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ABSTRACT  

 

Today’s design of machine rotor requires the rotor to operate at a high rotational speed to 

improve the efficiency of the machine. However, the existence of disturbances such as 

periodic axial load may cause parametric resonance to the rotor system in addition to the 

common force resonance. Previous studies on this parametric resonance of shaft typically 

included the element of translational and rotary inertia, gyroscopic moments and bending 

and shear deformation but surprisingly neglected the effect of the axial torque. This paper 

investigated the parametric instability behaviour of the shaft rotating at high speed while 

considering the torsional effect of the shaft. Based on the finite element method, a shaft 

model that includes torsional deformation as one of its degree of freedom was established. 

The Mathieu-Hill equation was derived, and then the Bolotin’s method was used to solve 

the equation by establishing the parametric instability chart. Two types of the rotary 

system were studied: a shaft with different boundary conditions and shaft with different 

bearing types. The results were initially validated with past findings. Following that the 

results were compared to the results correspond to the Timoshenko’s beam formulation 

that omits the torsional degree of freedom. The effect of axial torsional deformation was 

found to be very significant especially at high speed. The developed model in this study 

shows that at the shaft speed of 40000 rpm, the effect of torsional deformation has given 

the difference of more than 100% in the frequency ratios correspond to the 4DOF and 

5DOF models for the case of fix-free boundary condition. 

 

Keywords: Parametric instability; torsional effect; Mathieu-Hill equation; Bolotin’s 

method; Strut-Ince diagram.  

 

INTRODUCTION  

 

Parametric resonance or parametric instability of shaft is an important type of dynamic 

failure that has been the subject of intensive research especially in the area of automotive, 

aerospace and mechanical engineering in general [1–4]. Compared to whirling resonance 

in shaft [5] that occurs when the natural frequency of the shaft is equal to the rotating 

speed, parametric resonance occurrence is due to modification of the system parameters 

such as inertia and stiffness in time-varying manner. The periodic modification of 

stiffness, for example, can be due to the existence of geometric asymmetry of shaft [6], 

anisotropic bearing support [7], crack propagation [8] and periodic axial compressive load 

[9]. As in the force resonance, parametric instability can cause catastrophic failure to the 

rotor system for a small parametric excitation. Chen and Ku [10] developed finite element 
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formulation to identify parametric instability of simple rotating shaft while including the 

gyroscopic and transverse shear effect. Using the Bolotin’s method, the regions of 

dynamic instability were found to be shifted out while the instability sizes were increased 

as the rotational speed of the shaft increased. Later, a similar effect of increasing 

instability with increasing speed was found by Ku and Chen [11] in their study on the 

parametric instability of Timoshenko shaft-disc system while considering the effects of 

translational and rotary inertia, gyroscopic moments and bending and shear deformation. 

On the other hand, using a different method by analysing the intersections between the 

operation line of the shaft and the branches of the Mathieu eigenvalues in the Mathieu 

map (a,q), Raffa and Vatta [12] successfully determined the instability chart analytically 

while assuming the shaft as the Euler-Bernoulli and Raleigh beams. a and q are non-

dimensionalised terms that group the kth natural frequency, kth critical load of the beam 

and respectively, the static and dynamic components of the axial load. Chen [13] however 

contradicts the above finding [10]  and [11] and others [14–17] where using Floquet’s 

method instead of the Bolotin’s method, the finding was the obtained instability of a rotor 

system may not be increased as the rotational speed of the shaft is increased. In their 

research, Chen and Chen [9] studied the effects of locally distributed Kelvin-Voight 

damping on the parametric instability of Timoshenko beams. They found that the effect 

of damping especially the one that is located near to the fixed end of the beam is to make 

the beam more stable. The shear deformation was neglected as the transfer matrix method 

was applied by Yim and Yim [18]  to show that disk location plays an important role on 

dynamic instability of a rotor-bearing system under axial load. The closer the location of 

the disk to the support, the more the decrease of critical axial force. 

