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ABSTRACT 

 

Active vibration control (AVC) techniques show promising results to reduce unwanted 

vibration level of flexible structures at any desired location. In this paper, the application 

of non-parametric identification method using feedforward neural networks (FNNs) to 

model a flexible beam structure for AVC system is presented. An experimental study was 

carried out to collect input-output dataset of a flexible beam system. The flexible beam 

was excited using a pseudo-random binary sequence (PRBS) force signal before 

acquiring the dynamic response of the system. A non-parametric modelling approach of 

the system was proposed based on feed-forward neural networks (FNNs) while its weight 

and bias parameters were optimised using chaotic-enhanced stochastic fractal search 

(SFS) algorithm. The performance of modified SFS algorithm to train a nonlinear auto-

regressive exogenous model (NARX) structure FNNs-based model of the system was 

then compared with its predecessor and with several well-known metaheuristic 

algorithms.  Correlation tests were used to validate the obtained model. Based on the 

proposed method, a small mean squared error value has been achieved in the validation 

phase. Considering both convergence rate and result accuracy simultaneously, the chaotic 

modified SFS algorithm performs significantly better than other training algorithms. In 

conclusion, the development of a non-parametric model of the flexible beam structure 

was conducted and validated for future investigations on active vibration control 

techniques. 

 

Keywords: Active vibration control; flexible structure; system identification; stochastic 

fractal search.  

  

INTRODUCTION 

 

Today, applications of flexible structures have been extensively used in various 

engineering domains. These flexible structures (i.e. beams, plates, shells and frames) are 

important elements in manufacturing for mechanical, civil, aerospace and marine 

engineering applications [1]. However, these flexible structures were vulnerable to 

excessive and unwanted vibration level [2, 3]. High vibration level will degrade the 

performance of flexible structures which lead to destruction and human discomfort. 

Therefore, many vibration control methods have been proposed over the years to 
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overcome this problem. Active control approaches are one of the examples to reduce 

vibration from flexible structures. Active vibration control (AVC) can be defined as 

methods of constructing artificial source/s of vibration to attenuate unwanted sources at 

any intended location [3]. Compared to the traditional passive control of vibration, active 

control possesses the flexibility in actuator/s mounting and less weight but produce better 

or equivalent control performance [4]. 

In order to control unwanted vibration from these flexible structures, generally an 

accurate model is required. This can be achieved by using system identification 

approaches using input-output dataset system of interest [5, 6]. However, a training 

mechanism is needed to find acceptable parameters for the model either parametric or 

non-parametric types. The non-parametric system identification approaches can be 

constructed based on artificial neural networks (ANNs) [7-9] and adaptive neuro-fuzzy 

inference system (ANFIS) [10] models. Previously, researchers employed back- 

propagation algorithm to train ANNs model. Nevertheless, this algorithm easily falls into 

local minima and possesses slow convergence rate due to the complexity of non-linear 

problems i.e. parameters combination [10]. Recently, metaheuristic algorithms have 

become an alternative option to complete this task. Therefore, there is a need of fast 

convergence optimisation algorithms with capability to avoid local minima in order to 

improve solution accuracy. 

Previously, many researchers implemented several metaheuristic algorithms to 

train ANNs for numerous scientific and engineering applications especially in pattern 

recognition research area [11]. Wu, Zhou [12] employed symbiotic organisms search 

(SOS) algorithm to train feed-forward neural networks (FNNs) for classification of UCI 

machine learning dataset. The results proved that the proposed method outperform most 

of seven other algorithms. Three established metaheuristic algorithms namely, simulated 

annealing, differential evolution and harmony search were used by Rere, Fanany [13] to 

optimise convolution neural networks (CNNs) on classifying MNIST and CIFAR dataset. 

The classification accuracy has been improved in comparison to the original CNNs.  

Yaghini, Khoshraftar [14] proposed PSO-based hybrid algorithm to train ANNs for 

classification of eight benchmark problems. They highlighted improvement of the hybrid 

algorithm in comparison to other methods. Training ANNs model for predicting stock 

price has been investigated by Ghasemiyeh, Moghdani [15]. PSO algorithm showing 

better performance than other contestant optimisation algorithms. 

