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ABSTRACT 

 

The approach for determining the residual life of the vehicles’ thin-walled metal elements 

with cracks under the action of cyclic loads and corrosive environment is developed based 

on the first law of thermodynamics and the fracture mechanics principles. Based on the 

results of the mathematical description of electrochemical reactions and separate data of 

fracture mechanics, the equation describing the kinetics of the corrosion-fatigue cracks 

propagation is deduced. This equation and the initial and final conditions are a mathemat-

ical model for determining the residual life of structural elements. The correctness of the 

developed analytical models is confirmed by the experimental data known in the litera-

ture. The performance of this model is demonstrated on the example of determining the 

residual life of a plate made of 17G1S steel. The plate was diluted by a crack in a 3% 

NaCl solution and subjected to cyclic loading. An increase in the initial size of corrosion-

fatigue cracks is significant to reduce the period of their subcritical growth. 

 

Keywords: Residual life; corrosive environment; stress intensity factor; thin-walled ele-

ments; corrosion-fatigue cracks. 

 

INTRODUCTION 

 

Nowadays, up to 65% of the mechanisms of transport means elements are known to get 

out of order under the influence of aggressive (corrosive) environment and mechanical 

stresses; up to 25% of these mechanisms are broken down due to the overloads caused by 

strength losses because of corrosion damages [1-5, 6-14]. According to the data on agrar-

ian production development in Ukraine, the growth of the transportation volumes of 

chemical and mineral fertilizers [15] is about 2% of all cargoes. To maintain the tendency, 

it is rational to take into account the influence of these overaggressive environments on 

the vehicles’ metal materials [16-18]. The performance of 47 semitrailers ММЗ -771, 15 

semitrailers ММЗ -771Б, 13 trailers ММЗ-768, 7 trailers ММЗ -768Б were studies during 

the period of one calendar year. The mentioned vehicles were engaged in the transporta-

tion of mineral and organic fertilizers. The mean time between failures of the main ele-

ments of the specified trailers is found to be from 0 to 4000 hours. The insufficient service 

life of thin-walled metal structures of the undercarriages and suspensions is ascertained.  

The percentage of failures ranges from 50% to 80% [1- 3]. The most characteristic 

failures of the undercarriages are the cracks in frames, spar and cross bars [1-3]. The 

analysis of the reasons due to which steel structures enter the failure state became it pos-

sible to draw a conclusion on the causal complex of events that lead to failure. In general, 

the steel structure failures are caused by the defects of manufacturing (stage of 
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production), as well as the errors in the designs (stage of designing). The total percentage 

of failures caused by the inadequate level of design and production quality can reach 60% 

[5, 15, 19-21]. The cause analysis of fragile fracture of welded metal structures explains 

the influence of individual factors in terms of the frequency of their occurrence in emer-

gency states. In total, the number of factors associated with the stresses concentration and 

cracks propagation reaches up to 50% [5, 15, 19-20]. The impact of aggressive environ-

ment greatly reduces the lifetime of structural elements [6, 9, 10]. The pitting and / or 

ulcers occur in the locations of damage to the surfaces of metal structures. The corrosive 

fatigue cracks arise up to critical dimensions, limiting the vehicle’s reliability [1, 6, 8, 9, 

10]. When accelerating the development of cracks [1, 8], the aggressive environments 

cause a significant reduction in the durability of machine elements.  

To calculate the durability of thin-walled vehicle elements, it is necessary to con-

sider the influence of aggressive working environment on the corrosion-fatigue destruc-

tion [1, 7, 9, 10, 11]. Delayed spontaneous fracture of structural elements under the action 

of variable in time (cyclic) loads and corrosive-aggressive environments is relatively con-

tinuous but dangerous process because of the low degree of its predictability and diagno-

sis. Corrosive environments increase the failure probability of metal materials [1-5] dur-

ing cyclic loading and cause the propagation of corrosion-fatigue cracks. To determine 

the service life of vehicles constructions elements under the influence of cyclic loads and 

corrosive environments, the appropriate analytical models should be applied. Most of the 

known [4-5, 15, 19-32] mathematical models are based on the analysis of exclusively 

specific experimental data. Therefore, based on such theories, the service life of only cer-

tain elements of structures made of the same materials can be defined. 

