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ABSTRACT 

 

Bumblebees cannot fly! That conclusion is likely to be drawn by scientists who analysed 

the insect using aerodynamics of stationary wings such as that of a passenger aircraft. 

Looking at the insect again using a newfound understanding of unsteady aerodynamics; 

it is clear why bumblebees can fly. Bumblebees utilise mechanisms behind unsteady 

aerodynamics such as leading-edge vortices (LEVs) formation, wake capture, and rapid 

end-of-stroke rotation to generate forces that enable the insect to fly. This study focuses 

on two-dimensional (2D) elliptical airfoil. Earlier works found the aerodynamic 

characteristics of an elliptical airfoil to differ greatly from a conventional airfoil, and that 

this airfoil shape could generate the counter-rotating vortices used by insects to generate 

lift. Therefore, this research aims to study the lift generation of a bumblebee-inspired 

elliptical airfoil in a normal hovering flight. This study focuses on hovering flight with 

the insect flies in a nearly stationary position, which explains the importance of lift 

generation to stay aloft. The motion of the elliptical airfoil is inspired by the flapping 

kinematics of bumblebees at a typical Reynolds number range of Re=O(10
3
). It is found 

that the current two-dimensional model is capable of capturing the counter-rotating 

vortices and correlates the formation of these structures to a high production of lift. These 

results show that bumblebees utilise these counter-rotating vortices to generate lift 

enough to fly in hovering flight. This results also indicate that flapping 2D elliptical 

airfoils can be used to investigate their 3D wing counterparts, which translate to a reduced 

time and computing costs. 

 

Keywords: Flapping wing; elliptical airfoil, bumblebee wings, counter-rotating vortex; 

lift generation. 

 

INTRODUCTION 

 

Interests in insect flight have increased steadily in the last three decades. This increase is 

sparked by the natural interests of human to flying and the potential applications of insect 

flight to the design of macro air vehicles and more recently tidal turbines. Previous 

researchers discovered the key phenomena of insect flight, for example, leading-edge 

vortex, added mass and wing-wake interactions [1]. Leading edge vortex occurs when the 

flow on the wing separates as it passes the leading edge and reattaches before the trailing 

edge [2]. The leading edge vortex results in the increase in lift and delayed stall. Added 

mass is a phenomenon where the wing during acceleration experiences a reaction force 

because of the accelerated fluid [1,3]. Wing-wake interaction is when a wing interacts 

with vortices shed in the previous strokes, which causes the rapid change in forces right 

after supination and pronation [4].  
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Flapping wings with various shapes, for example, rectangular [5,6], elliptical 

[7,8], and Zimmerman [9,10] had been studied frequently. Simulations of these three-

dimensional (3D) wings are ideal for capturing the flow phenomena around 

insect/flapping wings. However, earlier works have shown that two-dimensional (2D) 

calculations provide useful information about the flow and can serve as a reliable and 

practical tool to predict the forces generated by a flapping three-dimensional wing 

[11,12]. Many types of 2D objects were studied in the past. Several of the most frequently 

analysed were NACA airfoils [13–15] and flat plates [16–18]. 

Bumblebees are pollinators that fly in the Reynolds number regime of 𝒪(103). 

Bumblebees are known to have a high wing loading of 0.17
𝑔

𝑐𝑚2 , which translates to their 

ability to fly while carrying heavy load despite of having small wings [19]. This capability 

to fly while lifting heavy load is beneficial for MAVs especially those developed to 

deliver goods. One vortex ring around each wing was observed by Bomphrey, et al. [20] 

during experiments using smoke-line visualization techniques on free-flying bumblebees 

at 1.2 m/s (Re =  2500). Bomphrey, et al. [20] observed that this vortex structure was 

formed because bumblebees shed not only their tip vortices but also their root vortices. 

The ring vortices on 3D bumblebee wings correspond to the counter-rotating vortices on 

2D airfoils. 

Earlier studies found counter-rotating vortices around an elliptical airfoil. Wang 

[21] numerically study an elliptical airfoil (2D) hovering under a figure-eight motion and 

found that counter-rotating vortices were a product of LEVs and trailing-edge vortices 

(TEVs), and not tip vortices which is a phenomenon found on three-dimensional wings. 