In this paper, a non-parametric identification based on (FNNs) model is proposed 

to identify the dynamic characteristics of a flexible beam structure for active vibration 

control purpose. Five metaheuristic optimisation algorithms were employed to train the 

FNNs model namely, particle swarm optimisation (PSO), gravitational search algorithm 

(GSA) and their hybrid variant (PSO-GSA); and stochastic fractal search (SFS) with its 

chaotic variant. Finally, a comparative assessment of the used metaheuristic algorithms 

performance is carried out. To date, there has been no report on application of SFS 

algorithm and its chaotic variants to train FNNs for system identification purpose. 

The rest of the paper is organised as follows: Section 2 presents literature review 

of applications of system identification in AVC area and overview of the SFS algorithm. 

The experimental setup of the AVC system for flexible beam structure and the 

development of metaheuristic-based feedforward neural networks to model the system 

with its model validation tests are described in Section 3 and Section 4, respectively. 

Results and discussion are elaborated in Section 5 before concluding remarks are drawn 

in Section 6. 
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LITERATURE SURVEY 

 

Model Identification and Active Vibration Control 

 

In the past decades, modelling and control of flexible structures had gain remarkable 

attention from researchers around the world [16-20]. To ensure better control 

performance, it is essential to find an accurate model to represent the dynamical system 

of flexible structures [21]. Thus, system identification approaches were applied to find an 

appropriate model either parametric or non-parametric types. Figure 1 illustrates the 

flowchart of system identification procedure [5]. System identification consists of two 

main steps namely, the selection of a suitable structure and estimation of model 

parameters [21, 22].  

With the advancement of metaheuristic algorithms research area, the process to 

generate an accurate model has improved as these two main steps of system identification 

can be formulated as optimisation problems. Therefore, many researchers previously 

implemented metaheuristic algorithms in modelling flexible structures especially flexible 

beam structures [23-25]. Saad, Jamaluddin [23] identified dynamic model of a flexible 

beam structure by applying auto-regression with exogenous input (ARX) model structure. 

Recursive least square method was used to train the experimental input-output data. The 

developed model was then applied to tune PID controller using two evolutionary 

algorithms namely, genetic algorithm (GA) and differential evolution (DE). Mat Darus 

and Al-Khafaji [24] investigated several non-parametric approaches to identify dynamic 

model of a flexible rectangular plate structure. Three types of artificial neural networks 

(ANNs) architecture were applied to generate the dynamic model. The results show that 

the MLPNN model describe the flexible plate structure better than other approaches with 

a highly convergent rate to optimum solution. Zakaria, Saad [25] investigated the 

application of a multi-objective optimisation differential evolution (MOODE) algorithm 

to model dynamic system of flexible beam structure. Parametric identification with non-

linear auto-regression with exogenous input (NARX) model structure was developed by 

considering two objective functions, i.e. minimising the number of model terms and 

minimising the mean squared error between actual and predicted output. The results show 

that the MOODE algorithm has the capability to generate an adequate model while 

finding acceptable stability between the model predictive error and the number of terms 

for model structure.  

 

Stochastic Fractal Search Algorithm 

 

The SFS algorithm is a nature-inspired optimisation algorithm developed by Salimi [26]. 

It is based on the natural phenomenon of growth that is applied in a mathematic concept 

called fractal. The particles in this algorithm emulated the diffusion property in random 

fractal in order to explore the search space efficiently. The random fractal is generated 

based on a model called Diffusion Limited Aggregation (DLA) [27]. A mathematical 

algorithm like random walk is used to imitate the diffusion process such as Levy flight, 

Gaussian walks, trajectories of Brownian motion and the Brownian tree [28]. Dielectric 

breakdown is a narrow discharge branching that is usually seen in nature such as in 

lightning, surface discharges and polymer treeing. This branched discharge follows 

fractals properties as shown by Niemeyer, Pietronero [29] and then proposed a new 

stochastic model to describe this phenomenon.  It is approximately similar to DLA. 
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Figure 1. Flowchart of system identification procedure [5]. 

 

There are three simple rules in fractal search (FS) employed in fractal growth and 

potential theory, as follows: 
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i. Each particle has an electrical potential energy. 

ii. Each particle diffuses, and causes some other random particles to be created, and 

the energy of the seed particle is divided among generated particles. 

iii. Only a few of the best particles remain in each generation, and the rest of the 

particles are disregarded. 

Salimi [27] then improved the FS algorithm by introducing updating processes to 

exchange information among all participating points. This will lead to speed up 

convergence to minimum as a point in the group updates its position based on the position 

of other points in the group. The researcher named this updated version as SFS algorithm. 

