of cut is kept constant at 

1mm. Details of the experimental arrangement for the recording of sensory signals during 

tool wear tests were recorded in the earlier paper [24]. 

 

Table 1. Experimental set. 

 

Set Cutting speed 
 𝑣𝑐(min/min) 

Feed rate 
𝑓(mm/rev) 

Depth of cut 
𝑑𝑐(mm) 

Exp. 1 200 0.1 0.4 

Exp. 2 200 0.1 0.6 

Exp. 3 200 0.2 0.4 

Exp. 4 200 0.2 0.6 

Exp. 5 375 0.1 0.4 

Exp. 6 375 0.1 0.6 

Exp. 7 375 0.2 0.4 

Exp. 8 375 0.2 0.6 

 

 

STATISTICAL MODELLING 

 

The model development is employing both mathematical and statistical features based on a 

signal element variance scattering around its mean centroid. The method is named Z-rot 

analysis to exhibit data pattern in defining the randomness of data features over the whole 

lifetime to diagnose inferences. 
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Figure 1. Flowchart of the Z-rotation method. 

 

These inference interpretations are beneficial for forthcoming prediction and decision 

making in machine learning adaptation. The sharpness characteristic of the peak of a 

frequency-distribution curve in kurtosis has inspired the development of Z-rot analysis. 

Whereas, the ‘rot’ acronym is referring to the analysed data that literally ‘rotating’ about its 

resultant mean. Z-rot is a tracking analysis kurtosis-based use to track the severity of wear. 

It is expected to show a strong relationship over the wear evolution. The algorithm is in Figure 

1 is referring to Z-rot analysis that started with a combination of two or more homogenous 

signal inputs from sensing elements to get a final time domain allocation. Hence, several 

feature extractions are desirable with the intention to find RZ index. The analysis starts with 

the method acquires an accretion of force components, 𝐹𝑦 data from two or more channels. 

The accretion 𝐹𝑦 represented as Eqn. (1): 

 

  𝐹𝑦 = ∑ (𝐹𝑖)𝑛
𝑖=1                                                          (1) 

 

Notation Fi is the sensor signal data, 𝑛 is the total number of signal data and 𝑖𝑡ℎ is the 

number of signal output. Then, determine the average, 𝐹̅𝑦 is for the accretion data central 

tendency represented as Eqn. (2): 
                                                   

𝐹̅𝑦 =
1

𝑛
∑ (𝐹𝑦)𝑛

𝑖=1                                                               (2) 
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The 𝑛 is referring to the total number of data. Variance between each element in 𝐹𝑦 

from its resultant average will become the input data to determine RZ index. The variance is 

established by subtracting each element value with the accretion mean as radius, 𝑟 in Eqn. 

(3). 

𝑟𝑖 = |𝐹𝑦,𝑖 − 𝐹̅𝑦|𝑖=1                                                         (3) 

 
With the purpose of determining how spreading out the elements are, the standard 

deviation is cast-off as a measure of volatility. When the cutting tool is new, the element data 

is suspected to bunch around the mean and slowly spread out when the tool is worn out. In 

general, the more the wear severity, the larger the value of standard deviation and the more 

spread out the signal elements are in the set. The standard deviation value as in Eqn. (4), is 

one of a directive factor for signal element instability.  
 

𝜎𝑟 =
1

𝑛
√∑ (𝑟𝑖 − 𝑟̅)2𝑛

𝑖=1                                                         (4) 

 

The 𝑟̅ is the radius average and 𝑛 is the number of the element. As for fault detection, 

Kurtosis is used to identify any unusual amplitude existence [25]. For discrete data set the 

kurtosis, defining Kr as in Eqn. (5): 

 

𝐾𝑟 =
1

𝑛𝜎𝑟
4 ∑ (𝑟𝑖 − 𝑟̅)4𝑛

𝑖=1                                                    (5) 

 

Based on the standard deviation and kurtosis value obtained, a sequence of threshold 

index, RZ index is established using Eqn. (6), to indicate the current condition and records 

the wear progression of cutting tool during the machining process. Note that 𝑁 is the total 

number of the element. 