All of the mentioned studies, however, do not emphasize on the high-speed shaft 

systems. The rotating equipment that operates at high speed may cause the machine to 

have high overall efficiency [19]. Despite this, previous studies only concentrated on the 

effects of translational and rotary inertia, gyroscopic moment, damping, bending and 

shear deformations. Surprisingly, the important effect of torsional deformation has been 

left out. Nelson [19] and Rao [20] investigated the additional effect of the axial torque. 

However the focus was merely on the critical speed and the whirling frequency of the 

rotor system. Therefore, this paper reports on the behaviour of the dynamic instability of 

Timoshenko shaft system rotating at high speed considering the effect of the axial torque 

while it is subjected to periodic axial load. Finite element method (FEM) was used to 

develop the Mathieu-Hill equation while the study applied the commonly used method of 

Bolotin to give the instability chart.  The results are validated and compared to the results 

correspond to a formulation that neglected the axial torque effect. The instability charts 

correspond to the effect of various boundary conditions, and two types of bearing are 

plotted.     

 

METHODS AND MATERIALS 

 

Shaft System  

 

In this study, the shaft system comprises of a shaft with support such as shown in Figure 

1. Based on this, two cases were considered in this study:  

i. A simple shaft that applies rigid bearings at A and B of Figure 1 i.e. the shaft is 

pin supported at ends A and B and; 

ii. a shaft supported by two kinds of bearings i.e. the anisotropic and isotropic 

bearings located at A and B of Figure 1. P(t) is the pulsating axial force such as 
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P(t)=Ps+Pt cos ϕt where 𝜙 is the frequency of the axial excitation, 𝑃𝑠 and 𝑃𝑡   are 

the time independent and dependent components of the force respectively. While, 

 is the spin speed ranges from 0 to 40,000 rpm that considered in this study.  

 

 

 

 
 

Figure 1. The rotor system understudy. 

 

The linear isotropic bearing used in this work is due to a direct relationship 

between force, displacement and velocity while for anisotropic viscosity bearing, the 

model is based on a linearised solution of Reynold’s equation. Figure 2 shows the shaft 

cross-section and the bearing model. The stiffness and damping properties of the bearing 

can be seen in the figure for the case of isotropic and anisotropic bearings. Cby and Cbz 

are the damping coefficients of the bearing in y and z-axis respectively while Kby and Kbz 

are the stiffness coefficients of the bearing in y and z-axis respectively. The isotropic 

bearing is when Kby and Kbz have the same value and when the two values are not the 

same, the bearing becomes anisotropic. The damping effect of the bearing is however 

neglected in this study. The stiffness of the isotropic bearing is considered to have three 

levels: soft, intermediate and stiff as specified in Table 1. The shaft has the Young’s, 

shear modulus and Poisson’s ratio of 207 GPa, 79.6 GPa and 0.303 respectively. The 

density is 7833 kg/m3. The radius of the shaft is 0.508 m while the length is 1.27 m. 

 

 
 

Figure 2. The bearing models. 

 

Finite Element Formulation 

 

This research employs FEM to estimate the parametric instability region of the stated 

high-speed rotor system while considering the torsional effect of the shaft. The FEM 

formulation that is developed here applies the five degree of freedom (DOF) per node 

element that was suggested by Nelson [21] and Rao [20] where the axial torsional 

deformation is included as one of the DOF. This FEM model is called the 5DOF model 

while the formulation that is developed based on the four DOF per node element that 
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neglects the torsional deformation is called the 4DOF model. The parametric instability 

equation in the form of the Mathieu-Hill equation is developed based on the FEM 

formulation of the rotor. Furthermore, the Bolotin’s method [22] is used to estimate the 

stable and unstable regions of the shaft concerning the parametric instability behaviour.  

 

Table 1. The bearing properties of the components of the rotor system. 