 

MATERIALS AND METHODS 

 

Let us consider an element of metal construction of a vehicle - a plate located in a corro-

sive environment, weakened by an initial rectilinear crack of length 2l0. The crack is 

stretched by evenly distributed forces 𝑝, directed perpendicularly to the line of the crack 

location. The forces are changed cyclically in time (loading the plate with a crack in the 

Griffiths problem, Figure 1). The number of load cycles𝑁 = 𝑁∗ should be determined. 

After reaching this number, the corrosion-fatigue crack acquires a critical value and the 

thin-walled element breaks down. 

 

 
 

Figure 1. Classical load diagram of the plate with a crack. 

 

To solve this problem, it is necessary to design an analytical model for determin-

ing the kinetics of corrosion-fatigue crack propagation and to deduce a differential equa-

tion describing the process. The assumption: the stress-strain state in the plate is 
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symmetrical to the location line of the crack that extends along the line of location. Sim-

ilarly [24-26, 29-32], to develop the kinetic equation for the corrosion-fatigue crack prop-

agation, an energy approach based on the first law of thermodynamics is applied for the 

case of elemental propagation of the crack by the value Δlc in time Δt. 

 

A=W+Г+Q+K (1) 

 

here A – work of external forces; W – energy of body deformation after the crack is in-

creased by the value Δlc 

 

W=Ws+Wp
(1)(l)+Wp

(2)(t)-Wp
(3)(t) (2) 

 

where Ws – elastic component W; Wp
(1)(l) – part of the work of plastic deformations in 

the pre-fracture area, which depends exclusively on the length of the crack l; Wp
(2)

(t) –

part of the work of plastic deformations caused by external forces, which is performed at 

a constant crack area during the incubation period of its leap preparation Δlc, and depends 

only on the time t (the number of load cycles N=tT-1, T - the cycle period);Wp
(3)(t) – work 

of plastic deformations during body unloading and compression of the pre-fracture zone, 

which depends exclusively on t and is generated by the body itself; Г – body destruction 

energy depending on l, the characteristics of the environment, and t; Q – thermal energy 

released during the fracture of the body, the energy is considered relatively small and is 

neglected in calculations; K – kinetic energy, which in this case is also a small value.  

According to [7, 10, 13], the length of the elemental jump of the crack Δlc is the 

sum of the mechanical jump lm caused by mechanical loading and flooding during elec-

trochemical corrosion and elemental crack propagation la due to the anode dissolution. 

 

Δlc=lm+la. (3) 

 

Applying [10, 13, 14, 15, 21-24] 

 

lm=β(δt-ξ),la=Fm-1n-1 ∫ i(t)dt

Δt

0

 (4) 

 

where F - Faraday number; m - gram-equivalent weight of metal; n - valence of metal; 

ξ, β, A - experimentally determined constants [19, 21]. 

Since the condition of the energy balance (1) is satisfied, the condition of the velocities 

balance of the energies components changes is satisfied as well; in time analogy of the 

load cycles number, N, this condition can be written as Eq. (5) 

 

∂A ∂N⁄ = ∂W ∂N+ ∂Г ∂N⁄⁄  (5) 

 

Substituting (2) in (5), the specified condition is written 

 

∂

∂l
[Γ-(A-Ws-Wp

(1)
-Wp

(2))]
dl

dN
+

∂Γ

∂N
-
∂Wp

(3)

∂N
=0. (6) 

 

Based on Eq. (6), the rate value of crack propagation V= ∂l ∂N⁄  
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dl

dN
=[

∂Wp
(3)

∂N
-

∂Γ

∂N
]

∂

∂l
[Γ-(A-Ws-Wp

(1))]⁄ . (7) 

 

Based on the results [19, 25-29], the expression in square brackets on the right-side Eq. 

(7) will be written 

 

∂[Γ-(A-Ws-Wp
(1)

-Wp
(2))] ∂l⁄ =γ

C
-γ

t
 (8) 

 

where [21, 25-26] Γ=ΔlCσ0δCC; Γ=ΔlCσ0δCC - specific work of plastic deformations in 

the pre-fracture zone near the top of the crack, γ
C

=δCCσ0- critical value of specific 

work,δCC=δC-ACH(Δt). Substituting Eq. (8) in Eq. (7), the following formula is deduced 

 

dl dN⁄ =[ ∂Wp
(3) ∂N⁄ - ∂Γ ∂N⁄ ] σ0(δCC-δt)⁄ . (9) 

 

Based on [12-15, 19-20] and relations from Eq. (3) and Eq. (4), the values 

∂Wp
(3) ∂N, ∂Γ ∂N⁄⁄  are determined. 