𝑍𝑟𝑜𝑡 =
1

𝑁
√𝜎𝑟

4𝐾𝑟                                                     (6) 

 

The progression of physical defect, i.e., wear is an evolution process happening over 

a particular time interval in a lifetime. Therefore, the prominent concern of tracking 

procedure is the consistency of the signal analysis and how effective is the indication [23]. 
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RESULTS AND DISCUSSION 

 

Cutting Force Signal 

Figure 2 shows the time domain of cutting force components (𝐹𝑐 , 𝐹𝑡 and 𝐹𝑐𝑛)  during the 

advancement of tool wear. The cutting forces were measured throughout the entire cutting 

period. The figure illustrates the tool condition for set Exp.1 began with initial wear (Testing 

3, VB = 0.012mm) until tool reached failure state (Testing 43, VB = 0.300mm).  

  
Figure 2. Representative examples of Time domain analysis for the cutting force 

components for Exp. 1. 

 

As seen clearly in Figure 2, all the three components of the cutting forces increase as 

the tool wear develops during cutting. The increase of force amplitude is more visible as the 

machining approach towards the end [26]. 

 

Flank Wear Progression 

Figure 3 displays the flank wear relation to the number of cutting. As expected, flank wear 

progression for all test samples was increasing gradually upon the number of cutting [27]. 

Flank wear is the factor that controls the tool life for typical PVD [28]. Wear rate increase 

rapidly at the beginning and then slowly decrease to starts growth linearly. The wear rate 

increases rapidly again when the tool approaches the end of tool life [29–31] owing to the 

constant use of the cutting tool will lead to it fractures. Observation proved that the less the 

linear inclination of the wear is, the longer the tool life becomes. For this reason, as the 

hardness of the tools increases, the inclination of the wear decreases [28].  

Two dominant wear progress regions observed continuously, which are steady-state 

and instability-failure regions. The steady state region is roughly stable and gradually 

increase. The flank wear width grew when the contact area between the tooltip and the 
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workpiece increases, resulting in a friction force to increases as well as the cutting forces 

[32]. Wear progression vs cutting force is parallel to the previous investigation [26] on the 

cutting forces, the tool wear and the surface finish obtained in high-speed diamond turning 

and milling of several materials.  
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Figure 3. The plot of flank wear, VB versus number of cutting. 

 

Z-rotation Method 

Z-rotation method is referring to Z-rot analysis that started with an accretion of two or more 

signal inputs from the same type of sensor to get a conclusive time and frequency domain 

allocation. Figure 4 clarifies the Z-rot analysis has successfully manipulated the mounted of 

signal forces to determine the abnormality existed in the random and non-deterministic signal 

data. 

 
Figure 4. The accretion of cutting force components in the Z-rotation method. 

 

The purpose of the study is to apply new wear tracking analysis of the signal that is generated 

by the statistical base. As a result, there is a substantial interest throughout the wear evolution 

progress. The tools are expected to work steadily under normal operation, particularly after 

the running-in phase.  

The Z-rotation method is used to characterise the cutting force that absorbed from both 

dynamometers. The method can correspondingly generate data distribution in the 3D 

dimension display representing the scatter-degree of data distribution.  
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Figure 5. 3D representation for initial, intermediate and last run throughout Exp. 1. 

 

Figure 5 exhibits the 3D representation of the RZ index for the sharp cutting tool (VB = 

0 mm) with an index value of 1.8877. The width of flank wear is expanding throughout 

machining as the index value increased to 4.7968. The machining process under given 

parameters proceed until the tool failure (VB > 0.3 mm) that recorded the last index value of 

11.3142 for experimental set 1.  The 3D graphics display a spread transformation from small 

(initial run) to bigger (last run) sphere distribution. The spherical like distribution indicates 

the revolution of the RZ index and regress the progression of wear. All experimental sets 

demonstrated the same occurrence pattern distribution during the machining process under 

different settings of machining condition. The displays verify the helpfulness of Z-rotation 

method as wear progression tracking procedure.  

