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ABSTRACT

Todaydés design of machi ne ahightotationatspegthi r es t h
improve the efficiency of the machine. However, the existence of disturbances such as
periodic axial load may cause parametric resonance to the rotor system in addition to the
common force resonandereviousstudies orthis parametric resonance of shgftically

included theelementf translational and rotary inertia, gyroscopic moments and bending

and shear deformation but surprisingly neglected the effect of the axial tohysipaper

investigated the parametric iability behaviour othe shaftrotatingat high speed while

considering the torsional effect the shaftBased orthefinite element method, shaft

modelthat includes torsional deformation as one of its degree of freedsrastablished
TheMathieuHill equation was derivecgandthent he Bo | ot wasusedtsolet h o d

the equation by establishing tiparametricinstability chart. Two types athe rotary

system were studie@dshaftwith different boundary conditions amsthaft with different

bearing types. The resuligere initially vdidatedwith past findings. Following thahe
results were compared to the results corres:s
that omitsthe torsional degree of freedomhd effect ofaxial torsional deformationvas

found to bevery significantespecially at high speethe developed model in thistudy

showsthat atthe shaftspeedf 40000rpm, the effect of torsional deformation has given

the difference of more than 100% in the frequency ratios correspond to the 4DOF and

5DOF models for the case of firee boundary condition.

Keywords:Parametric instabilitytorsional effect; Mathiedd i | | equati on; Bol o
method Strutince diagram

INTRODUCTION

Parametric resonance parametrianstability of shaft is an important type of dynamic
failure that has been the subjectrdénsiveresearclespecially in the area of automotive,
aerospace and mechanical engineering in gefiér4d). Compaed towhirling resonance

in shaft[5] that occurs when the natural frequemdythe shaftis equal to theotating
speed, parametriesonanc@ccurrence is due tmodificationof the system parameters
such as inertia and stiffness time-varying manner. The periodienodificaion of
stiffness for examplecan be due tthe existence aofjeometric asymmetry of shd#],
anisotropic bearing suppdt], crack propagatiof8] and periodic axial compressive load
[9]. As in the force res@nce, parametric instability can cause catastrophic failure to the
rotor system for a small paranic excitation. Chen and K@0] developedinite element
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formulationto identify parametric instability of simple rotating shaft whibeludingthe
gyroscopic and transverse shear effect. U s
dynamic instability were found toe shiftecbut while the instability sizesere increased
as the rotational speedf the shaft increased.ater, a similar effect of ncreasing
instability with increasing speadas foundby Ku and @en[11] in their study on the
parametric instability of Timoshenko shdlisc system while considering the effects of
translational and rotary inertia, gyroscopic moments and bending andisf@anation
On the othehand, using a different method by analysing the intersections between the
operation line of the shaft and the branches of the Mathieu eigenvalues in theuMathie
map (a,q), Raffa and Vatfa2] successfullydeterminedhe instability charainalytically
while assuming the shaft as the EuBarnaulli and Raleigh beamsa andq are non
dimensionalised terms that group tHeratural frequencyk!” critical load of the beam
and respectively, the static and dynamic components of the axiaClbad.13] however
contradicts the above findif@0] and[11] and other§14il7]lwh er e wusi ng FIl oq
method insteaddheBo |l ot i ndés met hod, the finding was
system may not be increased as the rotational speed of the shaft is increased. In their
research, Chen and Ch¢9| studied the effects of locally distributed Kelwoight
damping on the paran&t instability of Timoshenko beams. They found that the effect
of damping especially the one that is located near to the fixed end of the beam is to make
the beam more stable. Thleear deformatiowas neglecteds theransfer matrix method
was applied ¥ Yim and Yim[18] to show that diskocationplaysan important rolen
dynamic instability of aotor-bearingsystem under axial loadhe closer the location of
thediskto the supporthe more the decrease of @l axial force.

