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ABSTRACT 

The hybrid hydraulic vehicle (HHV) setup combines compressed-fluid energy 

in parallel with internal combustion engine (ICE) to deliver the propelling energy to 

the wheels. During power assist mode, the compressed fluid assists the ICE to propel 

the vehicle at relatively less energy, hence improving fuel economy. Obviously, in this 

case the engine torque and fuel economy are two conflicting parameters in which high-

torque operation results in poor fuel economy. These conflicting objectives 

cannot be solved using a classical single-objective optimisation method. 

Therefore, a multi-objective genetic algorithm (MOGA) is proposed to 

optimise the power split between an ICE and a hydraulic motor to improve fuel 

economy. The simulation runs on three operating modes namely, engine only, power 

assist and regenerative modes considering both highway and city drive cycles. Using a 

single unified formulation, the objectives can be simultaneously optimised through a 

systematic search algorithm within a diverse parameter space to provide a set of 

non-dominated solutions along the Pareto optimal front. Overall, the HHV 

contribution is significantly observed at low-torque operations when the hydraulic 

motor assists the ICE in both drive cycles. In conclusion, the improvement 

achieved by the HHV in terms of fuel economy is recorded as much as 5.55% for 

highway and 6.50% for city drive cycles.  
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INTRODUCTION 

The main source of energy in automobile industries all over the world today is 

depending on internal combustion engines (ICE) that run on fuel. In future, the 

increasing demand of fuel worldwide is expected to be more than the reserve could 

supply. This situation forces automotive industries and researchers to explore 

alternative energy sources to minimise fuel consumptions through hybrid systems 

[1]. Alongside Hybrid Electric Vehicle (HEV) counterpart, Hybrid Hydraulic Vehicle 

(HHV) systems if combined with conventional ICEs could offer a promising saving in 

fuel consumption [2],[3]. In addition, HHV provides a quick recharge through a 

regenerative braking [3]. A basic setup for HHV utilises an ICE and high-

pressurised accumulator (HPA) as alternative energy storage that is generated from 

ICE and regenerated during braking to assist the engine when needed, thus reducing 

the engine load. This scenario not only improves fuel efficiency but also reduces 

the vehicle emissions at the same time. For this to work a proper torque optimisation 

is needed to regulate the power split between HPA and ICE. 
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Such strategies aim to maximise the fuel economy while still satisfying the torque 

requirement. Common algorithms used for optimising energy of the hybrid system 

include Energy Following [4] and Thermostatic [5]. The former utilises the energy from 

an ICE and regulates it based on the energy requirement. Whereas the latter switches the 

power from HPA, and ICE based on the State of Charge (SOC). Under thermostatic 

strategy, the engine turns on when the pressure reaches the low limit of SOC then turns 

off when HPA reaches the SOC high limit depending on the most efficient speed and 

torque level according to the performance of the engine. For real time optimisation, fuzzy 

logic controller [4] and energy-flow analysis [6] are among the popular methods. Under 

real-time optimisation, the actual output torque is regulated based on real-time energy 

demand and SOC. However, the progressiveness of locating the optimal solution in real-

time requires expensive computations. Therefore, static optimisations such as Dynamic 

Programming, fuzzy logic, Genetic Algorithm are among the reliable strategies to 

optimise proper splits between the hydraulic and ICE power using an established 

efficiency map.  

A lot of work has been done involving multi-objective optimisation problems such 

as Vector Evaluated Genetic Algorithm (VEGA) [7], NSGAII [8] and MOGA [9]. These 

methods divide a population into disjoint subpopulations that are governed by different 

objective functions, however, VEGA seems to be able to find only extreme solutions on 

the Pareto front. Among these three methods, multi-objective genetic algorithm (MOGA) 

is found to be the preferred method since it offers more flexible and robust searches.  

