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ABSTRACT 

 

This paper discusses on the clustering of damaging fragments from a fatigue data 

editing leading to fatigue damage using the fuzzy C-means. In this work, strain signals 

were measured from an automotive coil spring which involved vehicle movements on 

three types of road surfaces at different speeds. Next, the extractions of higher 

amplitude cycle utilising the wavelet transform were conducted. From the results, it was 

obtained that the transformation was able to shorten the strain signal time up to 81.5 % 

removing 81.5 % of lower amplitude cycles, which these cycles theoretically contribute 

to minimum fatigue damage. Therefore, retaining of fatigue damage by more than  

90.4 % was obtained. Furthermore, the resulted fragments from the extraction processes 

had been clustered utilising the fuzzy C-means, providing a significant coefficient of 

determination, reaching 0.9036. The testing time was successfully decreased up to  

81.4 % using the edited strain signals. In conclusion, the technique could be 

successfully used to shorten a strain signal without changing the main history. 

 

Keywords: Vibration; Morlet wavelet, fuzzy C-means; life. 

 

INTRODUCTION 

 

Many automotive components can be associated with failure due to fatigue during their 

operations. The vehicle body sustains the weight of the engine and the passengers, while 

the vehicle body itself is sustained by a suspension system on each tire [1]. The weight 

of the vehicle body and the loads it carries provide the initial compressive forces to the 

suspension system components. The compressive forces increase if the vehicle goes 

through uneven road surfaces at a higher speed. After experiencing shocks, there is a 

probability of a high displacement of tires from the main car body and transmission of 

vibrations to the car. 

In the automotive systems, the vibrations generated are often absorbed by 

vehicular components like tires, seat springs and coil springs present in the suspension 

system. While the tires and the seat springs absorb some vibrations, the coil springs are 

mainly responsible for absorbing vibrations and ensuring a safe and convenient driving 

experience. Under such circumstances the coil springs show forced vibrations. High 

shocks affect the coil springs significantly, more than the other components in the car. 

Hence, the coil springs are seen to play an important role in the car failure as they have 

to tolerate the many vibrations due to the roughness of the road surfaces; which 
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increases the fatigue-dependent mechanical failure, as the car component gets exposed 

to cyclic loads. 

In many of the applications, the fatigue random time history is very long and 

contains a mix of high and low amplitude cycles. With respect to this problem, it is seen 

that the fatigue damage due to low amplitude cycles is very small. Hence, the 

automotive engineers are striving to completely remove low amplitude cycles from 

initial histories and accelerate fatigue tests for saving time and money [2,3]. This 

technique is called fatigue data editing (FDE). 

The trend of the FDE technique appeared when Oh [4] utilizing the discrete 

wavelet transform (DWT) to de-noise and eliminate spikes of strain signals. Another 

DWT-based FDE had also been created by Abdullah et al. [5]. Recently, Putra et al. 

[6,7] developed a FDE algorithm based on the continuous wavelet transform (CWT) 

giving a significant result in terms of saving fatigue testing. The question then arose as 

to how accurate the algorithms are in shortening a strain signal. Thus, to answer the 

question, this study aims to cluster the lower and higher amplitude fragments resulted 

from an extraction process using the fuzzy C-means (FCM). 

 

EXPERIMENTAL SETUP 

 

Strain Signal Measurement 

 

In this study, the research acquired the strain signals after placing a strain gage in a 

critical location in the coil spring of the car and then driving the vehicle on the public 

road surfaces. The finite element analysis [6,7] was used for detecting the high-stress 

area in the component and the strain gage was installed in that area. The SAE5160 

carbon steel was selected as the material for the simulation, which is generally applied 

in many automotive industries for the fabrication of the coil springs [8]. Table 1 

describes the material properties. 

 

Table 1. Mechanical properties of the SAE5160 carbon steel [9]. 

 

Properties Values 

Ultimate tensile strength (MPa) 1,584 

Material modulus of elasticity (GPa) 207 

Yield strength (MPa) 1,487 

Fatigue strength coefficient (MPa) 2,063 

Fatigue strength exponent -0.08 

Fatigue ductility exponent -1.05 

Fatigue ductility coefficient 9.56 

Cyclic strain hardening exponent 0.05 

Cyclic strength coefficient (MPa) 1,940 

Poisson ratio 0.27 

 

The strain gage was linked to a data logging device with the help of a connector. 