Statistical tools on force signals generate parameters with different information 

content. The new developed statistical method is deployed to interpret the cutting force signal 

(𝐹𝑐 , 𝐹𝑡  and 𝐹𝑐𝑛) for tool wear progression detection. Cutting tool condition analysis is 

permissible using Z-rot analysis by calculating the Zrot index for every signal measured 

during the cutting process. The plot of RZ index versus flank wear value in Figure 6 obtains 

a nonlinear propagation curve of wear evolution. Throughout the experimental studies, the 
RZ index appeared to an extensive degree of nonlinearity of measured impact.  
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Figure 6. The plot of Z-rot index versus number of cutting.  
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Figure 6 shows the RZ index corresponds with the number of cutting. An explicit 

offset between RZ index at specific values is believed to be in instability state phase where 

failure lean towards to occur. The increasing index value happened before the final failure, 

machining length and wear volumes increase at the beginning, and then take a stable 

increment state before it rises sharply towards the end. The plot indicates a good correlation 

between the cutting forces and flank wear in milling operations. 

 To validate a correlation between RZ index with wear progression, a line of the best 

curve fit in Figure 7 shows, a positive slope which means it is moving higher as it moves 

from left to right where there is a positive correlation between the wear and RZ index. The 

data points are very close to the line of best fit showing that there is a strong correlation 

between the variables. According to the study conducted by [33], the effective process of 

selecting a signal is through a relationship between the change of signal amplitude and flank 

wear of the cutting tool. Points should be near to the curve line in the scatter plot where 

the correlation coefficient can range in value from -1 to +1. Correlation coefficients having 

R2 > 0.6 values is selected as an effective signal feature for the monitoring process. The 

average correlation coefficient between flank wear (VB) and RZ index is R2 = 0.8147, with 

the highest correlation coefficient of R2 = 0.8702 obtained from the Exp. 3.  
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Figure 7. Wear versus RZ index. 

 

The healthy positive correlations among the two variables indicate the RZ index is a 

variable feature that has a strong relationship and effects the monitored flank wear 

progression. As a comparison of statistical analysis used in the different process like turning 

to project good correlation between cutting force and wear agreed in the previous studies 

[12]. They used the method of skewness and kurtosis of the distribution of force within a 

fixed frequency band. 

 

Cutting Force Descriptions 

Z-rot analysis has successfully manipulated the force signals resultant to determine the 

abnormality that existed in the random signal data. The relative sharp tools at the initial stage 

of machining under dry cutting conditions produce low cutting forces [34] that lead to the 

more moderate RZ index. With the increasing number of cutting process, the rounded tool 

edge generated higher friction coefficient and widen the contact area among the tool/chip and 

tool/workpiece interface [29,35,36]. Since the friction force increased drastically, will yield 

a significant increment in the cutting force components. As a result, the tool has a greater 

tendency to fracture as it pushed away from the machined surface by a majority of the 

resultant force [3]. 
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Consequently, the aforementioned in Figure 2, high cutting force components have 

been captured throughout the machining process. The RZ index becomes higher towards the 

end in all datasets during the study due to the changes in signals amplitude and frequency of 

the cutting forces. After some time, noticeable wear progression, for instance, BUE, flank 

wear, crater wear, flaking, chipping, and notching would appear [16,23,37]. Under the 

circumstances, Figure 8 shows some of the datasets reveal a curious pattern that seems to 

have sudden and progressively increase and decrease of the RZ index in all datasets testing. 

 

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

R
Z

Number of cutting

Exp. 1

0

5

10

15

20

25

30

0 5 10 15 20 25
R
Z

Number of cutting

Exp. 3

0

10

20

30

40

50

0 5 10 15 20

R
Z

Number of cutting

Exp. 4

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

R
Z

Number of cutting

Exp. 7

  
Figure 8. Unexpected amplitude changes in RZ plots. 