All of the mentionedstudies howeverdo notemphasie onthe highspeedshaft
systens. The rotating equipmenthat operate at high speed may cause the machine to
havehigh overall efficiency19]. Despitethis, previous studiesnly concentrate@dn the
effects of translational and rotary inertia, gyroscopic moment, damping, bending and
shear deformationsSurprisingly,the important effect aforsional deformatiomas been
left out Nelson[19] and Rad20] investigatedhe additionaleffect ofthe axial torque
Howeverthe focus wasmerelyon the critical speed and thehirling frequency ofthe
rotor systemThereforethis papereportson thebehaviour of the dynamic instabiliof
Timoshenkashaftsystenrotating at high speed considering the effect of the axial torque
while it is subjededto periodic axial loadFinite element method (FEMyas used to
develop theviathieuHill equationwhile thestudy applied theommonly used method of
Bolotin to give the instability chartThe results are validated and compared to the results
correspond t@ formulationthatneglectedhe axial torque effecThe instability charts
correspond to the effect of various boundary conditiansltwo types ofbearingare
plotted

METHODS AND MATERIALS
Shaft System

In this study, the shaft systesomprisef a shaftwith supportsuch as shown in Figure
1. Based on this, two casegmconsidered in this study:
i. A simple shaft that applies rigid bearings at A and B of Figure 1 i.e. the shaft is
pin supported at ends A aBdand
ii. ashaft supported by two kinds of bearings i.e. the anisotropic and isotropic
bearings located at A and B of FigurePlt is the pulsatig axial force such as
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P t =Ps+P;c o«where%is the frequency of the axial excitatian andd are
thetime independent and dependent components dbtberespectivelyWhile,
Wis the spin speed ranges from 0 tg000 rpm thatconsidered in this study.

1 ' Pt
p— ———
| | wW ::] B

Figure 1 The rotor system understudy

The linear isotropicbearing used in this work idue to a directelationship
between force, displacement and velocity while darotropic viscosity bearing the
modelis basedn alinearised solution of R e y n cequdtidrsFigure 2 shows the shaft
crosssection and the bearing mod€&hestiffness and damping properties of the bearing
canbe seernn the figurefor the case of isotropic and anisotropic bearings.a@d G
are the damping coefficients of the bearing in y aadizg respectively while i and Ko,
are the stiffness coeffiars of the bearing in y andaxis respectively. The isotropic
bearing is when K and Ky, have the same value and when the two values are not the
same, the bearing becomes anisotropic. The damping effect of the hedrmgever
neglectedn this study.The stiffness of the isotropic bearing is considered to Haee
levels: soft, intermediate and stiff as specified in Tabl@dHes h a f t has the
shear modulus and Poissond6és ratio of 207
density is 7833 kg/f The radius of the shaft is 0.508 m while the length is 1.27 m.

Yo
G

¥

Goz
Koz m
be Kby

Figure 2. The bearingnodels
Finite Element Formulation

This research employs FEM to estimate the parametric instability region of the stated
high-speedrotor system while considering the torsional effect of the shaft. The FEM
formulation thatis developechere applies the fivdegreeof freedom DOF) per node
elementthat was suggested by Nelsf2il] and Rao[20] where theaxial torsional
deformationis includedas one of th®OF. This FEM models calledthe 5DOF model

while the formulation that is developed based on the BXOF per node element that
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neglects the torsionaeformationis called the 4DOF modeThe parametric instability

equation in the form of thdathieuHill equation isdevelopedbasedon the FEM

formulationof therotor Fur t her mor e, t H2]isRised to éstimai@ the me t h 0
stable and unstabtegiors of the shaftoncerninghe parametric instability behaviour.

Table 1 The kearingproperties of theomponents of theotor system

Direct stiffness coefficient (N/m) Direct
: Kby, Kbz Kbyl Kbz2 Kbyl Kbz2 dam plng
Bearing type coefficient
Choy, Chz
Stiff isotropic ~ 2.49x10 0
Intermediate 1.1x10 0
isotropic
Softisotropic ~ 4.5x1C¢ 0
Anisotropic 2.49x10 1.76x10 1.10x16G 2.17x1G 0

StressStrain Relationship

Figure 3 shows the shaft element that is used to establish the 5DOF FEM formulation.
The model involves two translation components in y atirection v , \and three
rotary inertiacomponentg ﬁ d,, d,) abouty, z anck-axes respectivelyApplying the
commonly used stresstrain and deformation symbols, the strains subjectettheto
bendingconditionare giveras;

. & a,.. G O .. Q (1)
Yo mx Y B TR T T O
. Qi Gv_ () Qi O & (x)
Uz, E+a_dy X +"C")< Vb_6+&__dz X +—5h
Qv v ( %) o .

While the stresses subjectedttoe bendingconditionareasin Eq. (2).

6037



Wahabet al. / International Journal of Automotive and Mechanical Engineeth{g) 201860346051

o __ O/_ E— Clj-Z ]

Ciy = &0 579G (d, x +

)

QTQ

Uy y=Uy y=Uz g=Uy ;=Uyp= 0

Wherell is the shear correction factor. In torsional condition, strainexgeess as Eq.