The fatigue data logger was utilized for recording the strain signals which were acquired 

by the sensor. In an earlier study, Ilic [10] mentioned that while determining the 

expected frequency range of the torque signal, the sampling frequency value for 

acquiring strain signals must be greater than 400 Hz. This prevents the loss of the 

signal’s essential components. If the collection rate is higher than 500 Hz, the upper 
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frequency range value can be increased, since it helps in acquiring the high-frequency 

load cycles and smaller amplitudes. Furthermore, collecting the load histories at the 

frequencies around 500 Hz helps in detecting and capturing the damaging load cycles as 

a majority of the load cycles which occur at the frequency values greater than 50 Hz 

show a small amplitude that is lesser than their endurance limits (i.e., non-damaging 

load cycles) [11], and the selection of 500 Hz was seemingly suitable for the on-site 

strain signal collection. After installing the equipment, the vehicle was then driven on 

different road surfaces like the highway, the urban and the rural roads at the speed 

ranging between of 70 - 80 km/h, 30 - 40 km/h and 20 - 40 km/h, respectively. Figure 1 

shows the strain gage installation. 

 

 
Figure 1. The strain gage installation: (a) applying adhesive to the strain gage, (b) 

placing strain gage on the component surface, (c) view of the installed strain gage, and 

(d) connecting strain gage to the data acquisition. 

 

Fatigue damage 

 

Accurate assessment of fatigue life can be carried out by the strain-life approach as it 

considers the plastic-forming events existing in the local area. This strain-life approach 

is generally used for ductile materials; as a low cycle fatigue of the smaller components 

[12-14] (within 10
3
 cycles) [15-17], do not need extensive crack observations or high 

operational costs for their failure. Fatigue behavior of engineering materials is very 

sensitive to mean stress, geometric design, surface effect, metallic variables and 

environment [18]. Mean stress, however, is an important factor in the fatigue analysis 

[14,19], and it is seen to affect the low and the high cycle fatigue regimes [20,21]. Thus, 

mostly developed fatigue life assessments consider the mean stress effects on the 

fatigue properties. 

The applications which are based on the mean stress effects can be investigated 

using a type of the strain-life model, i.e., the Morrow model [22], which is expressed in 

Eq. (1). 

 

    c

ff

b

ff NNE 2'2' mean    (1) 

 

where ε is the strain amplitude, σ'f is the fatigue strength coefficient, σmean is the mean 

stress amplitude, E is the material modulus of elasticity, Nf is the number of cycles to 

failure for a particular stress range and mean, b is the fatigue strength exponent, ε'f is the 

fatigue ductile coefficient and c is the fatigue ductile exponent. Furthermore, Smith, 

(a) (d) (b) (c) 
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Watson and Topper suggested another mean stress correction model, known as the SWT 

parameter [23], which is defined mathematically as in Eq. (2). 

 

    cb

fff

b

ff NNE  2'2' '22

max   (2) 

 

where σmax is the maximum stress amplitude. Cumulative fatigue damage is determined 

by the addition of normal and shear energy for each peak-valley in each loading. Thus, 

it is influenced by variable amplitude and frequency cycles. The fatigue damage for 

each loading cycle Di is defined as in Eq. (3). 

 

fi ND 1  (3) 

 

Thereafter, the Palmgren-Miner linear cumulative fatigue damage rule [24,25] is 

applied for estimating the cumulative fatigue damage D of the loading, which is defined 

as Eq. (4). 

 

  fi NnD  (4) 

 

where ni is the number of applied cycles. The fatigue damage ranges between zero to 

one, where zero indicates no damage (i.e., infinite cycles towards failure), while one 

indicates a failure (i.e., one cycle towards failure) [26]. 

 

Fatigue Data Editing 

 

The CWT can be described as a cumulative sum of the signal collected over time 

multiplied by a scale [27]. This is carried out for every reasonable scale, generates a lot 

of data and helps in determining the values of the continuous decomposition which 

helps in an accurate reconstruction of the signal [28]. The wavelet transform is initiated 

with a simple function, known as mother wavelet, and is scaled in a manner which 

displays the analyzed signal. The mother wavelet helps in removing the signal from the 

space to the scale domain for providing the local signal features. 

The Morlet wavelet is an advanced form of the mother wavelets involving the 

CWT [29], and is described in Eq. (5) [30,31]: 

 

 

2

2

04
1 2

1
t

t
ee

tfi 


  (5) 

 

where t is the time and f0 is the central frequency of the mother wavelet Ψ. The wavelet 

decomposition estimates the resemblance index, or the coefficient [32], which results 

due to the signal regression which is generated at various scales within the wavelet. The 

coefficient establishes a correlation between the analyzed part of a signal and the 

wavelet. Higher the coefficient, stronger is the resemblance, while a low coefficient 

indicates a weaker resemblance [28]. The wavelet coefficient WC of the CWT is 

described with the integral as in Eq. (6) [33]. 