 

The distinctiveness presence in the RZ plots expresses an unexpected amplitude 

change phenomena originated in the force signals. The sudden index escalation caused by 

high cutting force came to pass on the tool edge during the machining of the test sample. It 

is an indication of tool damage as it statistically changes in the shape of the signal [38]. The 

example in Figure 8, point 17 in Exp. 1 has suddenly increased with the RZ index of 14.9946. 

Whereas, in the rest of testings, the acceleration existed at a specific point are illustrated in 

the figure respectively. 

The sudden increase of RZ index does not guarantee to produce a higher increment of 

wear land width. As in Figure 8, it is widely observed that the tendency for wear area to 

become worn is increasing over time. However, a small increment of flank wear width 

occurred at the mid-stage of the steady stage of gradual wear as compared to at the beginning 

of continuous wear. The phenomenon [39] is called wear competition based on the interaction 

of abrasive wear and sliding action with surface severities that leads to surface smoothing. 

Meanwhile, a sharp decline tends to produce broader wear width [3] happens in all 

experiment sets. 
RZ index is more sensitive in capturing signal changes towards the end of the wear 

progression. The comparison made in line with the previous analysis done by Ismail et. Al 
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(2016). Figure 9 illustrates the sensitive segment of the RZ index compared with I-kaz-3D in 

tracking wear progression. The pattern was similar, over some time, RZ index continues to 

distinctly rise higher than I-kaz-3D towards the end of the cutting. Since Z-rotation is 

analysed the signal components using accretion technique at the beginning and then 

determine each of the elements variance from the signal average. Whereas I-kaz-3D is simply 

piling up the signal together as an input, and afterwards processing the signal in the same 

way as the I-kazTM do which decomposing the summed-signal into three frequency levels.  

 

0

5

10

15

20

0 5 10 15 20 25

In
d

ex

Number of cutting

Exp. 1

I-kaz-3D Z-rotation

0

5

10

15

20

25

30

0 5 10 15 20 25

In
d

ex

Number of cutting

Exp. 3

I-kaz-3D Z-rotation

  
Figure 9. Comparison analysis between Z-rotation and I-kaz-3D method. 

 

Consequently, high cutting force components captured throughout the machining process. 

The increasing value of the RZ index in all dataset of this study is due to the changes in signal 

amplitude and frequency of the cutting forces. The index becomes higher towards the end 

because of the element variance within the accretion signal upon its means. Therefore it is 

suitable to determine tool wear progression during the milling process. The analysis can be 

utilised to gather alternative parameter for tool wear monitoring observation by using 

threshold values on satisfied cutting condition. 

 

Comparison of Cutting Force and Vibration Signal 

The fluctuations of the cutting force components in machining are reflecting the vibration 

spectra of the cutting tools. The sensitive accelerometer can directly sense the cutting 

vibration signals, which are to offer excellent possibilities for in-process diagnosis of many 

important machining phenomena including tool wear [40]. Figure 10 shows a dynamic 

process of tool edge wear causes the cutting forces to increase as to vibration increasing as 

well with the RZ index.  
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Figure 10. Comparison analysis between force and vibration analysis 
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From the example observations and analyses made above, it is clear that the cutting vibrations 

do not necessarily have the same fluctuating pattern as cutting forces in machining with either 

a sharp tool or a worn tool. In machining with a sharp tool and with a worn tool, the cutting 

forces configuration can be similar to each of experimental sets, but the vibration magnitude 

can be very different. Also, larger cutting forces do not necessarily lead to larger vibration 

amplitudes. Since pure vibration signal carries spare environmental noise than the force 

signal does [8] thus reducing the vibration amplitude. According to [41], as flank wear-land 

progresses with machining time, the larger contact area increases the amount of workpiece 

material being deformed elastically. Thus increases the frictional damping and reduces 

vibrations. During the time, if flank wear exceeds a certain threshold, the stronger excitation 

caused by more massive cutting force becomes dominant, with a consequent increase in 

vibration. The increment in both force and vibration signals is reflected through RZ index 

imply the robustness of the analysis method across different type of sensor input. 