Poelma et al. [22] studied a dynamically-scaled wing moving in mineral oil and observed 

a pair of counter-rotating structures (Re =
𝑉𝑡𝑖𝑝𝑐

𝑣
). Wei, et al. [23] numerically studied 

elliptical airfoils at Reynolds numbers ranging from 104 to 106 and they also captured 

vortex dipoles in the flow visualization. The current work extends these published works 

by implementing the kinematics of bumblebees on the elliptical airfoil. 

This work aims at testing 2D elliptical airfoil in the typical Re regime of 1000. A 

successful finding of counter-rotating vortices on the elliptical airfoil suggests the 

adequacy of 2D model to give insight on the vortex rings on bumblebee wings (3D). 

Future works on bumblebee wings can be done using a 2D model, which can reduce the 

time and computing resources. 

 

VALIDATION 

 

The current solver and setup are validated against the computational data of [24]. The 

validation case is of an elliptical airfoil that flaps in a normal-hovering mode (β=0
°
) at Re 

of 157 (Figure 1). The airfoil flaps with flapping kinematics comprise translational and 

rotational motion that is described by Eq. (1) and Eq. (2) respectively. 

 

[x(t), y(t)]=
A0

2
(1+ cos 2πft)(cos β, sin β) 

 

(1) 

α(t)=α0+B sin(2πft+φ) (2) 
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The geometry of the model and the flow conditions are listed in Table 1. The non-

dimensional parameters are the ratio of flapping/translation amplitude to chord 

= (
A0

c⁄ ) =2.5 and the ratio of thickness to chord =( t
c⁄ )=0.125. 

 

 
 

Figure 1. Normal hovering where the stroke plane is flat (𝛽 = 0°) (Figure 2Ai in [24]). 

The leading edge of the airfoil is shown by the black circle. The top row is upstroke, 

and the bottom row is downstroke. The direction of lift is perpendicular to the stroke 

plane, which is the longitudinal plane, and the drag is parallel to the stroke plane. 

 

Table 1. Geometry and flow conditions of the validation case. 

 

Variable Value 

c 0.01670 m 

A0 0.04175 m 

𝑓 1 Hz 

𝐵 45° 

𝜙 0° 

𝛽 0° 

𝛼0 90° 

𝜈 1.4e-05 (m2s−1) (air) 

Re 157 

 

The first cell height of the boundary layer is 1×10
-5

 m with a growth rate (= the 

ratio between the height of layer (n+1) to layer n) of 1.1. The number of layer in the 

boundary region is 26, and the total boundary thickness is around 10% of the chord. The 

inner region has a growth rate of 1.1 and a maximum size of 0.002 m with several cells 

of 28,436. The outer region has a growth rate of 1.1 with a maximum size of 0.004 m 

with several cells of 34,694. 

The validation results are shown in Figure 3. Reasonable agreement is found 

between the current analysis and the reference data [24]. The first set of testing of the 

normal hovering airfoil (𝛼𝑜 = 90°, 𝛽 = 0°) shows instability. For normal hovering, the 

airfoil’s angle-of-attack (𝛼) varies between 45° and 90°, which make the airfoil a bluff 

body. Unsteadiness was observed on flow over bluff body at Re of 150 [25], and this 

might be the reason behind the difficulty in predicting the forces and thus the slight 

difference between the current simulation and the results of Wang [24]. The same 

validation case is used in another work on the drag production of an elliptical airfoil [26]. 
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(a) 

 

 
(b) 

 

Figure 2. Computational model: (a) Grid of the whole domain, and (b) Zoom on the 

boundary layer and grid around the elliptical airfoil. 

 

  
(a)      (b) 

 

Figure 3. (a) Lift and (b) drag coefficients of the current model in comparison to the 

reference [24]. 
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NUMERICAL MODELING OF ELLIPTICAL AIRFOIL 

 

Flow Conditions 

 

Bumblebee's flight at Re = 1360 with Re defined as 
ϕfS

ν
 has the following parameters 

(Table 2) to describe its flapping motion [27].  

 

Table 2. Kinematics of a real bumblebee. 

 

Variable Value 

𝜙 112° 

𝑓 145 Hz 

𝑆 5.2 × 10−5 m2 

𝜈 1.46e-05 m2s−1 (air) 

 

The calculation of Eq. (3) results in the following flow conditions: 

 
ϕfS

ν(air)
=

πfA0c

ν
 

(3) 

 

While keeping the frequency, flapping amplitude and chord the same as the 

validation case, the kinematic viscosity is adjusted to reach a Reynolds number of 1000 

where bumblebees commonly fly in Table 3. The ratio of translation amplitude to chord 

(=
𝐴0

𝑐
) is 2.5 and the ratio of thickness to chord (=

𝑡

𝑐
) is 0.125. 