For conventional ICE engines, the amount of torques is directly proportional to the 

amount of fuel burnt. As for HHV, an optimal power split is important to improve the 

fuel economy while still offering the torque required. Therefore, in this paper, MOGA is 

used to optimise the power split between ICE and a hydraulic motor to provide a trade-

off between engine torque and the fuel economy. Based on that, the optimal split between 

two energy sources that results in a better fuel economy can be observed throughout the 

engine RPMs. This paper is organised as follows; the multi-objective genetic algorithm 

followed by the hybrid hydraulic component and ICE model with MOGA 

implementation. Finally, the optimisation results are discussed and followed by a 

conclusion.  

Multi-Objective Optimisation 

In general, multi-objective optimisation (MOO) is a method that optimises a problem with 

many objectives. A generic MOO problem has long been studied in great details, both in 

the control and the operational research community. Usually, a classic representation of 

MOO solution is presented using Pareto-optimal approach due to its conflicting problem. 

The notion of Pareto efficiency is useful in MOO that refers to Pareto frontier or Pareto 

set or Pareto front where the optimal solution lies. In conventional multi-objective 

optimisation techniques, the importance of objectives are combined through multiple 

attributes using weighted-sum method. It expresses the relative importance of the 

objective and balances their involvement in the overall utility measure using real values 

of weighting coefficients. However, in real multi-objective optimisation, each objective 

is treated independently without any preference hence the obtained solution is not 

influenced by a priori knowledge. For that, an evolutionary method such as genetic 

algorithm is capable to handle the complexity of the multi-objective problem.  
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Genetic Algorithm (GA) 

The concept of GA is based upon the survival of the fittest inspired by the theory of 

natural evolutions. A dynamic meta-heuristic search is needed to identify a superior 

solution within the diverse space through selection, crossover and mutation operators 

[10]. These three operators are applied in every generation during the evolution process. 

Selection is a process of choosing the parent candidates e.g., tournament, roulette wheel, 

rank based, probability based, and random based. A tournament selection from random 

samples is sufficient to provide a new parent candidate for every generation before 

mating or crossover takes place. Crossover through its swapping features creates new 

offspring such as uniform, single point and multiple point. The fitness of the new 

offspring will be determined using a fitness function. It would replace the current 

candidate if a fitter candidate is found during the evolution processes. Then, the 

mutation takes place to further evolve where the genes are slightly altered. The degree 

of alteration depends on the mutation rate. An algorithm that features meta-heuristic and 

random can ensure global convergence although the problem has multiple local minima 

as shown in Figure 1.  

Figure 1. A search space with a global optimum and local optima. 

Multi-Objective Genetic Algorithm 

The main difference between MOGA and conventional single-objective genetic 

algorithm (SOGA) is that the objectives are not aggregated into a single-and-

parameterised objective. The objectives are treated equally without predetermined weight 

vectors. Therefore, the solution of MOGA is not biased to any objective and hence best 

presented using Pareto-optimal solution. The fundamental definition of Pareto-optimal 

for multi-objective genetic algorithm is described in Eq.(1) as follows: 
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Figure 2. Hybrid hydraulic vehicle setup [2]. 

Driving force at the wheel, Fwheel is the sum of forces due to air drag, road slope, rolling 

resistance and acceleration as formulated in Eq. (2).  

Fwheel=[F
air

+Fslope+ Frolling+Facceleration] (2) 

The wheel angular speed ωwheel (rad/s), is calculated using Eq. (3) where rtyre is the radius 

of the tyre (m) and vvehicle is the vehicle speed. 

