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ABSTRACT 

 

Intricacy and complexity of ballistic missile and aerospace parts makes WEDM an 

essential machining process. The current study aims to formulate an ANFIS model for 

Wire-EDM of ballistic grade aluminium alloy. The experimentation has been conducted 

with four input variables namely pulse on time (Ton), pulse off time (Toff), peak current 

(Ip), and servo voltage (Vs). Material removal rate (MRR) is employed as process 

performance evaluator. The values predicted by the developed model are found closer to 

experimental outcome and thus ensures the model suitability for prediction purpose and 

intelligent manufacturing. Machined surfaces are also examined by the scanning 

electron microscope (SEM) to obtain better insight of the process.  

 

Keywords: AA 6063; wire-EDM; MRR; ANFIS. 

 

INTRODUCTION 

 

WEDM is the most emerging non-conventional machining process. It is employed to 

produce components of tricky profiles. Hence, industries like aerospace, medical 

implants, electronic, automobile widely use this unique technique. In WEDM, material 

is removed by a series of sparks between workpiece and wire-electrode submerged in a 

dielectric fluid (generally, deionized water) and connected to a pulsed DC supply [1, 2]. 

For proper tension of wire-electrode mechanical devices are used. Because of positive 

and negative polarity of electrodes a stress is generated which affects the dielectric fluid 

atoms. The ionization of dielectric fluid do not occur until electrode to workpiece 

voltage and dimension are equal to the dielectric strength rating of the dielectric fluid. 

At this point, ionization occurs and electron from negative to positive polarity flows 

through the ionized channel of dielectric fluid. Once ionization takes place, the 

dielectric become heated from the flow of electron and then converted into plasma. 

Under this condition electrons from negatively charged electrode rapidly pass through 

the ionized plasma in the form of spark. High velocity electron collides with workpiece 

and produce spark, and this spark removes small amount of material from workpiece by 

melting and vaporizing [3-6]. The detail of process parameters, mechanism of material 

removal and influence of process parameters on measures of process performance are 

available in literatures [7-10]. A comprehensive study of published research works has 

been executed (as shown in Figure 1) on the basis of materials used as workpiece and 

the modelling technique employed. It is apparent from the study that most of the 

research works has been carried out for steel based alloys (approx. 46%); minimum 

amount of research work has been carried out for aluminium alloys (approx. 11%). 
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Furthermore, Taguchi technique is the most commonly used optimization/modelling 

technique while only 3% research works are reported for modelling with ANFIS [11-

21]. 

 

 
 

Figure 1. Comparative study of published research works on workpiece materials and 

modelling techniques 

 

The present day practice is to shorten the product development time and 

expedite the production process to reduce the overall cost and encash the early product 

launch in the market. In machining processes, the machining time can be reduced 

significantly by increasing the MRR to the extent where it does not cause any adverse 

effect on the surface integrity. An ANFIS model was developed for MRR during wire-

EDM of ballistic grade aluminium alloy for the potential users of the process. 

 

EXPERIMENTAL DETAILS  

 

Aluminium Alloy 6063 (AA 6063) is an Al-Si-Mg based alloy having low density, good 

corrosion resistance, excellent impact strength, energy absorption and stiffness 

properties and hence, it is best suited for armour applications. EDX image of AA 6063 

is shown in Figure 2. AA 6063 has been chosen as workpiece material for this research 

work [22, 23]. A diffused brass-wire (Φ 0.25 mm) and de-ionized water are opted as 

tool-electrode and dielectric fluid respectively. 

Figure 3 illustrates the schematic diagram of machine setup and photographic 

view of worksamples. Experimentation has been conducted on WEDM setup (Make: 

Electronica Machine Tool). This setup consists of four major sub-elements:  

 

a) Power supply system,  

b) Dielectric system,  

c) Positioning system, and  

d) Drive system.  

 

Ton, Toff, Ip and Vs are employed as input process parameters. Table 1 shows the values 

of input process parameters. Parameters kept fixed for main-experimentation are also 

presented in Table 1. 
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Figure 2. EDX analysis of AA 6063. 