Z-rotation method has remarkably provides a pronounced connection between force 

signal wear in the time domain. Nonetheless, some vibration signal shows the amazing result 

when display in the frequency domain rather than in time domain. Figure 11 shows the time 

domain and frequency domain of vibration accelerations of the cutting process detected 

during the advancement of tool wear.  

 

Figure 11. Time domain and FFT analysis for vibrations signal set Exp. 2. 

 

In the time domain, vibration signal does not show much difference in term of its 

amplitude. On the other hand, it can be seen in the frequency domain the high-frequency 

activities occur at low-frequency regions covering up to 500Hz and contain the most 

condition indicating information about the cutting process. The dominant frequency activities 

occur at relatively low and middle-frequency regions. The other frequency activities take 

place around after 500Hz up to 1500Hz which is the reflection of the damped natural 

frequency of the tool-workpiece system [42]. It can be comprehended in all experimental sets 

that characteristics of the frequency components located at the high-frequency region change 

with the advancement of wear. They occupy a larger frequency span around range between 

500Hz and 1500Hz, and their amplitudes rise when the severity of wear is increased.  
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Figure 12 explains the statistics of the perceived vibration signals at the mentioned 

cutting condition in time and frequency domain. During the very early phase of wear 

development, the amplitude of the vibration acceleration is slightly increased which is 

correspondingly reflected by the RZ index in the time domain. However, at sometimes when 

the wear starts developing on the tool’s cutting edges, the RZ index is reduced in the time 

domain but not in the frequency domain. The index in the frequency domain keeps gradually 

increased with the advancement of wear until it reaches to the point of tool failure. 
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Figure 12. Vibration analysis using Z-rotation method 

 

In leverage of Z-rotation analysis, vibration signal shows the amazing result when display in 

the frequency domain rather than in time domain. When the wear width is fully developed 

over the flank surfaces at the end of wear test, the amplitude of the vibration signal magnitude 

represented by RZ index is notably increased. The symptoms of tool wear are favourably 

revealed in the vibration signal. In brief, cutting forces are determined by material property, 

tool geometry, cutting conditions, and so on. The cutting forces not only determine the cutting 

vibration but also by the structural rigidity (such as damping and stiffness) of the tool–work–

machine system [43]. Henceforward, acceptable measurement index based on the frequency 

domain of fast Fourier transform is possible as another alternate parameter in future decision 

making. 

 

CONCLUSION 

 

The new statistical method was developed in favour to deliver a simple and time-saving and 

yet sensitive with a gradual change in the wear process state. It’s a homogenous multi-sensor 

signal analyser for both in time and frequency domain.  The analysis was done on the cutting 

force (𝐹𝑐,𝐹𝑡 and 𝐹𝑐𝑛) and vibration signal for tool wear progression detection. Throughout the 

experimental studies, the RZ index shows some significant degree of nonlinearity that appears 

in the measured impact. For that reason, the accretion of force components by Z-rotation 

method has successfully determined the abnormality existed in the signal data for both force 

components and vibration. It corresponds to the number of cutting specifies a strong 

correlation over wear evolution with the highest correlation coefficient of R2 = 0.8702 and 

the average value of R2 = 0.8147. The index is more sensitive towards the end of wear stage 

compared to the previous method to visualise slight changes in the signals. Thus, it can be 

utilised to be the alternative experimental findings for monitoring tool wear progression by 

using threshold values on certain cutting condition. Finally, the new developed statistical 
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modelling of random signals proved to be universal and tolerant to noise and well-

extrapolated for the forthcoming purposes of decision making. 
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