ωwheel=
vvehicle

rtyre
        (3) 

High-pressure accumulator (HPA) Low-pressure accumulator (LPA) 

Hydraulic pump/motor(HPM) 

Wheel 
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Hybrid Hydraulic Vehicle Model 

Unlike conventional ICEs, HHV utilises two propelling energy - ICE and accumulated 

compressed fluid using high-pressure accumulator (HPA) [11]. ICE produces power 

through continuous, controlled explosions that push down pistons connected to a rotating 

crankshaft and delivers the power to the wheel through a gearbox. The latter uses 

hydraulic pump-motor (HPM) to drive the wheel. A portion of rotating crankshaft power 

(depending on the mode of operations) drives a hydraulic pump to harvest some energy 

and store it into an HPA. The operation is simplified into four modes namely, ICE mode, 

power-assist mode (HPA+ICE), recharging mode and regenerative mode. For 

optimisation purposes, recharging mode is disabled and regenerative mode depends on 

full braking forces. The regenerative braking system is used to recuperate kinetic energy 

from hydraulic pump during braking and store it into an HPA. Based on the torque 

demand, the algorithm must decide which operation mode to use, then determine the 

appropriate split between power sources to obtain a good trade-off between fuel economy 

and the engine torque. A rule based valve control in HPA is used to harmonise the power 

between two operation states - recharge state and release state based on the state of 

compression (SOC).  

In this study, the model of HHV is built upon the Perodua MYVI 1.3L using K3-

VE gasoline engine paired with an integrated hydraulic motor-pump (HPM) that powers 

the wheels in motoring-mode and regenerates braking energy in pumping-mode. A 

complete setup of HHV model is depicted in Figure 2, and the important parameters are 

shown in Table 1. 
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Table 1. Perodua Myvi parameters (automatic) [12]. 

Parameters Symbol Values 

Maximum engine torque Tengine 1.3L, 64 kW 116 (Nm) 

Total ratio (gear ratio x final drive ratio) Gratio 1st gear 11.01 

2nd gear 6.15 

3rd gear 4.03 

4th gear 2.81 

Efficiency of mechanical components ηt 0.95 

Efficiency of hydraulic components ηhyd 0.6 

Tyre radius Rtire 0.288 m 

Frontal area A 2.306 m2 

Air drag coefficient Cd 0.32 

Air density ρ 1.225kg/m3 

Mass of vehicle + driver m 1055 kg 

Mass of hydraulic components mhyd 238 kg 

Coefficient of rolling resistance Cr 0.01 

Mass of 40 cc/rev pump/motor  

(Bosch Rexroth A4VG40) 

mPM 31 kg 

The torque required to drive the wheel is given by Eq. (4) and Eq. (5) [2], 

τwheel=[F
air

+Fslope+ Frolling+Facceleration] rtyre      (4) 

τwheel= [
1

2
ρv2CdA+m g sin α+m a+Crm g] rtyre (5) 

The wheel torque, τwheel is driven by the input torque from an ICE, τengine and the torque 

produced by HPM, Tmotor is given by Eq. (6), 

τengine+τmotor=τwheel/Gratio      (6) 

τengine=
τwheel

Gratioη
transmission

(7) 

The power assist mode enables HPM to add torque to the drive train (thus, 

lowering the engine load) and assists the engine to propel the vehicle as shown in Eq. (8). 

τengine=
(τwheel-PDxη

mech.
)

Gratioη
transmission

(8)

Internal Combustion Engine and Hydraulic Hybrid Parameters 

The ICE mode uses engine to propel the vehicle as in conventional drive train. This mode 

is used when the SOC is less than 30% and when the wheel torque is bigger than the 

maximum torque provided by the HPM. The torque of engine follows the torque of wheel 

as in Eq. (7). 
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This mode is used when the SOC is between 30% and 100% and the maximum 

HPM torque is bigger than the wheel torque. The speed of engine follows the speed of 

wheel as shown in Eq. (9). 

ωengine= ωwheelGratio (9) 

The hydraulic hybrid system in the simulation consists of two main components 

namely, an HPM and two accumulators (HPA and LPA). A variable ‘𝑥’ is introduced to 

vary its torque and switch the HPM to pumping or motoring mode. During the motoring 

mode, the HPM drives the load by using the pressure in high-pressure accumulator (HPA) 

as shown in Eq. (10) and Eq. (11). 