Unlike FS algorithm which uses both Levy flight distribution and Gaussian distribution 

as random walk, SFS only utilised Gaussian distribution in the DLA growth process. 

There is only one parameter to be tuned during initialisation stage of this SFS algorithm 

which is Maximum Diffusion Number (MDN). The SFS algorithm can be described as in 

Figure 2 and its pseudo-code in Figure 3. The initialisation equation of the jth point, Pj is 

addressed as follows: 

 

Pj=LB+ε×(UB-LB) (1) 

 

where LB and UB are lower and upper problem constrained vectors, respectively. 

Uniformly distributed random number, ε restricted to [0, 1] is used to randomise the 

population. After initialisation of all points, the fitness function of each point is computed 

to obtain the best point (BP) among all points. Next, a series of Gaussian walks 

participating in the diffusion process is realised using Eq. (2). 

 

GW=Gaussian(μ
BP

,σ)+(ε×BP-ε'×Pi) (2) 

 

where BP and Pi represent the position of the best point and the ith point in the group, 

respectively. µBP is equal to BP  with the standard deviation computed as: 

 

σ= |
log ( g)

g
×(Pi-BP)| (3) 

 

All points are ranked based on the value of the fitness function. Each ith point in the group 

is given a probability value which obeys a simple uniform distribution as 

 

Pai=
rank(Pi)

N
 (4) 

 

where rank (Pi) is rank of point Pi among other points in the group and N is number of all 

points in the group. Loosely speaking, the higher the probability means the higher chance 

for the point to pass to the next generation. For each point Pi in the group, the jth 

component of Pi is updated based on whether or not the condition Pai<ε is satisfied, using 

 

Pi
' (j)=Pr(j)-ε×(Pt(j)-Pi(j)) (5) 

 

Otherwise, the point remains unchanged. 
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Figure 2. The flowchart of SFS algorithm [26]. 
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Although the SFS algorithm is relatively a new metaheuristic approach, there are 

several applications of SFS and its variant developments so far in the literature. The SFS 

algorithm has been applied to solve optimisation problems in control engineering area 

[30, 31], parameter identification [32], training artificial neural networks (ANNs) [33, 

34], trajectory planning [35], optimal relay coordination problem [36], system reliability 

optimisation problem [37], wind integrated multi-objective optimal power dispatch 

problem [38-40], economic production quantity [41], environmental-economic dispatch 

problem [42], surface grinding process [43], protein structure prediction [44] and many 

more. The results show promising capabilities of SFS algorithm to outperform other 

established metaheuristic approaches. 

Several modifications are also being proposed by researchers around the globe to 

enhance the SFS algorithm. Awad, Ali [45] proposed a novel hybridisation between 

differential evolution and updating proses of the SFS algorithm. A diffusion process 

based on differential evolution algorithm has been used instead of random fractal in the 

original SFS algorithm. The developed algorithm outperformed other contestant 

algorithms over most benchmark test suits. Khalilpourazari and Khalilpourazary [43] 

utilised Taguchi method to tune the parameters of SFS algorithm in order to increase its 

searching efficiency. The proposed algorithm was applied to optimise the surface 

grinding process parameters to increase final surface quality and production rate while 

minimising total process costs. The implementation of Levy flight and internal feedback 

information were introduced by  Zhou, Sun [44] to improve SFS algorithm. 

The proposed approach had also been used to solve protein structure prediction 

(PSP) optimisation problem. The experimental results highlighted the robustness and 

efficiency of developed algorithm in terms of finding global optima solutions and local 

optima avoidance. The chaotic theory was applied by Bingöl, Güvenç [46] to enhance 

SFS algorithm. Ten chaotic maps were embedded in β constant parameter that used to 

decrease the size of Gaussian jumps (step size). This approach was evaluated using seven 

classical benchmark functions. The simulation results indicated that the chaotic maps 

enhanced the SFS algorithm. Khishe, Mosavi [34] also employed four chaotic maps to 

improve the performance of SFS algorithm. One improved variant of SFS known as 

Chaotic Fractal Walk Trainer (CFWT) has been used to train multilayer perceptron neural 

networks (MLP-NNs) for classification task. The proposed classifiers were evaluated 

using two benchmark datasets and a high-dimensional practical sonar dataset. Based on 

the simulation and real application results, the developed CFWT algorithms show better 

performance in comparison to four established metaheuristic algorithms in terms of 

classification accuracy, convergence speed and entrapment in local optima. 
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Figure 3. Pseudo-algorithm for SFS algorithm [26]. 
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EXPERIMENTAL SETUP 

 

Based on an experimental study, the input-output data of the flexible cantilever beam 

system were collected [47]. The properties of the aluminium beam that were used in the 

study is tabulated Table 1. The experimental setup was established as shown in Figure 4. 