 

   
 dtpqtFpWC

tqp  



j, 1  

(6) 

 



Husaini et al. / International Journal of Automotive and Mechanical Engineering 15(2) 2018 5251-5272 

5255 

 

where q is the time shifting, p is the scale index and Fj is the signal amplitude. The 

mother wavelet is square integral or, equivalently, has finite energy. Hence, a wavelet 

coefficient provides an energy distribution display for a specific time and frequency by 

squaring the coefficients at every time interval. The wavelet-based signal internal 

energy ē is described by Eq. (7) [34]. 

 

    dtWCe tqp

2

, 



  

(7) 

 

The energy was then utilized to identify the amplitude changing in a strain 

signal. A lower scale in the wavelet coefficient presents a higher frequency and has 

small strain amplitude, meaning this cycle has a lower energy, which is indicate a 

minimum or no potential for fatigue damage. A larger scale in the wavelet coefficient 

presents a lower frequency and higher strain amplitude, showing this cycle has a higher 

energy causing fatigue damage [35].  

Identification of the peak-valley could be utilized to slice a strain signal so that 

each fragment contains a number of certain peaks and valleys. This is especially useful 

for fatigue signals, since characteristics of the peak-valley are dominant in the rainflow 

method utilized for determining the number of cycles [3]. Thus, an algorithm was 

created to generate a new magnitude taking the points of peak and valley only by 

comparing the magnitude values. 

Moreover, the fatigue damaging fragments in a strain signal were extracted, 

depending on their high energy distribution, which resulted in the fragments that 

contributed towards fatigue damage. Energy gate value (EGV), an energy spectrum 

variable parameter, was applied for determining the minimal magnitude level which 

could be maintained in a wavelet domain. If the maximal wavelet-based energy is 

donated as ēmax, the EGV can be represented in Eq. (8). 

 
heEGV max  (8) 

 

where h is the multiplicative factor that can be any positive number. Energies that were 

higher than the EGV should be retained based on their positions on the time axis to 

generate fragments which were contributed to cumulative fatigue damage. Instead, all 

energies that were less than the EGV were eliminated. Since fragments which were 

consist of a low magnitude denote fragments with low fatigue damage, the fatigue 

characteristic extraction was predicted to be able to retain the majority of fatigue 

damage in the strain signal. 

Figure 2 presents the concept of fragment identification. The selection of a 

maintained fragment was based on energy loss, which occurs when the chosen fragment 

was at the beginning of the swing so that it ends. The starting point of the fragment was 

the valley point if the previous peak was higher than the peak after the valley point. 

Meanwhile, the endpoint of the fragment was assumed the valley point if the peak after 

the point was higher than the peak before the point. Thus, the identification of the 

extracted fragment was conducted by finding the inverse of two points (on each peak). 

Once all the extracted fragments were identified, the energy time history was then 

scraped to eliminate lower energy (less than the EGV) contained in the range of the 

initial time history. The positions of the extracted fragments were then transferred to the 

initial strain signal in the time domain for the elimination of fragments that were not 
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needed. The fragments to be eliminated were then sliced from the initial strain signal 

based on the position of the fragments. 




 

Figure 2. Concept of the fragment identification. 

 

To get the optimum EGV, the retained fragments were then attached with each 

other to produce a shorter strain signal, in comparison to the initial strain signal, but had 

equivalent behavior to the initial strain signal. A different EGV resulted in a differently 

modified strain signal. After increasing the EGV, a shorter strain signal was generated 

since more magnitude cycles were under the higher EGV. Therefore, resulting strain 

signal was shorter when more fragments were eliminated. However, the edited strain 

signal at a higher EGV gave real decline in retaining the initial characteristics of the 

strain signal. If the resulted modified strain signal did not meet the criteria, the EGV 

was decreased to obtain the required modified strain signal. After reducing the EGV, the 

characteristics of the modified strain signal increased and were even equal to the initial 

characteristics.  

 

Fatigue Feature Clustering 

 

Clustering is the classification of data into different groups. In other words, clustering 

maps a dataset into smaller clusters such that the data in all the clusters share several 

common characteristics according to the defined distance measure [36]. One of the keys 

in clustering is the function used to measure the similarity between two data being 

compared. These data could be in various forms, including raw values of equal or 

unequal lengths [37]. 