𝜏𝑚𝑜𝑡𝑜𝑟 = 𝑃𝐷𝑥𝜂𝑚𝑒𝑐ℎ. (10) 

𝑄𝑚𝑜𝑡𝑜𝑟 =
𝜔𝐷𝑥

𝜂ℎ𝑦𝑑.
(11) 

During pumping mode, an external torque drives the HPM to pump hydraulic fluid 

from low-pressure accumulator (LPA) to HPA using Eq. (12) and Eq. (13).  

𝜏𝑝𝑢𝑚𝑝 =
𝑃𝐷𝑥

𝜂𝑚𝑒𝑐ℎ.
          (12) 

𝑄𝑝𝑢𝑚𝑝 = 𝜔𝐷𝑥𝜂ℎ𝑦𝑑.         (13) 

Voil (k+1)=Voil(k)-(Q
PM

)∆t (14)

where P is pressure of the HPA, Q is volumetric flow rate, D is displacement of the PM, 

and 𝑥 is fraction of the maximum HPM capacity. The HPM is subjected to friction loss, 

represented by the mechanical efficiency 𝜂𝑚𝑒𝑐ℎ, and leakage loss, represented by the 

volumetric efficiency 𝜂ℎ𝑦𝑑. The motor mode and pumping mode are expected to work 

between −1 ≤ 𝑥 ≤ 1. The former operates when 𝑥 is positive and switches the former 

when 𝑥 is negative. Both operations operate at 100% when 𝑥 =1 and 𝑥 = −1. Pressure 

drops in the connecting lines (such as hoses, unions, fittings and bends) are neglected, 

because they are relatively small compared to the pressure difference between HPMs. 

It is important to recall that HPA is an energy storage component that stores 

potential energy in the form of a pressurised hydraulic fluid between 6.9 MPa and 25 

MPa. Within the HPA, a 6.3 L dry nitrogen gas compression bladder is used to pre-charge 

one side of the accumulator. An LPA is the same accumulator as the HPA, but it operates 

as a reservoir to contain the low-pressure hydraulic fluid. The LPA's mass is included in 

the overall vehicle mass, but only the HPA is modelled in the simulation.  

An adiabatic (polytrophic) model is used for expansion and compression of the 

nitrogen bladder inside the HPA. As the initial volume of oil in the accumulator is known, 

the Euler’s method is used to calculate the volume of the oil in the accumulator at each 

time step, as shown in Eq. (14). The negative sign convention at the HPM flow (QPM) is 

established because it normally works in motor mode (𝑥 > 0), in which it takes the fluid 

away from the accumulator. 
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Once the volume of oil in the HPA and the initial pressure (6.9 MPa pre-charged 

pressure) are known, the HPA pressure is calculated using Eq. (15 to 17). The state of 

charge (SOC) represents the ratio of the current potential energy to the full 

potential energy stored in the HPA, i.e. a fully charged accumulator has a SOC of 

100%. The total fuel consumption along the time steps is used to calculate the fuel 

economy of the vehicle operating on every drive cycle using Eq. (18). 

Pgas(k)= (
Vgas, initial

Vgas(k)
)

γ

 Pgas, initial    (15) 

where, 

Vgas(k)= V
total,  acc

-Voil(k) (16) 

SOC (k)=
Pgas(k)-Pmin

Pmax-Pmin
   (17) 

Fuel economy (km/l)=
Total distance travelled

Total fuel consumed
   (18) 

Function # Objectives Optimise function 

f1(X) maximised 

f2(X) maximised 

Parameters, (𝑋) Unit limits # genes (bits) 

Engine speed, 𝜔 RPM 850≤ω≤4946 10 

Pump torque, 𝜏𝑝𝑢𝑚𝑝 % 0≤ω≤127 7 

Gear ratio, 𝐺𝑟𝑎𝑡𝑖𝑜 N/A 1 - 4 2 

{
min . F(X)= f

1
(X),f

2
(X)

s.t. g
j
(X)≥0   j=1, 2, …J

(19)

METHODOLOGY 

MOGA is configured in accordance to the fitness function used in the optimisation 

process based on Eq. (8) and Eq. (18) as listed in Table 2.  