 
4

max2

2(min)(max)2

minmax0

)3( 25,0,])()[( TiABNW sccsccttp =−−−= , 

)]()[()( 11

0

(max)

max02 TACTimFTnTN HCscct −+−−= −−
 

(10) 

 

where 
(min)(max)

minmax ,,, sccscctt   - respectively, the maximum and minimum values of the 

opening at the top of the crack during the load change per cycle [21, 24-29]. Equation 

(9) is written down based on Eq. (10). 

 
1

max

(max)

max2

2(min)(max)2

minmax ))}((])()[({ −−−+−−−= tCCscctsccsccttdNdl  (11) 

 

The case of a macroscopic crack is considered when the following relations are valid [19, 

24-26] 

 

δt(l)δCC
-1

=KI
2(l)KIC

-2 ,  δscc=Kscc
2 σ0

-1E-1, δt(l)=KI
2(l)σ0

-1E-1 (12) 

 

For this case, Eq. (11) is written 

 
12

max

22

max

2

max2

4

max

4

max

4

1 ))}(()()1({ −−−+−−= IfCsccIsccI KKKKKKRdNdl ,

1
0

1
1 25,0 −−=  E  

(13) 

 

where KImax is the the maximum value of the stress intensity factor (CIF) per cycle; 

KfC,Ksccmax are the upper and lower thresholds of CIF on the kinetic diagrams of the fa-

tigue and corrosion-mechanical cracks propagation respectively, R= KImin KImax⁄  is the  

asymmetry coefficient of a load cycle [19, 24-27]. To complete the mathematical model, 

the following initial and final conditions are added to Eq. (13). 

 

N=0,l(0)=l0; N=N*,l(N*)=l*; KI(l*)=KIC.  (14) 
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RESULTS AND DISCUSSION 

 

The research results of 17G1S steel (Figure 2) [27, 30], studied in air and in 3% solu-

tion NaCl, were compared with Eq. (13). As a result, in order to describe the kinetic dia-

gram of the fatigue crack growth in 17G1S steel in air, the following formula is deduced 

 
12

max

4

max

9 )12996()81(1012 −− −− II KKdNdl  

 

(15) 

12

max

2

max

6 )12996()25(105 −− −− II KKdNdl  (16) 

 

 
 

Figure 2. Kinetic diagram of 17G1S steel fatigue failure in air (∆) and in 3% solution 

NaCl Eкор, at a frequency of 1 Hz (▲) and R = 0.1 [27, 30]. 

 

Similarly, for the 3% solution NaCl Eкор, to depict the kinetic diagram of the cor-

rosion-fatigue crack propagation in 17G1S steel, the following equation is obtained  

 
12

max

2

max

6 )12996()25(105 −− −− II KKdNdl  (17) 

 

Pre-threshold Propagation of a Corrosion-Fatigue Crack.  

 

In the threshold site of the kinetic diagram of the corrosion-fatigue crack propagation (

sccIfC KKK → ), the anode processes are more active as compared with mechanical de-

struction, that is la≥lm. Then, for this site, the corrosion-fatigue crack will propagate at 

the same velocity mainly. The kinetic diagram of the velocity of corrosion-fatigue crack 

growth (VCFCG) will have a plateau [19, 25-26, 30], see Figure 3 [27, 30]. This is ex-

plained by the fact [19, 24-29] that, due to the large time intervals Δt of the incubation 

period of preparing an elemental jump of a crack, its peak grows blunt with the growth of 

CIF KI, the concentration of stress decreases and, accordingly, V stabilizes. In these sec-

tions of VCFCG diagrams (with an error to increase the durability reserve), we can as-

sume that (the model part of the diagram in Figure 3 is represented by a dashed line) the 

corrosion-mechanical crack increases with the same speed Vc to the intersection with the 
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diagram of fatigue crack propagation at the coefficient value intensity of stress

IiI KK =max . Thus, the VCFCG kinetic diagram is described by the relations: 

 

on the site cIiIscc VVKKK = ,max ; 

on the site fCIIi KKK  max ,

12

max

24

max

4

max

4

1 ))(()1( −−−−= IfCsccI KKKKRdNdl  

(18) 

 

These ratios are applied to determine the residual life of thin-walled elements of vehicle 

structures (the period of sub-critical growth of corrosion-fatigue crack) under cyclic loads 

and corrosive influences. 