 

Bearing type 

Direct stiffness coefficient (N/m) Direct 

damping 

coefficient

Cby, Cbz 

Kby, Kbz Kby1 Kbz2 Kby1 Kbz2 

Stiff isotropic  2.49x107      0 

Intermediate 

isotropic  

1.1x107      0 

Soft isotropic  4.5x105     0 

Anisotropic   2.49x107 1.76x107 1.10x108 2.17x108 0 

 

Stress-Strain Relationship 

 

Figure 3 shows the shaft element that is used to establish the 5DOF FEM formulation. 

The model involves two translation components in y and z-direction (v,w) and three 

rotary inertia components (θ
y
, θz, θx)  about y, z and x-axes respectively. Applying the 

commonly used stress, strain and deformation symbols, the strains subjected to the 

bending condition are given as;  

 

 
 

Figure 3. The torsional-bending element. 
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(1) 

εxzb
=

∂u
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+

∂w
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=θy (x)+

∂w(x)

∂x
, εxyb
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While the stresses subjected to the bending condition are as in Eq. (2). 
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σyb
=E

∂v

∂x
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∂θz
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Where 𝜅 is the shear correction factor. In torsional condition, strains are express as Eq. 

(3). 
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The stresses subjected to the torsional condition are in Eq. (4). 

 

σxyt
=G (

∂θx

∂x
(
∂ψ

∂y
-z)) , σxzt

=G (
∂θx

∂x
(
∂ψ

∂y
+y)) , σxxt

=σyyt
=σzzt

=σxyzt
=0 

 

(4) 

Energy Equation  

 

The bending and torsional deformations result in the total strain energy, U stored in the 

shaft such that; 

 

U=
 1

2
∫ σyb

εyb

+a

-a

+σzb
εzb

dV + 
 1

2
∫ σxyb

εxyb

+a

-a

+σxzb
εxzb

dV+ 

 1

2
∫ σxyt

εxyt

+a

-a

+σxzt
εxzt

dV 

 

(5) 

Substituting the stress and strain equations in (1) - (4) into Eq. (5) and adding the pulsating 

force term, we have Eq. (6). 

 

U=
 1

2
∫  EIp(θ́

z

2
 + θ́y

2
)

+a
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  dx+  
1

2
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+a 
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2
  dx 

+ 
 1

2
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2
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 1

2
∫  P[(v́)2+(ẃ)2

+a

-a

]dx 

 

(6) 

where Iy and Iz are moment of inertia with respect to y-axis and z-axis respectively and J 

is the polar moments of inertia per unit length of shaft element.  Furthermore Ip is the 

total second moment of inertia of the shaft element, θ́ is the slope deflection in rotational 
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direction and v́ is the slope deflection in vertical direction. The kinetic energy of beam 

element in term of bending and torsional condition is in Eq. (7). 
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(7) 

 

The shaft is considered rotating at constant angular velocity 𝛺 about the x-axis and small 

deformation is neglected. Applying the Euler angle transformation, the total kinetic 

energy is derived as Eq. (8). 
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1
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2
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+a 
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+a 
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(8) 

 

Finite Element Implementation  

 

In a standard FEM procedure, the discretisation of the shaft is conducted where elements 

with two nodes are used. Each node carries 5 degree of freedom for the 5DOF model. The 

elemental potential energy is 

 

U
(e)

=
1

2
{q (e)}

T
([K

b

  (e)
]+ [K

s

  (e)
] + [K

t

  (e)
]){q (e)} -

 1

2
{q (e)}

T
P(t)[K

g

  (e)
]{q (e)} 

(9) 

 

where [K
b

  (e)
], [K

s

  (e)
], [K

t

  (e)
] and [K

g

  (e)
] are the elemental bending, shear, torsional and 

geometric stiffness matrices. The elemental kinetic energy is 

 

T
(e)

=
 1

2
{q̇  (e)}

T
([Md

   (e)
] +  [Mr

   (e)]+[Mt
   (e)

]){q̇  (e)}+
 1

2
{q̇  (e)}

T
[G  (e)

]Ω{q  (e)} 
(10) 

 

where the matrices [Md
   (e)

], [Mr
   (e)]  and [Mt

   (e)
] are the element translational, rotary 

inertia and torsional mass matrix respectively. The [G(e)] is the gyroscopic element matrix 

of the rotor system. Upon assembly process of elemental matrices, the global U and T of 

rotating Timoshenko shaft subjected to axial loading are as shown in Eq. (11) and (12). 