Table 2. Objective functions for HHV optimisation 

Engine torque, 𝜏𝑒𝑛𝑔𝑖𝑛𝑒 

Fuel economy 

Table 2 shows two objective functions that need to be maximised. A solution is said to 

be superior if both objectives are maximised, but this is not always the case due to the 

conflicting problem. Therefore, the solutions are best presented using Pareto optimal. 

Furthermore, the solution is subject to some constraints and limits as listed in Table 3. 

MOGA aims to optimise the following functions by treating them equally without any 

weight vectors involved as shown in Eq. (19). 

Table 3. Constraints and number of genes in the chromosome. 
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where X is a list of corresponding decision parameters belonging to each function f
i
(X),

g
j
(X)≥0 being a group of nonlinear inequality constraint.

Optimal fuel economy can be achieved through a good balance between the 

engine torque and the HPM torque. Three decision variables and their corresponding 

limits are defined to form a chromosome for genetic algorithm optimisation as shown in 

Table 3. Chromosome representation describes the genes of each individual in the form 

of a string. The number of bits defines the resolution for of each parameter. Based on 

these variables, the genes were defined in the chromosome to be 19 bits long in the 

following order: 

(𝜔 τpump| Gratio|) = MSB (YYYYYYYYYY | YYYYYYY | YY) LSB 

The structure of the chromosome is in binary form where 𝑌 𝜖 {0,1}, where the 

genes toward the left represent the most significant bit (MSB) and the genes on the right 

are the least significant bit (LSB). The speed genes are 10 bits long, equivalent to 1024 

decimal values – multiplying this value by 4 equals 4096 to cover the speed range of 850 

~ 4946 (maximum torque is obtained at 5000 RPM). The reason 4 is chosen as the 

multiplication factor is that changing the engine speed by 1 RPM does not produce a 

significant difference in torque. The genes for pump torque has 7 bits to evolve within 

128 data range that would be multiplied by 100%/128 to obtain an actual percentage of 

SOC. The last two bits on the right represent the number of available gears (4 gears). 

Once the chromosome is defined, the computational procedure in MOGA was executed 

in the following order: 

Initialisation 

Set the initial values of six parameters for genetic algorithm, including the maximal 

number of generations MAXGEN, the population size NIND, the generation number 

GEN, the crossover probability Pc, the mutation probability Pm, and the constraint 

parameters 𝑔(𝑥). 

Evaluation of fitness function 

Compute the fitness value 𝑓𝑖(𝑋) for each chromosome in the 𝑖𝑡ℎ generation. After 

validating by the constraints 𝑔(𝑥), record and modify the best chromosome to the next 

generation and update a tentative vector of Pareto optimal solutions. 

Reproduction 

Compute the reproduction probability 𝑃𝑖 and the cumulative probability 𝑞𝑘. Generate a 

random number 𝑟 in [0, 1] according to a uniform distribution. Operating the reproduction 

process with the parameter 𝑃𝑖, 𝑞𝑘 and 𝑟, a new generation will be produced. 

Crossover 

For each selected pair, apply a crossover operation to generate two new strings. Generate 

a random number as 𝑟 in [0, 1] according to a uniform distribution in turn. Set up a parent 

chromosome population based on the parameter 𝑃𝑐 and 𝑟. Select two chromosomes in the 

parent chromosome population and a breakpoint for each chromosome in random. 

Compute the crossover process for all parent chromosomes. 
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Mutation 

The mutation increases the diversity of the population by introducing random variation 

to the population. Generate a random number as r1,r2,r3,…rn in [0, 1] according to 

uniform distribution in turn. 

Convergence 

If the present generation number 𝑖𝑡ℎ equals to the maximum number of generations 

MAXGEN, optimisation processes are said to be converged to an optimal solution. 

Sorting 

Sorting is the process where the solutions are ranked according to their superiority to be 

the non-dominated solution at the Pareto front. In this paper, we used the MOGA ranking 

[9] to identify the non-dominated solution. A summarised method described above is

depicted in Figure 3.