The method utilized for clustering in the current study was FCM [38], since it 

gives a good result based on the distance to the cluster centre, also known as the 

centroid of each data that is closer. The objective function J of the FCM is described by 

Eq. (9). 

 

  
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(9) 

 

where U is the Fuzzy c-partition, v is the vector of centres, n is the number of data, C is 

the number of clusters, ġ is the weighted exponent and wm is the positive-definite 

weight matrix. 

The FCM method can place the members of a group with the shortest distance to 

the centroid in a clustering. The centroid is the average of all the points in a cluster, 

where the coordinate is the average arithmetic for each separate dimension for all the 

points in a group. The other benefits of this method are its simplicity and speed in 

analyzing large datasets. This method began by determining the number of groups. 
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Furthermore, each fragment was classified into the nearest centroid [39]. So, the 

fragments in each group were as close as possible and as far as possible to the other 

fragments in the other groups [37]. This search was accomplished by repeatedly moving 

the centroid to various places. The process stopped when the nearest distance was 

obtained [39]. This means that during the process, the desired fragment distribution was 

being obtained, and centralized scattering was being provided for certain fragments. 

This method regards fragments as having a position and distance from each other. Since 

the clustering method is new in the fatigue field, the results of the current study are 

expected to provide new knowledge on the applicability of the FCM in fatigue research. 

 

Fatigue Test 

 

The reason to conduct variable amplitude loading (VAL) fatigue tests in the current 

study was to show the time reduced utilizing the edited strain signals. The VAL fatigue 

tests were conducted as it was impossible to assess the fatigue lives of the complex 

loadings using any hypothesis [40-43]. A VAL fatigue test is principally carried out like 

constant amplitude loading (CAL) fatigue test at different loading levels, with a given 

load being continuously repeated until failure is obtained. The only difference is that in 

cases of CAL, the amplitude (or range) remains unchanged. Thus, VAL fatigue tests are 

more complicated, and often, more time-consuming and expensive than CAL fatigue 

tests [44].  

All the fatigue testing samples were designed as per ASTM E606-92 [45], norms 

as described in Figure 3. The geometry and the dimensions of the samples and the 

appropriate grips used in the fatigue testing device have been specified. The samples 

were fabricated with the help of the computer numerical controls and grinding 

machines. Thereafter, they were mechanically polished [46] for ensuring the removal of 

the machining marks during testing. As the fatigue cracks develop on irregular road 

surfaces, the sample condition plays a vital role during the fatigue testing. It can 

decrease the stress concentration which further prevents the initiation of cracks at those 

specific sites. All the tests were conducted at a room temperature of 20 
o
C [45].  

 

 
 

Figure 3. Fatigue test (a) dimensions in mm and; (b) sample. 

 

The initial and edited strain signals have been converted into stresses with the 

help of the Ramberg-Osgood equation [47], described in Eq. (10). 

 

(b) 

(a) 
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 
'

' n
EKE    (10) 

 

where σ is the stress amplitude, K' is the cyclic strength coefficient and n' is the cyclic 

strain hardening exponent. Thereafter, the stresses have been converted into loads which 

were used as an input value in the fatigue testing device which help of the expression of 

Eq. (11).  

 

0AP  (11) 

 

where P is the applied force and A0 is the initial unloaded cross-sectional area. The 

reversed VAL fatigue tests were carried out, using a 100 Hz frequency value [16,48]. 

The researchers did not note any effect of a high frequency on the crack initiation 

[21,48]. The effect of the frequency value on the fatigue test result is generally low for 

frequencies up to 1,000 Hz [16]. 

 

RESULTS AND DISCUSSION 

 

Strain Signal Characteristics 

 

The strain signals generated by the strain gage were considered a VAL as the 

component experienced multiple amplitudes. 30-second long signals for each of the 

15,000 data points were recorded and described in Figure 4, and they were said to be 

sufficient for studying the fatigue-based strain signal behavior and evaluating fatigue 

life. The urban road gave the lowest amplitude range, which was between 57.6 µε and 

190.6 µε. A higher amplitude range could be found in the highway road, distributed 

between -47.4 µε and 96.6 µε. However, the rural road had the highest amplitude range, 

which was between -128.5 με and 182.3 με. The rural road gave higher amplitudes than 

other roads because its surface was rough. Differences of the amplitude range could be 

linked to the road surface profiles. 