 

 
 

(a) Schematic diagram of WEDM (b) RC pulse generator 

 

  
(c) Photographic view of WEDM (d) Machining zone of WEDM 

 

Figure 3. WEDM machine setup. 
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Table 1. Levels and values of input and fixed parameters 

 

Input process parameters Fixed process parameters 

Parameters 
Levels 

Parameters Value 
Fixing 

criteria L1 L2 L3 

Ton 105 μs 115 μs 125 μs Dielectric fluid De-ionized Water 

Literature 

review and 

pilot 

experiments 

Peak Voltage 2 m/c unit 

Toff 40 μs 50 μs 60 μs Water Pressure 1 m/c unit 

Wire Feed 7 m/c unit 

Ip 130 A 150 A 170 A Wire Tension 7 m/c unit 

Servo Feed 2050 m/c unit 

Vs 40 V 60 V 80 V Workpiece 

material 

AA 6063(15cm 

×10cm × 1.5cm) 

Industrial 

application 

 

The MRR is opted as process performance characteristic. It is quantified using 

Eq. (1). 

 

   (mm3 min⁄ )    utting speed (mm min) height of workpie e (mm) 
                                        kerf width (mm) 

(1) 

 

The experimental runs were designed according to 3
k 

full factorial design (k is 

number of controlled variables; for present study it is 4). The primary purpose of using 

the full factorial design is to explore the entire design space with equal accuracy as there 

is always some error associated with the statistical models. The secondary purpose is to 

generate enough data to develop the ANFIS model. 

 

RESULTS AND DISCUSSION 

 

The parametric setting of different trial runs and the value of resulting MRR is 

presented in Table 2. It is evident from Table 2 that maximum MRR of 18.103 mm
3
/min 

is achieved for the experimental run where, Ton=115 μs, Toff=40 μs, Ip=150 A, and 

Vs=40 V. On the other hand, the minimum MRR of 1.141 mm
3
/min is obtained for the 

experimental run where, Ton=105 μs, Toff=60 μs, Ip=170 A, and Vs=80 V. It is apparent 

that there is near about 94% improvement in MRR value owing to suitable setting of 

machining parameters. Furthermore, no wire breakage is observed during the 

experimental investigation. 

 

Table 2. Training data set for ANFIS 

 

Trial No Ton (μs) Toff (μs) IP (A) Vs (V) 
Machining time 

(min) 

MRR 

(mm
3
/min) 

1 105 40 130 40 10.18 7.735 

2 105 40 150 40 9.47 8.315 

3 105 40 170 40 10.46 7.524 

4 105 40 130 60 14.75 5.338 

5 105 40 150 60 12.95 6.260 

6 105 40 170 60 15.11 5.209 

7 105 40 130 80 25.80 3.052 

8 105 40 150 80 25.70 3.060 

9 105 40 170 80 29.31 2.686 
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Trial No Ton (μs) Toff (μs) IP (A) Vs (V) 
Machining time 

(min) 

MRR 

(mm
3
/min) 