A piezo-ceramic patch model P-876.A12 Dura Act was chosen as the disturbance actuator 

and attached to the beam surface. Next, the beam displacement measurement data were 

acquired by a laser displacement sensor model ANR-1250. The data collection process 

was done in LabVIEW environment.  

 

Table 1. The cantilever beam description 

 

Parameter Value 

Length 500 mm 

Width 50 mm 

Thickness 1.1 mm 

Young’s modulus 71 GPa 

Density 2700 Kg/m3 

 

 
 

Figure 4. Experimental setup (adapted from [23]). 

 

The input-output dataset of the flexible beam system is illustrated in Figure 5. As 

1 kHz of sampling rate was chosen, 1500 data points were acquired. The flexible 

cantilever beam was excited using a pseudo-random binary sequence (PRBS) signal. The 

first two resonance modes were identified and located at frequency of 3.418 Hz and 21 

Hz.  
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Figure 5. The input-output signal dataset of the system studied. 

 

NON-PARAMETRIC IDENTIFICATION 

 

Model Structure 

 

The model structure selection relies on initial knowledge and engineering judgement 

about the system under study. There a possible range of model structures which are 

available in system identification. The nonlinear auto-regressive model with exogenous 

input (NARX) structure was determined to be an appropriated selection in this study due 

to its lowest complexity and without noise term incorporated but possesses capability to 

adapt with the nonlinearity [24]. Equation 6 expresses the mathematical NARX model 

structure in a discrete form. 

 

ŷ(t)=f(u(t-1),...,u(t-nu)+y(t-1),...,y(t-ny)+e(t))                (6) 

 

where )(ˆ ty  represents the output vector determined by past values of the system input 

vector, output vector and noise, )(te . un and yn  represent model orders and ()f  

represents the system mapping. 

Feedforward neural networks (FNNs) have been extensively used in practical 

applications, especially FNNs with two layers [48]. An FNN with two layers are usually 

used in classification and functions approximation tasks. Back-Propagation (BP) 

algorithm are generally employed to train FNNs in most applications.  Neural networks 

consist of: 

i. Node: activation function, usually a sigmoid function. 

ii. Layer: a number of interconnected nodes at the same hierarchical level. 

iii. Connection: constant weights 

iv. Architecture: an organisation of interconnected nodes. 

v. Mode of operation: analogue or digital. 

The mathematical explanation of a neuron is as shown by Eq. (7). 

  

y=φ(∑
i
xiwi+w0)                   (7) 

where T

nxxxx ]1,,...,,[ 21=  represents input vector while the weight vector of a neuron is 

given by T

n wwwww ],,...,,[ 021= . 



Rahman et al. / International Journal of Automotive and Mechanical Engineering 16(1) 2019 6263-6280 

6273 

Figure 6 shows the diagrammatic representation of the FNNs for system 

identification of the flexible cantilever beam system. An FNN with two layers and 

structure 4-10-1 are selected and trained to model the flexible beam system.  Four input 

nodes as model order 4 was chosen which means, 2== yu nn with number of hidden 

nodes of 10. Sigmoid neurons were employed in both hidden and output layers. The 

matrix encoding strategy has been used in this study as described by Mirjalili, Mohd 

Hashim [48]. The input-output dataset which consists of 1500 data points was divided 

into two sets. The first 1,000 data points were used to train the model. Then, the whole 

1,500 points including the 500 points that had not been used in the training process was 

employed to validate the model. 

 

        
 

Figure 6. Diagrammatic representation of the FNNs for system modelling [24]. 

 

Several established metaheuristic algorithms were applied as training mechanism such as 

PSO, GSA, PSO-GSA, and SFS algorithms. Their convergence rate and results accuracy 

performance will be benchmarked to the newly proposed chaotic-enhanced stochastic 

fractal search (CFS) algorithm by Rahman and Tokhi [49]. The Gauss/mouse chaotic map 

was embedded into Diffusion and First Updating Processes within the standard SFS 

algorithm. As objective function, mean squared error (MSE) between actual and predicted 

outputs was employed. The population sizes were set to 30 particles and maximum 

generation of 4,000. A total of 61 weight and bias parameters were optimised within 

search range [-10 10]. For PSO, GSA and PSO-GSA algorithms, the initial setting values 

were followed as suggested in [48]. The maximum diffusion number (MDN) was set to 1 

with the first Gaussian walk used for both SFS and CFS algorithms. 