As a structure consist of few loads at the single stress or strain levels, the fatigue 

damage can be estimated based on the number of cycles towards failure. Based on the 

results, the number of cycles for the highway, the urban and the rural strain signals was 

3,023, 3,020 and 2,993, respectively. Since the rural strain signal provided the highest 

strain amplitude contributing to the highest stress at the coil spring, the strain signal was 

found to have the highest fatigue damage, which was 7.79 x 10
-5

 and 9.01 x 10
-5

 damage 

per block for the Morrow and SWT models, respectively. The highway strain signal 

showed the fatigue damage of 3.97 x 10
-8

 and 8.77 x 10
-8

 damage per block, while the 

urban strain signal showed a fatigue damage of 1.72 x 10
-7

 and 5.67 x 10
-7

 damage per 

block. Findings showed that the rural road caused stronger vibrations to the coil spring 

because it has a rough surface; meanwhile, the highway and urban roads provided lower 

vibrations because the roads were smooth. Damage due to fatigue increases with the 

vibrations subjected to a component leading to fracture. 

Furthermore, since the rural road provided the highest fatigue damage, the strain 

signal also gave the shortest fatigue life, which was only 12,840 and 11,096 reversals of 

blocks for the Morrow and SWT models, respectively. The fatigue life for the highway 

strain signal was 25,184,000 and 11,400,000 reversals of blocks, and the fatigue life for 

the urban strain signal was 5,828,000 and 1,764,400 reversals of blocks. It indicated that 

the rural road also gave the shortest useful life compared to the highway and urban 
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roads, since the road had a rough surface. Some of the non-stationary vibrations include 

bumps, holes, turns, speed changes, accelerations, brakes and uneven tar patch on the 

road. These factors lead to high strains and cause high fatigue damage. 

 

 
 

Figure 4. Time history strain signals from (a) highway, (b) urban, (c) rural. 

 

Modified Strain Signals 

 

The strain signals were extracted for obtaining the damaging fragments, with the help of 

the wavelet-based FDE method. In the wavelet coefficients shown in Figure 5, the 

matrix row (x-axis) presents the time parameter, while the matrix column (y-axis) 

presents the scale parameter, which is inversely related to the frequency. The wavelet 

coefficients show how the energy of the strain signals was divided in the time-frequency 

domain [35]. The energy contained in a particular scale and position was denoted as a 

wavelet energy density function. The energy spectrum was plotted and the content gave 

important information about the pattern of the random strain signals. In Figure 6, the 

surface of the scalogram provides the position of the dominant energy. Comparing 

Figure 6, the rural strain signal provided higher amplitude. This was in line with the 

strain amplitudes in Figure 4, since energy fed to a strain signal usually originates from 

strain amplitude variations. 
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Figure 5. Wavelet coefficients of (a) highway, (b) urban and; (c) rural. 

 

 
 

Figure 6. Energy distributions in (a) highway, (b) urban and; (c) rural. 

 

Equation (8) was used for detecting the position of the high amplitudes in the 

strain signals based on their magnitude spectra. This helped identify the high fatigue 

damaging sections in the strain signals and extracted them to generate damaging and 
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non-damaging fragments. A cutting level parameter, i.e., EGV was applied for 

extracting the fatigue features. For the highway strain signal, the EGVs used were 128 

µε
2
/Hz, 135 µε

2
/Hz and 142 µε

2
/Hz. Furthermore, the urban strain signal was extracted 

at 20 με
2
/Hz, 32 με

2
/Hz and 42 με

2
/Hz. The last one, 2,404 µε

2
/Hz, 2,458 µε

2
/Hz and 

2,513 µε
2
/Hz of EGVs were applied to the rural strain signal. The EGVs were selected 

as a majority of the energy values were lower than the EGVs. The energy values higher 

than the EGV were kept, whereas the energy values lesser than the EGV magnitudes 

were eliminated from the strain signals. Low energy fragments were considered as non-

damaging, and their removal did not alter the damage relevance or the primary strain 

signal properties. After extracting all the strain signals, the high-energy retained 

fragments were obtained, as shown in Figures 7-9. 

Furthermore, depending on the time positions of the retained high energy 

fragments and referring to the strain signals in Figure 4, maintained fragments were 

obtained. The retained fragments were damaging fragments because they had slightly 

more energies than the EGV. Meanwhile, the eliminated fragments were non-damaging 

fragments since the energy of the fragments was lower than the EGV. As the FDE 

method extracted the time series using the energy contents, non-uniform fragments were 

obtained, as described in Figures 10-12. 