The flapping motion of the elliptical airfoil is described by two equations, one 

each for pitching (�̇�) and flapping angle rate (�̇�) as in Eq. (4) and Eq. (5). The elliptical 

airfoil maintains a constant angle-of-attack during the downstroke (𝛼𝐷) and 

upstroke (𝛼𝑈) (Table 3). The duration of wing rotation (∆τr) is 0.22T with 𝑇 is the period 

of one flapping cycle/wingbeat (T=
1

f
). The non-dimensional time is τ=

t

T
 and τD is the 

start of wing rotation during the downstroke. For the upstroke, τD is substituted with τU 

and the sign of 𝛼0̇ is reversed, see Eq. (6). 

 

ϕ̇=πfA0cos(2πft) 

 

(4) 

α̇=0.5α0̇ {1-cos (
2π[τ-τD]

∆τr

)}
̇

 

 

(5) 

α0̇= (
π-αU-αD

∆τr×T
) 

 

(6) 

More details on the bumblebee flapping kinematics can be found in previous study [28]. 

 

Computational Model 

 

The first cell height of the boundary layer is 1×10
-5

 m with a growth rate of 1.1. The 

number of layer in the boundary region is 20, and the total boundary thickness is around 
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5% of chord. The inner region has a growth rate of 1.1 and a maximum size of 0.0015 m 

with several cells of 26,124. The outer region has a growth rate of 1.1 with a maximum 

size of 0.01 m with several cells of 9,318. 

 

Table 3. Kinematics of bumblebee-inspired flapping elliptical airfoil. 

 

Variable Value 

𝑐 0.01670 m 

𝐴0 0.04175 m 

𝑓 1 Hz 

𝜙 0° 

𝛽 0° 

𝛼𝐷 58.8° 

𝛼𝑈 49.3° 

𝜈 2.19e-06 m2s−1 

Re 1000 

 

LIFT GENERATION AT REYNOLDS NUMBER 1000 

 

It is commonly found in other papers that flapping airfoil/wing models are run for 

multiple cycles to ensure the unsteady flow is resolved properly [12,29]. The current 

simulations need to complete 12 cycles before achieving a repetitive time-history of 

forces (Figure 5). The time-averaged lift coefficient (𝐶�̅�)of the last cycle is 0.6366.  

To show the amount of lift force generated by a bumblebee wing, the individual 

bumblebee named BB01 whose wing motion is used in the current calculations with a 

mass of 175 mg, a wing length of 1.32 cm and a wing area of 1.0597 cm2 is chosen as an 

example [27]. This bumblebee flaps with a wing-beat frequency of 145 Hz and a stroke 

amplitude of 112°. This value of 𝐶�̅� is equal to a lift force production of 3.6342 × 10−3 

N for one wing and 1.4536 × 10−2 N for two wings. This amount of lift is enough to 

counter the weight of the bumblebee of 1.7167 × 10−3 N and any additional load such 

as pollen. This finding shows how bumblebees can fly by utilising unsteady aerodynamic 

mechanisms most prominently leading edge and trailing edge vortices. 

 

 
(a) 
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(b)      (c) 

 

Figure 4. Computational domain: (a) Computational domain with boundary layer and 

enclosing circle, (b) zoom in on the circle and; (c) boundary layer and airfoil move 

together as a rigid body. 

 

  
(a)      (b) 

 

 
(c) 

 

Figure 5. Time history of lift coefficients for (a) cycle 1 to 4, (b) cycle 5 to 8 and;  

(c) cycle 9 to 12. 

 

Only the time history until mid-cycle (downstroke) is explained due to the similar 

pattern of lift coefficient in the remaining half of the cycle. The description is divided into 

two: from 0.04 to 0.2, where the lift decreases from the global maximum to minimum and 

from 0.2 to 0.52, where the lift increases to a local maximum (Figure 6).  
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Figure 6. Time history of lift coefficients. From left to right are lines marking 
𝑡

𝑇
 of 0.04 

to 0.52 with a 0.08 interval. 