10 105 50 130 40 19.28 4.083 

11 105 50 150 40 15.46 5.090 

12 105 50 170 40 20.28 3.882 

13 105 50 130 60 22.36 3.570 

14 105 50 150 60 27.75 2.837 

15 105 50 170 60 23.66 3.365 

16 105 50 130 80 46.46 1.625 

17 105 50 150 80 35.21 2.240 

18 105 50 170 80 44.75 1.759 

19 105 60 130 40 31.83 2.473 

20 105 60 150 40 32.50 2.580 

21 105 60 170 40 33.58 2.344 

22 105 60 130 60 45.83 1.718 

23 105 60 150 60 38.96 2.040 

24 105 60 170 60 46.41 1.696 

25 105 60 130 80 66.38 1.186 

26 105 60 150 80 68.86 1.143 

27 105 60 170 80 68.93 1.141 

28 115 40 130 40 4.56 17.240 

29 115 40 150 40 4.50 18.103 

30 115 40 170 40 4.75 16.578 

31 115 40 130 60 5.98 15.440 

32 115 40 150 60 5.48 14.362 

33 115 40 170 60 4.96 17.194 

34 115 40 130 80 10.76 7.314 

35 115 40 150 80 8.33 9.603 

36 115 40 170 80 10.20 7.720 

37 115 50 130 40 5.96 14.110 

38 115 50 150 40 6.15 12.800 

39 115 50 170 40 13.75 14.610 

40 115 50 130 60 9.88 7.967 

41 115 50 150 60 8.08 9.780 

42 115 50 170 60 9.57 8.275 

43 115 50 130 80 15.56 5.133 

44 115 50 150 80 10.91 7.214 

45 115 50 170 80 13.75 5.855 

46 115 60 130 40 10.76 7.314 

47 115 60 150 40 9.35 8.550 

48 115 60 170 40 10.25 7.682 

49 115 60 130 60 14.58 5.487 

50 115 60 150 60 15.56 5.059 

51 115 60 170 60 13.53 5.910 

52 115 60 130 80 28.28 2.784 

53 115 60 150 80 24.20 3.265 

54 115 60 170 80 29.29 2.688 

55 125 40 130 40 6.60 11.931 

56 125 40 150 40 5.76 13.657 

57 125 40 170 40 6.50 12.115 

58 125 40 130 60 5.33 14.232 

59 125 40 150 60 5.61 14.660 

60 125 40 170 60 5.66 13.898 

61 125 40 130 80 6.36 12.370 
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Trial No Ton (μs) Toff (μs) IP (A) Vs (V) 
Machining time 

(min) 

MRR 

(mm
3
/min) 

62 125 40 150 80 5.93 13.273 

63 125 40 170 80 6.21 12.668 

64 125 50 130 40 5.23 15.050 

65 125 50 150 40 6.20 12.867 

66 125 50 170 40 5.75 13.695 

67 125 50 130 60 6.20 12.867 

68 125 50 150 60 5.56 14.148 

69 125 50 170 60 5.33 15.144 

70 125 50 130 80 8.80 8.948 

71 125 50 150 80 7.01 11.230 

72 125 50 170 80 7.66 10.272 

73 125 60 130 40 6.23 12.634 

74 125 60 150 40 5.65 13.938 

75 125 60 170 40 5.51 14.276 

76 125 60 130 60 8.28 9.507 

77 125 60 150 60 7.05 10.870 

78 125 60 170 60 25.80 11.170 

79 125 60 130 80 12.38 6.359 

80 125 60 150 80 12.01 6.553 

81 125 60 170 80 12.66 6.217 

 

The relationship between input parameters and MRR is illustrated in Figure 4. 

Figure 4 evidently shows on increasing Ton value MRR increases and attains maximum 

value when Ton=125µs. The reason behind increase in MRR is increase in discharge 

energy. This outcome is accordance to the finding of Kanlayasiri et al. [24]. From 

Figure 4 it is observed that Toff is having contrary effects on MRR. It is evident that the 

resulting MRR value decreases with increase in Toff value. The duration of discharge get 

shorter when we increase Toff value. It is apparent from Figure 4 that MRR value 

gradually increases with decrease in Vs and attain highest value for lowest Vs value i.e. 

40V. The MRR value increases with decrease in Vs because at lower value of Vs the 

dielectric strength of the dielectric medium decreases resulting in increase in discharge 

current during machining. It results in higher melting and evaporation of the workpiece 

material and hence, MRR increases. It is also evident from Figure 4 that increasing Ip 

upto certain value decreases the MRR, and further increase in Ip increases the value of 

MRR. Ip increases the number of electrons striking the work surface thus eroding out 

more material from the work surface per discharge [25, 26]. SEM analysis has been also 

conducted to obtain better insight of the surface integrity aspects of WEDMed surface. 