 

Determination of the Period of Subcritical Growth of a Corrosion-Fatigue Crack. 

 

The infinite plate is weakened by a rectilinear crack of the initial length 2l0. It is cyclically 

loaded with tensile forces in distant points by continuous amplitude p efforts, which are 

perpendicular to the line of the crack location. When corrosive aggressive environment 

enters a crack cavity, the growth of the corrosion-fatigue crack is described by the Eq. 

(18) and the data in Figure 3. The challenge is to determine the number of load cycles of 

an element - a plate of thin-walled metal construction of a vehicle N=N*. Achieving this 

number, a crack gains its critical size l(N*)=l* and the knot breaks down. To solve this 

problem, the following mathematical model in Eq. (19) is written; 

 

;, max IiIsccc KKKVV =  

12

max

24

max

4

max

4

1 ))(()1( −−−−= IfCsccI KKKKRdNdl , fCIIi KKK  max ; 

fCI KlKlNlNNllN =====  )(,)(,;)0(,0 0  

(19) 

 

For the given power scheme, the intensity of the stresses is determined by [5]: 

 

KI=p√πl (20) 

 

For example, if a thin-walled element (plate) is made of 17G1S steel, the loading 

value p=200 MPa in the of 3% NaCl solution with a flood potential Е=-2В and R = 0.5 

(Figure 3), the ratios (18) are recorded. 

 

dl dN=10
-6

,12⁄ <KI<64 ;
dl

dN
=

45⋅10
-11

(KImax
4

12996-KImax
2 ,64<KI<114.

 

 

(21) 
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Figure 3. Kinetic diagram of 17G1S steel fatigue failure in air (○) and in 3% solution 

NaCl Е=-2В (□) at R=0.5 [27, 30]; dotted line - a model representation of the corrosive 

part of the diagram. 

 

N=0, l(0)=l0; N=N*, l(N*)=l*, KI(l*)=114 MPa1 2⁄ . To determine the residual life N=N* 

of a vehicle (plate) element, the ratio (21) is integrated with the given initial and final 

conditions. The resulting formula is;  

 

N*=N1+N2,N1=10
6(l1-l0), 

N2=2⋅10
9 ∫ (158⋅10

8
l
2
-20736)

-1
(12996-13⋅10

4
l)dl

l*

l1

 

(22) 

 

The values l1, l*  in (22) are deduced from equations KI(l*)=KfC ,KI(l1)=KIi. The resulting 

formulas are l*=0.103м,l1=0.033м. Substituting in Eq. (22), we obtain; 

 

N*=(33⋅10
3
-10

6
l0+15510) (0,001<l0≤0,033) 

N*=1650(l0
-1

+10 ln l0 +13,3)(0,033≤l0<0,103) 

(23) 

 

Based on (23), the graphical dependence of the residual life N=N* of a thin-walled 

element (a plate) on the initial size of a crack (curve 1) is developed in Figure 4. The case 

of corrosive environment absence under the equivalent force load of a thin-walled ele-

ment (curve 2), the dependence 𝑁∗~𝑙0 is developed as well. Thus, from Figure 4, a de-

crease in a service life under the effect of corrosive environment is observed during a 

crack growth from 0.001 m to 0.033 m (𝑙𝑡ℎ < 𝑙 < 𝑙1). Then, the propagation of exclu-

sively fatigue cracks occurs. This process is explained by the fact that at 𝑙 > 𝑙1, a velocity 

of crack propagation is large and the delayed corrosion processes do not have time to be 

realised. 
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Figure 4. Dependence of residual life 𝑁∗ on the initial crack length l0: curve 1 – consid-

ering the environment, curve 2 - without considering the corrosion environment. 

 

CONCLUSION 

 

The analytical model of the description of delayed fracture for determining the residual 

life of thin-walled elements of vehicles metal structures under the action of cyclic loads 

and corrosive aggressive environments is substantiated. Based on the obtained solutions, 

the residual life of a steel plate (doped 17G1S steel) with a crack under the action of long-

term cyclic tension loads in a 3% NaCl solution is defined. The increase of the initial size 

of the rectilinear crack is proved to reduce significantly the residual durability of the 

structural element. The correctness of the developed mathematical model for determining 

the residual life of structural elements is confirmed by the experimental data known in 

the literature. 
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