 

U=
1

2
{q}T[K]{q}-

1

2
{q}TP(t)[Kg]{q} 

 

(11) 

T= 
1

2
{q̇}T[M]{q̇}+

1

2
{q̇}T[G]{q} 

(12) 
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where the global matrices [K], [M], [G] and [Kg] of the shaft, system correspond to the 

elastic, mass gyroscopic and geometric stiffness matrices respectively. Applying the 

Lagrange’s equation, the governing equation is: 

 

[M]{q̈}+[G]{q̇}+([K]-P(t)[Kg]){q}=0 (13) 

 

Estimating Parametric Instability Region 

 

The periodic axial force is P(t)=Ps+Pt. The Mathieu-Hill equation can be obtained if the 

static and dynamic component of force are denoted as a portion of the buckling load, Pcr. 

As such, it can be written as P(t)=αPcr+βPcr cos ϕT , where the static and the dynamic 

load factors are denoted as  and  respectively. Substituting this equation into Eq. (13), 

the Mathieu-Hill type of equation can be written as Eq. (14).  

 

[M]{q̈}+[G]{q̇}+ ([K]-[Kg](P
*
+P

*
cos ϕT (t)){q}=0 (14) 

 

Using the Bolotin’s method [22], through the first-order approximation of the 

primary stability boundaries with period 2T and the term-wise comparison of the sine and 

cosine coefficients will give infinite systems of homogeneous algebraic equations such 

that the condition of solvability is an infinite eigenvalue problem which, can be estimated 

by simplified and finite one such as Eq. (15). 
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2
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ϕ
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2
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g
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2

4
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|| =0 

 

(15) 

Equation (15) can be written as: 

 

|[
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2
) [K

g
] 0

0 [K]+ (+


2
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g
]

] +ϕ [
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1

2
[G]

1

2
[G] 0

]

+ ϕ
2 [

-
1

4
[M] 0

0 -
1

4
[M]

]| = 0 

(16) 

 

The condition of solvability for Eq. (16) appears as quadratic eigenvalue problem 

such as Eq. (17). Utilising the linearization approach [23] to express Eq. (17) into an 

eigenvalue problem of the 2n x 2n size, we have Eq. (18). 

 

(ϕ
2
[ME]+ϕ[GE]+[K

E
])q=0 

 

(17) 

(N-ϕR)n=0 (18) 
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Where, 

 

n= [
ϕq

q
] ;   N= [

0 -[K
E
]

[M
E
] 0

] ;    R= [
[M

E
] [G

E
]

0 [M
E
]
] 

(19) 

 

The condition for nontrivial solutions of Equation (17) is; 

 

det(N-ϕR) =0 (20) 

 

The eigenvalues of Eq. (20) represent the disturbing frequency 𝜙 , that defines the 

boundaries between stable and unstable region of the rotating shaft under parametric 

excitations.  

 

RESULTS AND DISCUSSION 

 

Validation  

 

A comparison is made between the results of the instability charts of the shaft in this study 

and those of past researchers [10] that considered at each node, 4 degrees of freedom. 

Results show that the parametric instability charts correspond to the current work and 

those of the work of Chen and Ku [10] are in good agreement as shown in Figure 4.   

 

 
(a) 0 rpm 

Unstable Unstable Unstable 

Stable Stable Stable 
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(b) 800 rpm 

 

 
(c) 20000 rpm 

 

Figure 4. The parametric instability charts for the present model and past researchers 

[10] for shaft rotating at three speeds. 