For this purpose, two samples are selected; first one is the outcome of cutting conditions 

corresponding to low discharge energy (LDE) (Ton=105 μs, Toff=60 μs, Ip=150 A and 

Vs=60 V) and the second one is the outcome of cutting conditions corresponding to high 

discharge energy (HDE) (Ton=115 μs, Toff=40 μs, Ip=150 A, Vs=40 V).  
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Figure 4. Relationship between input variables and process performance characteristic 

 

SEM micrographs of WEDMed surface corresponding to LDE is depicted in 

Figure 5 (a) while SEM micrographs of WEDMed surface corresponding to HDE is 

depicted in Figure 5 (b). Figure 5 clearly confirms that the machined surface 

corresponding to HDE contains higher amount of craters, deep holes and cracks than the 

machined surface corresponding to LDE. It is owing to the fact that a high discharge 

energy result in high value of erosive power Vaporizes a large amount of material 

causes deep holes and cracks. Thus, the MRR value increases with increase in discharge 

energy in expense of surface quality of the machined surface. In addition, HDE 

accelerates the depletion of wire tool material; residual particles of wire tool material 

get stick to the cutting surface and results in formation of rough surfaces. 

 

  
(a) WEDMed surface at LDE (Ton=115 μs, Toff=40 μs, Ip=150 A, Vs=40 V) 
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(b) WEDMed surface at HDE (Ton=115 μs, Toff=40 μs, Ip=150 A, Vs=40 V) 

 

Figure 5. SEM micrographs of WEDMed surface at (a) LDE and (b) HDE 

 

ANFIS MODELLING 

 

To develop the Neuro-fuzzy model, the MATLAB (ANFIS) environment was used due 

to its inherent available features. The ANFIS system is designed as Multiple Input 

Single Output System consisting of four inputs and one output. The system under 

consideration has four input i.e. Vs, Ton, Toff and Ip, and one output material removal 

rate. Three membership functions were assigned to each of the inputs. The ANFIS 

procedure starts by presenting the training data obtained from experiments and a 

number of member functions. The design of four inputs ANFIS is shown in Figure 6. To 

a first order, four inputs ANFIS model, a typical fuzzy if then rules of Takagi and 

Sugeno type is as follows. 

 

Rule 1: If α is A1, β is B1, ν is C1 and γ is D1 then f1  (p1α q1β r1ν s1γ t1). The detail 

of each layer is given below. 

Layer1: Every single node in this layer is a square node, with a node function, i
1
 μ

Ai
( ) 

where   is the input to node i, and Ai, is the linguistic label associated with this node 

function. In this architecture μ
Ai
( ) is bell shaped with maximum equal to 1 and 

minimum equal to 0 as in Eq. (2): 

 

μ
Ai
( )  

1

1 [(
   i
Ai
)
2

]

 i
 

(2) 

 

where, {         } are the premise parameters. 

Layer 2: The function of node in this layer is to multiply the incoming signals and send 

the product of all inputs. For instance, in Eq. (3). 

 

wi  μAj
(α) μ

Bk
(β) μ

Cl
(v) μ

Dm
(γ) (3) 

 

i 1,2     1                                                                                                                            

j 1,2,3                                                                                                                                                

                                                                                                                                                      
l 1,2,3                                                                                                                                               
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m  1,2,3                                                                                                                                                                                                                           
Each node output represents the firing strength of a rule.  

 

Layer 3: In this layer, the input firing strength of each rule is normalized by dividing 

with the sum of firing strength of all rules and output is called normalized firing 

strength. It is calculated using Eq. (4). 

 

wi̅̅ ̅  
wi

w1 w2    .w 1

, i 1,2,3    1 (4) 

 

Layer 4: Every node i in this layer is a parameterized function. The node function is 

given by the relation shown in Eq. (5). 

 

 i
4
  w̅ifi  w̅i(piα qiβ riν siγ ti) 

(5) 

 

where, i  1, 2   1 and   ̅̅ ̅ is the output of previous layer, and {               } is a 

parameter set. Parameters in this layer are referred as consequent parameters. 

 

Layer 5: The single node in this layer calculates the summation of all incoming signals 

to provide the overall output and quantified using Eq. (6). 