(3).
Qtzqt:qyt:QZtZQZt: 0 (3)

L A
o & af, & (4)

by = G aa-z Xfea a+y Hiy =0y =0, =l y 7 O

Energy Equation

The bending and torsional deformatioresultin thetotal strainenergy U stored in the
shaft such that

+ a 1 + a (5)
U = °ybli}b +0,, 0, d V >t Oy BL"J( g+ gl gd V +
-a -a
+ a

Substituting the stress and strain equatioii$) - (4) into Eq (5) and adding the pulsating
force term, we havEg. (6).

1 : d2 1 : 5 2 (6)
U=> Elp(z+a§)dx+§ oG AVBE 2+ oG AwBH, ~ d X

-a -a
+ a + a

1 1

= Gﬂf;de P VD% wD?] d x
-a -a

wherel, andl, are moment of inertia with respectyt@xis andz-axis respectively andi

is the polar moments of inertia per unit length of shaft element. Furthelmsrihe

total second moment of inertia of the shaft eleneis the slope deflection in rotatidna
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direction andbg the slope deflection in vertical directiofhe kinetic energy of beam
element in term of bending and torsional conditiom iEq. (7).

i + .. ..
T—l aA (")/2+C"}N2 dx}' a| ij2+ szzdx 7
- A g s 3 g tg
-a -a
+a "
+1 | Tk d

-a

Theshaftis consideredotaing at constant angular velocity about thex-axis and small
deformation is neglected. Applying the Euler angle transformation, the total kinetic
energy is derived dsq. (8).

+ a + a (8)
1A v2+W2dx-:|L- ;Idy2+jd2dx
5 y z Yz

-a -a
+a

1
+yhddda 3 od 2d x

-a -a
Finite Element Implementation

In a standard FEM procedure, itiscretsationof the shaftis conductedvhere elements
with two nodesare usedEach node carriesdegreeof freedom for the 5DOF modélhe
elemental potential energy is

e_l T e e e e .1 (e e e
Ue==a° (LK1 £ K°1 [#°T ne -5 q P ([tgflqte)

)
where[ K°1,[ K°1,[ K®]and] ge] are the elemental bending, shear, torsional and
geometric stiffness matrices. The elemental kinetic energy is

T (10)

1
TE=Za® (M® + M M (Yaglt2q° G qaq-

N

where the matricesMy ¢ , M, ¢ and Mt( ®lare the element translational, rotary

inertia and torsional mass matrix respectively. TH&[[{S thegyroscopic elememhatrix
of the robr system. Upon assembly process of elemental matriceglabalU and T of
rotating Timoshenko shaft subjected teaddoadingareas shownn Eq. (11) and (12)

1

1 (11)
— T = T
U—2q quq P (Kg)q

1 1
T=§qTM q+§qTWGq (12)
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where theglobalmatricesK , M, G and K, of the shaft systemcorrespond tohe

elastic mass gyroscopi@and geometric stiffness mates respectivelyApplying the
Lagrangeds equation; the governing equation

M q+WG g+ K-Pt K;)gq=0 (13)
Estimating Parametric Instability Region

The periodic axial forces P t =Ps+P;. The MathieeHill equation can be obtained if the
staticand dynamicomponenbf force are denoted as a portion of bhekling load Pcr.
As such it can be written aB t = B, + B, ¢ 0«3 hwherethe static andhe dynamic
load factorsare denoted ag and 6 respectively Substituting this equation into Ed.3),
the MathieuHill type of equation can be written &s|. (14).

M q+WG g+ K-[Kg] &P +bP cod t)q=0 (14)

Usi ng t h emetiBod[R2h thiougld the firsbrder approximation of the
primary stability boundaries with period 2nd the terrwise comparison of the sine and
cosine coefficients will give infinite systems ledmogemrousalgebraic equations such
that the condition of solvability is an infinite eigenvalue problem which, can be estimated
by simplified andinite one seh askq. (15).

K+ b < M .WG (13)
a-> [ W-7[ M] "5 _
« b é
EWG K + a+§ [ §-Z[ M]

Equation (1% canbe writtenas

b 1 16
Krazll S 0 2 -
b 1
0 II+ a+§ [ bq E\MG] 0
[ M] O
2 4 L n
0 -z[ M]

The conditiorof solvability for Eq (16) appears as quadratic eigenvghieblem
such asEq. (17). Utilising thdinearization approach[23] to express Eq. (17) into an
eigenvalue problem of tH&n x 2nsize, we have Eq. (18).