It was important to maintain the primary characteristics in the FDE method for 

ensuring that the modified strain signals and the primary strain signals were similar. 

Hence, the effect of the extraction at one EGV needs to be taken into consideration. 

This helps in certifying that the fragments that were retained fulfilled the FDE criterion 

of maintaining 90 % fatigue damage [6,7]. Thus, the retained fragments were reattached 

to yield a single strain signal for validating if the extraction process was performed 

satisfactorily. Figures 13-15 show the differences in the length of the modified strain 

signals at various EGVs. 

 

 
Figure 7. Maintained higher energy of the highway strain signal at (a) 128 µε

2
/Hz, (b) 

135 µε
2
/Hz, (c) 142 µε

2
/Hz. 
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


Figure 8. Maintained higher energy of the urban strain signal at (a) 20 με
2
/Hz, (b) 32 

με
2
/Hz, (c) 42 με

2
/Hz. 

 

 
 

Figure 9. Maintained higher energy of the rural strain signal at (a) 2,404 µε
2
/Hz, (b) 

2,458 µε
2
/Hz, (c) 2,513 µε

2
/Hz.
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Figure 10. Maintained fragments of the highway strain signal at (a) 128 µε
2
/Hz, (b) 135 

µε
2
/Hz, (c) 142 µε

2
/Hz. 

 

 
 

Figure 11. Maintained fragments of the urban strain signal at (a) 20 με
2
/Hz, (b) 32 

με
2
/Hz, (c) 42 με

2
/Hz. 

 

(a) 

0 10 20 30
-200

0

200

Time (s)

S
tr

ai
n

 (
µ

e)

(c) 

0 10 20 30
-200

0

200

Time (s)

S
tr

ai
n

 (
µ

e)

(b) 

0 10 20 30
-200

0

200

Time (s)

S
tr

ai
n

 (
µ

e)

(a) 

0 10 20 30
-200

0

200

Time (s)

S
tr

ai
n

 (
µ

e)

(b) 

0 10 20 30
-200

0

200

Time (s)

S
tr

ai
n

 (
µ

e)

(c) 

0 10 20 30
-200

0

200

Time (s)

S
tr

ai
n

 (
µ

e)



Fatigue Feature Clustering of Modified Automotive Strain Signals for Saving Testing Time 

5264 

 

 
 

Figure 12. Maintained fragments of the rural strain signal at (a) 2,404 µε
2
/Hz, (b) 2,458 

µε
2
/Hz, (c) 2,513 µε

2
/Hz. 

 

 
 

Figure 13. Modification of the highway strain signal at (a) 128 µε
2
/Hz, (b) 135 µε

2
/Hz, 

(c) 142 µε
2
/Hz. 
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Figure 14. Modification of the urban strain signal at (a) 20 με
2
/Hz, (b) 32 με

2
/Hz, (c) 42 

με
2
/Hz. 

 

 
 

Figure 15. Modification of the rural strain signal at (a) 2,404 µε
2
/Hz, (b) 2,458 µε

2
/Hz, 

(c) 2,513 µε
2
/Hz. 
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For the highway strain signal, the number of cycles decreased by 81.5 %, 83 % 

and 83.4 % for the first (128 µε
2
/Hz), second (135 µε

2
/H) and third (142 µε

2
/Hz) 

extractions, respectively. There was no decrease in terms of the number of fatigue 

cycles for the first (20 με
2
/Hz) extraction of the urban strain signal. However, a decrease 

of 3 % and 33.4 % was resulted for the second (32 με
2
/Hz) and third (42 με

2
/Hz) 

extractions. For the rural strain signal, the first (2,404 µε
2
/Hz), second (2,458 µε

2
/Hz) 

and third (2,513 µε
2
/Hz) extractions gave a decrease of 70.9 %, 71.1 % and 72 %. These 

declines indicated that the FDE process was able to remove all the strain amplitude 

ranges under the EGVs in the time-series signals. Thus, the signal length of the highway 

strain signal decreased by 81.5 %, 83.1 % and 83.5 % for the first, second and third 

extractions. For the urban strain signal, there was no decrease in the length of the signal 

for the first extraction. However, there were decreases of 2.9 % and 33.3 % for the 

second and third extractions, respectively. For the rural strain signal, a decrease of 70.5 

%, 70.6 % and 71.6 % was resulted for the first, second and third extractions. The 

decrease in the signal lengths was caused by the decrease of the number of cycles. 