 

The Effect of Boundary Condition  

 

In this section, the parametric instability behaviour of the simple rotating shaft system is 

investigated focussing on the effect of the support condition. Figure 5, 6 and 7 show the 

instability charts of shafts having dissimilar boundary conditions and rotational speed.  

Boundary conditions can be seen to significantly affect the instability region as agreed by 

Unstable Unstable 

 

Unstable 

Unstable Unstable Unstable 

Stable Stable Stable 

Stable Stable Stable 
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Liew et al. [14]. Figure 5 shows that in a static condition, the instability chart for the 

fixed-free boundary condition is more stable at a lower frequency compared to the pin-

pin and the fixed-pin end conditions. Besides, instability regions for both models of 4DOF 

and 5DOF are quite similar in the case of fixed-pin and pin-pin boundary conditions at 

the lower frequency. For the fixed-free boundary condition, the instability regions 

correspond to the 5DOF model is larger than those of the 4DOF model.   

 

 
 

Figure 5. Instability charts of a shaft for different boundary conditions at the shaft speed 

of 0 rpm 

 

Figure 6 and 7 show that the instability region boundaries shifted out and the 

widths of these instability regions increase as the rotating speed of the shaft is increased. 

These results are similar to the works of Chen and Ku [10] and Liew et al. [14]. This 

phenomenon occurs due to the gyroscopic effect of the shaft that increases proportionally 

to the rotational speed. Thus, it can be said that the gyroscopic effect has destabilised the 

rotor system as the speed increases. The effect of torsional deformation can be seen to be 

significant at the highest shaft speed of 40,000 rpm. At this speed, the parametric 

instability regions correspond to the 5DOF model that consider the torsional effect differ 

from the 4DOF models for all cases of boundary conditions. For the 1st mode, due to 

additional torsional motion element, the instability region of 5DOF has widened 

compared to 4DOF model. In reverse, the instability region corresponds to the 4DOF is 

wide compared to those of the 5DOF model for the 3rd mode of instability.  
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Figure 6. Instability charts of a shaft for different boundary conditions at the shaft speed 

of 9000 rpm. 

 

 
 

Figure 7. Instability charts of a shaft for different boundary conditions at the shaft speed 

of 40000 rpm. 
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Figure 8 shows the difference between upper and lower boundary of instability 

region between 4DOF and the 5DOF models for three cases of boundary conditions. The 

reading is at 1st modes, and the shaft rotates at 40,000 rpm. The three cases of boundary 

conditions are the pin support at both ends (P-P), the fix or clamp support at one end and 

free at the other end (C-F) and the fixed support at one end and pin support at the other 

end (C-P). This figure shows that the difference in the frequency ratio of more than 100% 

can be seen for the case of C-F boundary condition.  

 

 
 

Figure 8. The comparison of the 1st mode instability region between the 4DOF and 

5DOF model at 40000 rpm for different boundary conditions. 

 

The Effect of Bearing Support   

 

In this study, bearings are added at both ends of the shaft. The influence of bearing 

stiffness and the effect of the anisotropic condition of the bearing are considered here.  

 

The effect of bearing stiffness 

 

The effect of three different levels of bearing stiffness, i.e. the stiff, intermediate, and soft 

conditions on the instability charts of the shaft is studied.  For each level, the bearing is 

assumed to have equal stiffness in all radial directions besides having no damping 

element. Figure 9 to 11 show the comparison between the effect of the three levels of 

bearing stiffness on the parametric instability charts at the shaft speeds of 0, 9000 and 

40000 rpm, respectively. From the observation in Figure 9, the 1st mode instability region 

of the static shaft does not change as bearing stiffness decreases. However, the 2nd mode 

of instability region shifted towards zero and overlapped with the 1st mode instability of 

region as the stiffness level of the bearing decreases from stiff to soft level. The third 

region of instability, however, is shifted out to the right as the stiffness level is decreased. 