(“[Mg] 4Ge] K ) g =0 (17)

N-«Rn =0 (18)
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Where
_q . o,_1#. [ M. [ @& (19)
"Fq [ RT o 0 "T M

The condition for nomivial solutions of Equation (J)s;

d eN-«R =0 (20)
The eigenvalue®f Eqg (20) represent the disturbing frequen®y that defines the
boundaries betweestable and unstable region dhe otating shaft under parametric
excitations.

RESULTS AND DISCUSSION

Validation
A comparisons madebetweenhie results of the instability charts of the shaft in this study
and those of past researchfi8] that considered at each nodedegres of freedom.

Results show that the parametric instability charts correspond to the current work and
those of the work of Chen and KL0] are in good agreement as shawirigure4.
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Figure4. The parametridnstability charts fothe present model and past researchers
[10] for shaft rotating athreespeeds

The Effect of Boundary Condition

In this section, the parametric instability behaviotithe simple rtating shafisystem is
investigatedocussing on the effect of tleipportcondition Figure 5 6 and7 show the
instability charts ofshafts havingdissimilarboundary conditions and rotational speed.
Boundary conditions can be seen to significantly affect the instability region as hyreed
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Liew et al.[14]. Figure 5shows that im static condition, the instability chart for the
fixed-free boundary condition is more stableadwer frequency compared to the pin
pin and the fixegpin end conditions. Besides, instability regions for both models of 4DOF
and 5DOF are quite similar in the eagf fixedpin and piRpin boundary conditions at
the lower frequency. Forthe fixed-free boundary condition, the instability regions
correspond to the 5DOF model is larger than those of the 4DOF model.

0.5 i |
—e— shaft 4DOF.pin-pin
---x==~ shaft SDOF,pin-pin
0 ‘ I |
0 5 10 15 20 » ” :
Frequency ratio, ¢/o1

—+— shaft 4DOF fix-free
-==+--- shaft SDOF,fix-free
L ! ! I

15 20 25 30 35
Frequency ratio, ¢/o1

()]
[e=]

0.5

—&— shaft 4DOF . fix-pin
N -#--- shaft SIDOF,ﬁ)(-pinl
1

0 5 10 15 20 25 30 35
Frequency ratio, ¢/o1

Dynamic load factor, }  Dynamic load factor, }  Dynamic load factor, B

Figure5. Instability charts o& shaftfor different boundary conditions at the shaft speed
of Orpm

Figure 6 and 7 show that the instability region boundaries shifted out and the
widths of these instability regions increase as the rotating speed of the shaft is increased.
These results are similar to the works of Chen and1®liand Liewet al [14]. This
phenomenon occurs due to the gyroscopic effect of the shaft that increases proportionally
to the rotational speed. Thus, it damsaidhat the gyroscopieffect hagdestabilsedthe
rotor system as the speed increa3ée effect of torsional deformati@an be seen to be
significant at the highest shaft speed of000 rpm. At this speed the parametric
instability regionscorrespond to the 5DOF modkht consider the torsional effect differ
from the 4DOF models for all cases of boundary conditions. For thexdde due to
additional torsional motion element, the instability region of 5DIds widened
compared to 4DOF moddh reverse the instabiliy regioncorrespondto the 4DOF is
wide compared to those of the 5SDOF model for tRen®de of instability.
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Figure6. Instability charts o& shaftfor different boundary conditions at the shaft speed

of 9000rpm.
0
§ T & >‘|‘ T T T
S % —o&— shaft 4DOF pin-pin
L‘—é b X —=#-= shaft SDOF,pin-pin
= [oF ]
] ]
B , }
g 1 ok 1 1 1 1
= 5 10 15 20 25 30 35
= Frequency ratio, ¢/wl
§ I+t t Caml T T &1 —t
E + +[> bF—— shaft 4DOF fix-free [>+ +[>
= 0.5 + -i- .i. b [;:'4"— shaft SDOF fix-free [>'i' +E>
2051 4 4 (3 4 i
.2 1 I 1 I I
= + + t+® I &+ +5
g 9 1 L bl I I Ll L
> Ldle B Th T T T
a 0 5 10 15 20 25 30 35
. Frequency ratio, ¢/wl
§ T T T T
& —&— shaft 4DOF.fix-pin
o —=-#=-=shaft SDOF.fix-pin
g i
2
g
g 1 1 | | 1
& 5 15 20 25 30 35