 

 1
5
 overall output ∑wifi

i

 
(6) 

 

The learning comprises of forward and backward passes. The consequent 

parameters are determined by the method of least squares in the forward pass of the 

learning algorithm whereas the premise parameters are updated by gradient descent in 

the backward pass. The overall output is expressed as linear combinations of the 

consequence parameters. The output f can be rewritten as shown in Eq. (7) and Eq. 

(7.1). 

 

f ∑ w̅ifi

 1

i 1

   

 

(7) 

f ∑ (w̅1α

 1

i 1

)p
i
  (w̅1β)qi (w̅1ν)ri (w̅1γ)si (w̅1)ti 

(7.1) 
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Figure 6. Architecture of four inputs and one output ANFIS 

 

This is linear in the consequent parameters [27-32]. In order to develop an 

ANFIS model, various membership functions such as gauss, gbell, trapezoidal and 

triangular functions were tried. The ANFIS training information is as follows.  

 

a) No. of nodes: 193 

b) No. of linear parameters: 405 

c) No. of nonlinear parameters: 36 

d) Total No. of parameters: 441 

e) No. of training data pairs: 81 

f) No. of checking data pairs: 40 

g) No. of fuzzy rules: 81 

 

The trained ANFIS model where then checked with validation data which was 

not used in training phase to ensure the prediction ability of developed models. The 

predicted values of various models with different membership functions and their 

corresponding percentage errors are presented in Table 3. It is evident that triangular 

membership functions is most appropriate to represent the input output relationship of 

the presented data as it provides least average percentage error and maximum error. 
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Table 3. Comparison of ANFIS output with various membership functions. 

 

No 1 2 3 4 5 6 7 8 

Ave. 

% 

error 

Ton (μs) 110 120 115 115 115 125 125 125 
 

Toff (μs) 50 60 45 55 60 40 50 60 
 

Ip (A) 130 150 170 130 140 160 130 150 
 

Vs (V) 40 40 40 60 60 60 50 70 
 

MRR exp. 7.797 10.887 16.464 5.913 5.048 14.275 15.242 7.835 
 

MRR pred. 

gbellmf 
13.805 13.151 16.328 6.773 5.227 14.397 14.294 9.532 

 

MRR pred. 

gausssmf 
13.138 11.738 15.889 6.487 5.247 14.317 14.086 8.838 

 

MRR pred. 

trimf 
7.748 11.320 15.608 6.692 5.275 14.267 13.910 8.588 

 

MRR pred. 

trap 
9.040 11.215 15.590 6.744 5.272 14.277 13.934 8.743 

 

% error 

gbellmf 
77.06 20.8 0.83 14.55 3.56 0.86 6.21 21.67 18.19 

% error 

gaussmf 
68.50 7.82 3.49 9.71 3.95 0.30 7.58 12.81 14.27 

% error 

trapmf 
15.95 3.02 5.31 14.07 4.45 0.02 8.58 11.59 7.87 

% error trimf 0.63 3.98 5.20 13.18 4.50 0.05 8.74 9.61 5.73 

 

CONCLUSION 

 

The current research work is consisting of development of an ANFIS model in order to 

mapping a relationship between input process parameters and process performance 

characteristic during Wire-EDM of ballistic grade AA 6063. Four different membership 

functions are tried to develop the model and the triangular membership function is 

found to be the best. SEM micrographs of machined surfaces corresponding to high 

discharge energy and low discharge energy have been carried out. Higher value of MRR 

i.e. 18.103 mm
3
/min is achieved for Ton=115 μs, Toff=40 μs, Ip=150 A, and Vs=40 V; 

while, lower value of MRR is obtained when Ton=105 μs, Toff=60 μs, Ip=170 A, and 

Vs=80 V. It is apparent that there is near about 94% improvement in MRR value owing 

to suitable setting of machining parameters. Although, it is observed that the surface 

quality is deteriorated in case of high discharge energy. And hence, a careful study is 

further required to determine the maximum value of MRR that will not affect the 

surface integrity. In addition, the future research work could consider the study of 

metallurgical and tribological properties of machined surface to critically evaluate the 

effect of discharge energy on work surface. 
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