Figure 3. A summarised block diagram for the optimisation process. 

SIMULATION RESULT 

The mathematical model HHV is used to simulate the parameter optimisation using 

MOGA. The simulation runs on both city and highway drive cycles that originated from 

Malaysian roads in Alor Setar, Kedah [2]. Basically, the city drive cycle consists of 

1738 s of low speed (maximum speed of 19.5 m/s) with high-frequency stop-and-go 

driving conditions. The highway drive cycle, on the other hand, consists of 2878 s of high 

speed (maximum speed of 33.37 m/s) with less frequent stops. Figure 4, Figure 5 and 

Figure 6 show a set of trade-off results between engine torque (Nm) and fuel economy 

(km/l) for both HHV and conventional ICE engine (without HHV). 
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Figure 5. Non-dominated solution trade-off between HHV and conventional ICE on city 

drive cycle. 

In Figure 5, a similar pattern is observed for high-torque above 70 Nm. However, 

at low torque below 70 Nm the fuel economy for HHV in city driving is much improved 

as compared to ICE engines particularly where fuel economy is achieved between 14 ~ 

17.5 km/l as compared to 13 ~ 16 km/l. This scenario is highly expected since, in city 
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Figure 4. Trade-off solution between HHV and conventional ICE on highway drive 

cycles. 

Figure 4 shows that for the highway drive cycle; the engine torque for ICE and 

HHV demonstrate similar performance above 70 Nm where the fuel economy varies from 

8 to 16 km/l. It is observed that above 70 Nm, the vehicle is mainly powered by the ICE 

engine, hence there is no significant difference in fuel-saving from both systems. 

However, at the lower torque operation of below 70 Nm, the HHV has demonstrated a 

better fuel economy in the range of 17~19 km/l as compared to ICE 16.5~18 km/l. The 

improvement is due to the power assistance from HPM to lighten the engine load. The 

slight improvement in fuel economy is expected because highway driving demands 

higher torque that utilises more ICE engagement. 
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drive cycle, the vehicles operate at low torque start-stop condition and hence charging 

up the hydraulic pump and offering more assistance from the hydraulic motor to relief 

the ICE load.  
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Figure 6. Non-dominated solution trade-off between HHV and conventional ICE 

highway and city drive cycles. 

Figure 6 shows a combined solution for both highway and city drive cycles. It is 

observed that HHV offers a slight improvement in term of fuel economy for both highway 

and city driving over conventional ICE engine particularly at low-torque operations 

indicated by shaded areas. In comparison, the fuel economy has improved on city drive 

cycle as compared to highway drive cycles. Indirectly, it indicates that the engagement of 

hydraulic motor and pump are more frequent on a city drive cycle.  

CONCLUSION 

The results demonstrate that the multi-objective genetic algorithm (MOGA) provides a 

useful representation of the solutions in terms of Pareto optimal. The algorithm can be 

used to evaluate the performance from multi-objective perspective between engine torque 

and fuel economy for both non-HHV and HHV setups. From the results, a slight 

improvement in fuel economy is observed from HHV at lower torque mode (mostly at 

low engine RPM) due to the engagement of the hydraulic motor. However, at higher 

torque, the result for HHV and non-HHV are almost aligned since the motor does not 

assist the engine at this point. It is observed that the estimated fuel economy achieved by 

HHV setup is within the range of 0.5 ~ 1 km/l for highway and 1 ~ 1.5 km/l for city drive 

cycles. Although this improvement is small, driving HHV vehicle with 50 litres fuel 

would travel more than 50 extra kilometres – which is considered a significant saving. 

Therefore, it is concluded that MOGA has provided a set of compromised solutions 

(Pareto optimal solutions) between engine torque and fuel economy for HHV setup. It 

also demonstrates that, the fuel economy for HHV has improved about 5.55% for highway 

and 6.5% for city drive cycles while maintaining the required torque. 
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