Frequency ratio, ¢/wl

Figure7. Instability charts o& shaftfor different boundary conditions at the shaft speed
of 40000rpm.
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Figure 8 shows the differendtweenupper and lower boundary of instability
region between 4DOF and the 5DOF models for three cases of boundary conditions. The
reading is at ¥ modes andthe shaft rotates at 40,000 rpm. The three cases of boundary
conditions are the pin support at betils (P-P), the fix or clamp support at one end and
free at the other end {E) and thdixed support at one end and pin support at the other
end (GP). This figure shows that the differencehefrequencyratio of more than 100%
canbe seerfor the case ©oC-F boundary condition.

= P-P Upper = P-P Lower C-F Upper
= C-F Lower C-P Upper C-P Lower
150
1102 1122 1113
100 1078 104 97 7
S
8 50 49- 465 p g0 _
c 285 26 oI 31 —57
o 2+4 75 14.5 492
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a e — L — A J-%@/i
_32:9eBYp292 z9.9 =
= cq 53— 4>-8
—a v—:'.J. i
-
_83/'—‘['
-100

Dynamic load factorfy )

Figure 8 The comparison of the 1st mode instability region between the 4DOF and
5DOF model at 4000fpm for different boundary conditions

The Effect of Bearing Support

In this study, bearingare addedat both ends of the shaft. Thafluence of bearing
stiffness and the effect of the anisotropic conditiothebearingare consideretere.

The effect of bearing stiffness

The effect of three different levels of bearing stiffnessthe stiff, intermediate, and soft
conditions on the instability charts thfe shaftis studied. For each level, the bearing is
assumed to have equal stiffness in all radial directions besides having no damping
element.Figure 9to 11 show the comparisobetween the effect of the three levels of
bearing stiffness on the parametric instability charts at the shaft speeds of 0, 9000 and
40000rpm, respectively. From the observatiorFigure9, the £'mode instability region

of the static shaft does not change as bearing stiffness decreases. HoweVémtite 2

of instability region shifted towards zero and overlapped with thadde instabilityof

region as the stiffness level of the bearing deses from stiff to soft level. The third
region of instability howeverjs shifted out to the right as the stiffness lagalecreased

The shift of the chart to the righst revealedor the case othe softbearing
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Furthermorethe instability region also becomes smaller. This condition shows that the
shaft system becomes more stable as the stiffness level of bearing move from stiff to soft
level. Furthermore, the effect of the torsiodelormations insignificant forastaticshaft.

T T T T
=t shaft 4DOF stiff
—---= shaft 5SDOF stiff

' 1 1 1 I 1 1
0 5 10 15 20 25 30 35
Frequency ratio, ¢/wl

T T T T T
== shaft 4DOF,interm

—-4»—- shaft SDOF,interm

1
15 20 25 30 35
Frequency ratio, ¢/wl

T T T T
== shaft 4DOF ,soft
Stable .. (haft SDOF soft

| 1

|
10 15 20 25
Frequency ratio, ¢/wl

Dynamic load factor, # Dynamic load factor, # Dynamic load factor, 3

Figure9. The d/namic instability of shaft at fom under the influencef bearing
stiffness

Referring toFigure10 and11, as the shaft speasl increasegdthe patterns of the
1%'mode remains the same, tHé @ode shifted to the left and th& Bode shifted to the
right as the stiffness level of the bearing is decreased in the static shaft can still be seen.
Howeve, as the shaft speed increases, the instability region of the shaft increases too.
Thiscan be seen for the case tffen®ode ofthesoftshaft rotating at 900(bm and 40000
rpm. Furthermore, the difference between the instability charts correspond to the 5DOF
model and those of the 4DOF model as the shaft speed increases can be visualised
especially for the case of soft beanmigh the rotatingspeedcat40000rpm. In this speal
case, the instability regions of th& dnd 29 modes for the 4DOF model shifted close to
each other while in opposite the instability regions of tharid 29 modes for the 5DOF
shifted away from each otheklso, the difference between the width tbe instability
region corresponds to the 5DOF and the 4DOF models can be seesh&dtwith the
softbearing as the rotating speed increa$ass proves the significance dtfietorsional
degree of freedonn shaping the parametric instability behaviourtloé shaftat high
speed.
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Figure 10 The dynamic instability od shaft at 9000pm under the influence of bearing
stiffness
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Figure 11 The dynamic instability o& shaft a40000rpm under the influence of
bearing stiffness
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