 

At 0.04 a cycle, a leading-edge vortex (LEV) is created and still attached to the 

upper surface of the elliptical airfoil as shown in Figure 7(a). This LEV creates a low-

pressure region (blue area) on the upper surface, which in combination with the higher 

pressure (green-yellow-orange area) on, the lower surface results in the global maximum 

of lift (Cl=1.3923). At 0.12 of Figure 7(b), this LEV begins to detach from the surface as 

the airfoil rotates in a counterclockwise direction. The LEV detaches even more at 0.2, 

which is shown by the blue region moves further away from the airfoil’s upper surface 

and is reflected in the near zero lift (Cl=0.0549)at this time of the cycle.  

From 0.28 to 0.36 of in Figure 7(d) and 7(e), the LEV shed into the surrounding 

flow and at the same time being pushed further by the rotating/pitching airfoil. At 0.36, a 

trailing-edge vortex begins to develop. At 0.44 in Figure 7(f), counter-rotating vortices 

appear when a new LEV develops, and the TEV continues to grow. As the LEV and TEV 

grow, so does the low-pressure region on the upper surface of the airfoil and the lift 

increases.  

 

  

(a) 
t

T
=0.04 
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(b) 
t

T
=0.12 

 

  

(c) 
t

T
=0.2 
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(d) 
t

T
=0.28 

 

  

(e) 
t

T
=0.36 
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(f) 
t

T
=0.44 

 

 

  

(g) 
t

T
=0.52 

 

Figure 7. Flow visualisation of flow around the elliptical airfoil. The left column is the 

contour of static pressure, and the right column is flow pathlines. 

 

At 0.52 the TEV leaves the airfoil while the new LEV continues to grow on the 

upper surface. This LEV creates a low-pressure region on the corresponding surface and 

hence the high value of lift coefficient (a local maximum of lift) as shown in Figure 7(g). 

At 0.52, counter-rotating vortices (=vortex dipoles) are even more visible with the LEV 

rotates in a clockwise direction, while the TEV rotates in the opposite direction 

(counterclockwise).  

The pressure contour and flow pathlines at the end of a cycle (
t

T
=0.92) are shown 

in Figure 8. At this time, counter-rotating vortices have developed on the upper surface 

of the airfoil. These vortex dipoles draw velocity onto the upper surface. Thus a low-

pressure region covers the surface as seen in Figure 8(a). The vortex dipoles and 
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subsequently the low-pressure region on the upper surface cause the elliptical airfoil to 

generate a high value of lift (Cl = 0.6996). 

The relation between vortex formation and lift generation has been established by 

explaining the flow structures at different time instances throughout the flapping 

cycle/wingbeat. This finding reinforces the fact that bumblebees use the formation and 

shedding of vortices to produce lift enough to stay aloft while carrying a heavy load. The 

counter-rotating vortices captured clearly in this simulation and the established relation 

between vortices and lifted become an indicator of how 2D elliptical airfoils can be used 

as an alternative to studying 3D bumblebee wings. Simulations of 2D airfoils exclude 

mechanisms such as spanwise flow and tip vortices, but still, show useful information on 

the flow around flapping airfoils. 

 

 
(a) contour of static pressure 

 

 
(b) flow pathlines 

 

Figure 8. Vortex dipoles at  
t

 T
=0.92. 
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CONCLUSION 

 

A numerical study of flow around an elliptical airfoil that flaps under bumblebee-inspired 

kinematics at a Reynolds number of 1000 has been conducted. Elliptical airfoils have 

been analysed before but not using bumblebee flapping kinematics and typical flying 

Reynolds number of 𝒪(103). It is found that the time-averaged lift of the two-

dimensional elliptical airfoil is used to approximate the magnitude of lift force produced 

by a four-winged bumblebee.  

There are three conclusions drawn from this study. Firstly, it is found that the 

wings of bumblebee generate enough lift to counter its weight. The excess lift indicates 

that the bumblebee is able to carry not only its body but also other loads such as nectar 

and pollen, which is something that can be observed in nature. Secondly, the counter-

rotating vortices are successfully captured, and a correlation between this flow structure 

and lift production can be established. The counter-rotating vortices are generated 

throughout a flapping cycle to enable the insect to produce a high magnitude of lift which 

allows the bumblebee to stay aloft during a hovering flight. The relation between counter-

rotating vortices and drag production of an elliptical airfoil at the same Reynolds number 

of 1000 had been preliminarily studied [26] and needs to be analysed further in future 

works. Thirdly, the 2D elliptical airfoil can be used to provide insight on the vortex rings 

on 3D bumblebee wings. Future works on bumblebee aerodynamics and propulsion can 

be conducted using 2D elliptical airfoil. 
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