In terms of the fatigue damage, the Morrow model did not give any deviation in 

the fatigue damage for all the EGVs for the highway strain signal. The fatigue damage 

decrease of 9.6 % was resulted for the SWT model for the first extraction. However, a 

decrease of 10.2 % was produced for the second and third extractions. Since the EGVs 

of 135 με
2
/Hz and 142 με

2
/Hz could not give an eligible mission strain signal, therefore, 

the EGV was decreased out of necessity. Thus, based on the results, 128 με
2
/Hz was 

selected as the optimum EGV, giving a 5.5-second mission strain signal. This short 

strain signal gave an 81.5 % reduction in length as a result of the removal of the lower 

energy amplitude. The number of cycles counted for the mission strain signal was 560 

cycles, which was 81.5 % less than the number of initial cycles. The decreasing number 

of cycles affected the cumulative fatigue damage. The fatigue damage for the SWT 

model was 7.93 x 10
-8 

damage per block, which gave a reduction rate of 9.6 % 

compared to the initial fatigue damage. The reduction in the fatigue damage indicated 

that this EGV did not change the strain signal behavior since the reduction was in the 

required range at ± 10 % of the difference. 

A similar condition could also be seen in the urban strain signal, where the 

Morrow model did not give any deviation in the fatigue damage for all the EGVs. A 0 

% deviation in the fatigue damage was also given by the SWT model for the first 

extraction. Decreases of 1 % and 11.7 % resulted for the second and third extractions. 

An EGV of 32 με
2
/Hz was found to be the optimum EGV, containing at least 99 % of 

the initial fatigue damage in the 29.1-second mission strain signal. An EGV of 32 

με
2
/Hz was considered to be the optimum because at a higher EGV (42 με

2
/Hz), the 

changes in fatigue damage reached more than 10 %, to the detriment of the initial 

properties of the strain signal.  

For the rural strain signal, decreases were 8.3 % and 8.9 % for the Morrow and 

SWT models for the first extraction. The decreases became 8.4 % and 9 % for the 

second extraction. For the third extraction, however, the decreases became 10.3 % and 

11 %. At an EGV of 2,404 με
2
/Hz, the 8.9-second edited strain signal of the rural strain 

signal experienced a decrease of fatigue damage by 8.3 % and 8.9 % for the Morrow 

and SWT models, respectively. However, the optimum EGV was 2,458 με
2
/Hz. With 

the optimum EGV, a rural strain signal of 30 seconds was shortened by 70.6 % with the 

fatigue damage retained was 8.4 % and 9 %. This indicated that the extraction process 

retained the fatigue damage of at least 91 %. Quantitatively, the difference of fatigue 

damage was in the required level: 10 % difference. The counted number of cycles was 
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reduced from 2,993 cycles until failure in the initial strain signal to 866 cycles until 

failure in the mission strain signal. For an EGV of 2,513 με
2
/Hz, the wavelet-based 

extraction resulted in an 8.5-second edited strain signal, which was 71.6 % shorter than 

the initial strain signal. Unfortunately, the fatigue damage of the mission strain signal 

changed by 10.3 % and 11 %. Since the fatigue damage given by the mission strain 

signal was reduced by more than 10 %, the EGV could not be used as the parameter 

since it changed the initial strain signal behavior. 

Changes of signal length, number of cycles and fatigue damage show that the 

third extraction provided the highest changes, followed by the second and first 

extractions, respectively. It was due to the third extraction that the EGV applied was 

higher, and thus, more energy amplitudes were removed. As a result, the edited strain 

signals were shorter, and had a lower fatigue damage. Overall, the FDE technique was 

able to identify fragments having higher fatigue damage and removed non-damaging 

fragments with magnitudes less than the EGV based on their positions on the time axis 

in the initial strain signals to improve their fatigue life. According to the findings, the 

FDE technique effectively summarized the strain signals by up to more than 81.5 % 

with less than 10 % difference with respect to the fatigue damage to ascertain that the 

extractions did not significantly affect the initial behavior. 

 

Clustering Fragments 

 

A relationship pattern between the initial and edited strain signals could be identified 

using the clustering method. In addition, the clustering also aimed to ensure that higher 

amplitude fragments could be detected and extracted from the initial strain signals, and 

at the same time maintained fatigue damage. For this purpose, the required data were 

fragments drawn from the fatigue feature extraction. The extracted features were 

clustered in order to analyze the fragment behavior based on related findings. The 

clustering provided a base for strain signal scattering, enabling the observation of the 

strain signal behavior. 