 

Model Validation 

 

In the literature, numerous validation tests are available to test a developed model. One 

step-ahead (OSA) prediction, mean squared error (MSE) and correlation tests were used 

in this study to validate the acquired model [24]. Model validation was done in both time 

and frequency domains by comparing between actual and predicted outputs. Correlation 

tests are a statistical test that indicates the degree of relationship between two variables. 

Two examples of correlation test are the auto-correlation and cross correlation tests. If 

Beam System 

FNNs 

model 
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the model structure and the estimated parameters are accurate, the prediction error 

sequence, e(t) should be uncorrelated (unbiased) with all linear and nonlinear 

combinations of past inputs and outputs [50].  An adequate model is achieved when the 

correlation tests lay within 95% confidence limits. 

 

RESULTS AND DISCUSSION 

 

Table 2 shows the statistical analysis for all training algorithms over 30 independent runs. 

The best results are indicated in bold type. The results show that the CFS algorithm has 

better performance for the best, standard deviation and worst of the MSE while second to 

SFS in terms of mean and median achieved. These results prove that CFS algorithm has 

better ability compared to others in training the FNNs model and possess capability to 

avoid being trapped at local minima. On the other hand, PSO algorithm can complete the 

modelling task better than others due to simplicity in its algorithm structure. The 

convergence curves for each of optimisation algorithms based on the best of MSE values 

are illustrated in Figure 7. 

 

Table 2. Statistical analysis for all training samples over 30 independent runs. 

 
Algorithm Best Mean Standard 

Deviation 

Median Worst Ave. 

Time (s) 

PSO 8.1467e-06 1.2032e-05 1.5546e-06 1.2394e-05 1.4236e-05 447.306 

GSA         1.1246e-05 4.6694e-05 1.8909e-05 4.6814e-05 8.9122e-05 469.752 

PSO-GSA 5.0548e-06 8.5065e-06 2.4165e-06 8.3591e-06 1.4714e-05 466.802 

SFS 2.6654e-06 3.5210e-06 6.4286e-07 3.2906e-06 5.2448e-06 2958.481 

CFS 2.6135e-06 3.5299e-06 6.3386e-07 3.4075e-06 4.6191e-06 2959.357 

 

 
 

Figure 7. Convergence of MSE value 

 

Next, a model based on the best of CFS algorithm results was validated. Both 

actual output and predicted FNNs output with the error between them are plotted in Figure 

8. It can be seen that the error lay within the range of [-0.01, 0.01]. Figure 9 plots the 

actual and predicted FNNs outputs for the unseen testing data. An MSE value level of 

2.5990x10-6 was found. 
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Figure 8. The actual and CFS-FNNs predicted output (training data). 

 

 
 

Figure 9. The actual and CFS-FNNs predicted output (testing data). 

 

The efficiency of the generated CFS-FNNs model was determined by performing 

the correlation tests. The results of the correlation tests are presented in Figures 10 (a) to 

(e). The accuracy of the FNNs model generated was verified when the results were found 

to be within 95% confidence level. As comparison in frequency domain, Figure 11 plots 

the power spectral density of the actual and the CFS-FNNs predicted outputs. The mean 

squared error (MSE) between actual and predicted outputs until 50 Hz was found to be 

4.1308x10-8.  
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 
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(e) 

 

Figure 10. Correlation tests of CFS-FNNs model 

 

 
 

Figure 11. The actual and predicted output in frequency domain. 

 

CONCLUSION 

 

Results of the FNNs based non-parametric approach to model the dynamic system of a 

flexible cantilever beam structure for active vibration control purpose have been 

presented with various tests including input/output mapping, mean squared error and 

correlation tests. The FNNs model trained by CFS algorithm has performed well in 

approximating the system response in comparison to others. A comparative performance 

assessment of several metaheuristic algorithms in training the FNNs model has been 

accomplished. It is revealed that CFS algorithm is able to produce far better results 

accuracy in comparison to PSO, GSA, PSO-GSA and the standard SFS algorithms. As 

conclusion, the non-parametric FNNs model of the flexible beam structure was developed 

and validated. This model will be act as a transfer function for AVC approaches in future 

study. Future study may also include the effect of selection hidden node number to the 

model performance. 
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