The shift of the chart to the right is revealed for the case of the soft bearing. 
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Furthermore, the instability region also becomes smaller. This condition shows that the 

shaft system becomes more stable as the stiffness level of bearing move from stiff to soft 

level. Furthermore, the effect of the torsional deformation is insignificant for a static shaft. 

 

 
 

Figure 9. The dynamic instability of shaft at 0 rpm under the influence of bearing 

stiffness. 

 
Referring to Figure 10 and 11, as the shaft speed is increased, the patterns of the 

1st mode remains the same, the 2nd mode shifted to the left and the 3rd mode shifted to the 

right as the stiffness level of the bearing is decreased in the static shaft can still be seen. 

However, as the shaft speed increases, the instability region of the shaft increases too. 

This can be seen for the case the 3rd mode of the soft shaft rotating at 9000 rpm and 40000 

rpm. Furthermore, the difference between the instability charts correspond to the 5DOF 

model and those of the 4DOF model as the shaft speed increases can be visualised 

especially for the case of soft bearing with the rotating speed at 40000 rpm. In this special 

case, the instability regions of the 1st and 2nd modes for the 4DOF model shifted close to 

each other while in opposite the instability regions of the 1st and 2nd modes for the 5DOF 

shifted away from each other. Also, the difference between the width of the instability 

region corresponds to the 5DOF and the 4DOF models can be seen for a shaft with the 

soft bearing as the rotating speed increases. This proves the significance of the torsional 

degree of freedom in shaping the parametric instability behaviour of the shaft at high 

speed.  
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Figure 10. The dynamic instability of a shaft at 9000 rpm under the influence of bearing 

stiffness. 

 

 
 

Figure 11. The dynamic instability of a shaft at 40000 rpm under the influence of 

bearing stiffness. 
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The effect of anisotropic bearing  

 

In this section, the dynamic instability behaviour of the shaft is investigated by changing 

the anisotropic bearing condition where the comparison is made to that of the rigid 

bearing. Figure 12 to 14 gives the dynamic instability charts of the rotor system 

correspond to the 4DOF and 5DOF models for rigid and anisotropic bearing conditions 

at the speed of 0, 9000 and 40000 rpm respectively. In all cases, the instability charts 

provided by the 5DOF model agrees well with those of the 4DOF except at the speed of 

40000 rpm. Figure 12 shows that the widths of the 2nd and 3rd modes instability regions 

correspond to the shaft are somewhat larger than their counterparts in shafts with the rigid 

bearing. A more significant effect of the anisotropic condition of the bearing is the right 

shift of the 3rd mode of instability. 

Similar patterns of the effect of the anisotropic condition of the bearing can be 

seen for the shafts at 9000 rpm, as can be seen in Figure 13. Figure 14 shows that the 

5DOF model gives the greater widths of instability charts for the 1st and 2nd modes of 

instability. This shows that the torsional deformation effect is significant for the 1st and 

2nd mode of the instability of the high-speed shaft. The effect of high speed may also have 

caused the non-existence of the instability centre in all modes and for both types of 

bearing. This is true for results correspond to the 4DOF and 5DOF models.  

 

 
 

Figure 12. The dynamic instability of a shaft at 0 rpm under the influence of anisotropic 

bearing. 
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Figure 13. The dynamic instability of a shaft at 9000 rpm under the influence of 

anisotropic bearing. 

 

 
 

Figure 14. The dynamic instability of a shaft at 40000 rpm under the influence of 

anisotropic bearing. 
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CONCLUSION 

 

This paper presents the torsional deformation effect on the dynamic instability behaviour 

of rotor system rotating at high speed. The developed 5DOF model that includes the 

twisting deformation as one of the degree of freedom gives the needed torsional effect. 

The rotor system understudied here is a simple shaft system with rigid bearings and a 

shaft with bearings that differs in stiffness and its anisotropy that are installed at both ends 

of the shaft. The study shows the significance of the torsional effect that is obvious for 

shaft rotating at high speed. Furthermore, the increase in rotational speed shift-out the 

instability chart, thus increasing the instability of the rotor system 
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