In Figure 16, the fragments were clustered based on energy and fatigue damage, 

in which both the parameters were accurately correlated. The coefficients of 

determination of 0.8147 and 0.831 were obtained for the Morrow and SWT models, 

respectively, for the highway strain signal. For the urban strain signal, the coefficients 

of determination were 0.8047 and 0.7643. The rural strain signal gave the highest 

coefficients of determination, which were 0.8134 and 0.9036, indicating a very good 

correlation. The clustering plot was produced based on the proportional relationships 

between the fatigue damage and its corresponding energy. The pattern indicated that the 

fatigue damage was generally translated into energy. Fragments with higher energy 

levels presented greater fatigue damage, while fragments with lower energy levels 

presented less fatigue damage. With the loss of energy, the fatigue damage decreased. 

This meant that the clustering graph, in fact, reflected the hypothesized correlation. 

Energy can be used as a reference for determining fatigue damage because it produces 

data scattering that contains certain data, as expected. Introducing the extraction and the 

clustering of fatigue features, fatigue life assessments can be more accurate because 

each fragment only contained one peak in overall. 
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Figure 16. Fatigue feature clustering based on the wavelet energy and the fatigue 

damage. 

 

Fatigue Life 

 

In the case of subsequent validation process, the fatigue lives of the initial and the 

edited strain signals were experimentally estimated. The fatigue life increased in all the 

edited strain signals since the lower strain amplitudes that were eliminated in the 

extraction process actually contributed to minimum fatigue damage. When the 

minimum fatigue damage in the initial strain signals was removed, it provided 

additional lives for the edited strain signals before failure. The maximum increase was 

3.6 %. The life, however, was not significantly different, which was below 10 %, 

showing the suitability of the FDE algorithm. 

Though the edited strain signals resulted in a high fatigue life in comparison to 

the primary strain signals, a short fatigue testing time was obtained as a majority of the 

low amplitude fragments were eliminated. Testing time, however, is not necessarily 

proportional to strain amplitudes, since in a full-scale test small amplitudes usually have 

a shorter period (higher frequency) than large amplitudes. The primary strain signal of 

the highway road needed at least 2,840 reversals of blocks until failure in a time period 

of more than 7,100 minutes. After extraction, the strain signal length decreased up to 

81.5 % with 2,861 reversals of blocks, without any significant effect on the fatigue 

damage content. This resulted in a 81.4 % decreased in the time needed for the fatigue 

test, i.e., 1,320 minutes. 

The urban and rural roads showed similar conditions. The time required for 

performing the fatigue test for the initial urban strain signal was 1,055 minutes, with 

422 reversals of blocks. The time was reduced by 2 % using the 29.1-second edited 

urban strain signal with 426 reversals of blocks. The rural strain signal gave the shortest 

testing time since it had the highest strain amplitudes. Only less than 138 minutes were 

required to conduct the fatigue tests utilizing the initial rural strain signal, with 55 

reversals of blocks. The time could be reduced by 69.5 % or only less than 42 minutes 

using the 8.8-second edited rural strain signal, involving 57 reversals of blocks.  

There are requirements that should be considered when generating a new fatigue 

random load history, such as [3]: (1) sequence of load cycles should be maintained, (2) 

damage resulting from the new load history should be the same as the original load 
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history, and (3) the new load history should be shorter in length than the original load 

history to decrease the testing time, by deleting small load cycles and merging smaller 

ones. Considering the requirements, the simulated strain signals were able to maintain 

the original cycle sequences, the actual and simulated strain signals had equivalent 

fatigue damage, and the simulated strain signals decreased the fatigue testing time. 

Laboratory experiments involving the acceleration of the durability testing were 

performed to clarify that although the fatigue tests took a shorter time than the initial 

strain signals, they had a similar potential for fatigue damage. The required testing time 

became shorter due to the use of a shorter strain signal.  

 

CONCLUSION 

 

This work discusses on the FDE technique validation using a clustering method. Based 

on the results, the FDE technique effectively shorten the strain signals by more than 81 

% with less than 10 % difference with respect to the fatigue damage to make sure that 

the technique did not significantly affect the initial behavior. Based on the clustering of 

the wavelet energy and the fatigue damage using the FCM, both the parameters were 

accurately correlated with the coefficient of determination up to 0.9036. Utilizing the 

edited strain signals, the fatigue testing time could be reduced up to 81.4 %. Without 

editing the service load before performing a fatigue test, the testing time and cost can 

become prohibitive. Thus, this method is suggested as an alternative technique in 

fatigue durability studies, especially in the field of automotive engineering. 
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